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A POSSIBLE EXPLANATION OF THE CROSS
SECTIONS OF THE P-P ELASTIC
SCATTERING AT HIGH ENERGIES

IN THE ANGLE INTERVAL FROM 0<B<90°
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 Abstract

The differential cross sections of the P-P elastic scattering,
measured at high energies and in the angle interval 0.<8 < 90
are described on the basis of two discrete values of a transverse
momentum:

% 2 4 2 %
<B>| 20,355 Gevjc % 0,01 Gev/c and <Py > =2<P > .

Accordingly, the interference of waves emitted by two reg?ons
of interaction with relative phase shift ~¢ leads to the following
elastic scattering cross section formula

2 .3
’ t t
-ty . -t 4 ———
d 3p3
d‘: -[Clexp( —-——’-il:—‘) +C expl "P ) o+
<P > 4<P_L >
e ll
% 4P> t
+2(C‘Cn) + Cos ¢ exp(__—-———-)](l-—-?-),
— <P >
5 1

where P is the c.m. primary proton momentum,

c, -80-10727
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Some models for an explanation of the experimental results of
the P-P elastic scattering have been recently proposed in a series
of papers / 1‘4/.

At present, measurements of differential cross sections are ex~
tended to even larger ranges of energy and scattering angles, The
accuracy of the experimental data has also been increased, This
allows a more exact comparison of the éxperimental data with theore-
tical predictions, On the basis of this analysis it is also possible
to propose new methods for making the model more precise,

In the angle interval where the real part of the scattering am-
plitude as well as the Coulomb amplitude are not important, as is -
seen from /4/, the differéntial cross sections of the small angles of
the elastic scattering of different particles on protons are in good

agreement with the formula:
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where P js the proton momentum in c.m.s.
Formula (1) correspords to the Gaussian distribution of the
transverse momentum components by coordinate axes.

In the case of the P-P elastic scattering the root- mean-

% in (1) appears to be inde-
pendent of the proton energy in the interval. » 5-20 Gev ard is

equal to: <P'>¥ . 035 + 0,01 Gev/c .




The author has proposed in /4] that in a range of large angle
scattering when Pl > 0,35 Gev/c, _}‘q_ is also described by
formula (1), but with another parameter which is larger - <Pj: >:‘,
The values <P4A>;‘ calculated accordingly (1) from arny two values

42 from paper /S/fall within the limits <P,’>¥ =0.70.+0.05Gev/c,

i.e. <Pf>:‘ ~ 2<Pf->l"‘ .

The data of Ref, [6lallow us to perform even more accurate

analysié.

In the range of the scattering angles 40-65%the values of -:Ta-
calculated from formula (1) using <P} >:‘ =0,72 Gev/c and the ex-
perimental data for three values of the proton momenta: 10.1, 111,
12,1 Gev/c are plotted in Fig.1.

The plot has been normalized to the experimental values at

<P£‘>%=1.49 Gev/c for a primary momentun': of 11.1 Gev/c and ¢ =430,
Consequently 4o in the range of the scattering angles up to 65°

dt
can be described by the formula:
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The curve for protons with a momentum of 11 Gev/c calcu-
lated from formula (2) at <Pf>u =0,355 Gev/c and the experimental
data from /6,7:8/ are shown in Fig.2.

It should be stressed that there is an agreement of the calcu-
lation with the exper‘imentél data over seven orders of magnitude
of the cross sections. It should also be remarked that a linear scale
was used, .

Parameters C; and C, are equal to 80 and 0.22,respectively,
with 10% accuracy in units of 10-27 cm 2 (Gev/c)-2.

An agreement of calculations performed using formuld (2) seems
to indicate the discrete structure of the values of the root-mean-
sSquare transverse momentum because < PJ_" >: -2<Pf >? .

Cn the basis of the uncertainty principle this can be explained

by the existence of two discrete regions of interactions in the P-P

elastic scattering.

%

In this case the wave function after a collision should be a
superposition of at least two waves connected with these regions,
3 4 :

Because €, «C, for BR<2<BE>" the term containing C, in formula

(2) can be neglected, At P> 2< P2> % term C, exp( =<-3'fi...) be

comes very small. Consequently at sufficiently small ar’:; I>suft'iciently
large P3 values the interference of waves coming from two discrete
interaction regions can be disregarded, On the other hand, the inter-
ference should be essential if both terms are equal to each other,

If C;=80 , Cy=02 and <Bf $20.355 this happens at Py =0.99Gevk,

For the cross gection determination in this region oﬁe should
calculate the square of waves corresponding to <Pi>“ and2<ll’._>“ .
Obviously a sum or difference of this amplitudes correspornd to the
extreme cases,

The full lines in Fig.3 were plotted on the basis of the experi-
mental data on P-P gcattering at 11 Gev/c coming from Refs, /6,2,8/
in the angle region 24 ; 400 there are no experimental data and the
dotted lines show the behavior of the -—;Lf—- for the sum and the
difference of amplitudes of the partial waves,

Let us obtain the cross sections in a general case of the su-
perposition of partial waves. In accordance with the formula (2) and
taking into account the relative phase shift ¢ the partial wave

amplitude are evidently equal to
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" The summary amplitude’ -is
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The differential cross sections for the region where the inter-
ference is important were measured in /9/. In Fig.4 and 5 data from
/9] is shown. for protons of momenta 8.5 Gev/c and 12,4 Gevfc cor-
respondingly. The curves were computed by formula (4) for three va-
lues of ¢ . The agreement of these curves with experiment is
better for ¢ =120°,

Thus the interval of P) corresponding to the partial wave
interference also confirmes the existence of two regions of interac-
tion, The r.m,s, radii of these regions are equal:<r’ >“-(O.55_+0.015)fer.,

<r’>: =(0.27+0.01) fer, l

do
At scattering angles close to 90° - approaches a mi-

t
nimum value for the given energy. The minimum value - C(E) dec-

. . do o
reases with the increase of energy. Formula (2) gives Tt--(m ) =0

and therefore one can assume that in order to find the __ji_‘g__ depen~-

dence in the angle range up to 90° it is necessary to add C(E) to
do

—

dt

Accordingly for the argument t

the formula (4) changes to
the formula (8) '
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The values of calculated from formula (5) for protons

do
dt
with a momentum of 11.1 Gev/c are shown in Fig.6. The experimen-
tal points are plotted from data from ) for the scattering angles
40380 °,

From formula (5), neglecting relatively small termtq C(E), one
. Mak-
ing use of the relations tmdp? Sh’—z—a- and integrating over 6 from

0° to 90° one obtains:

can calculate a total elastic scattering cross section L)

%

16 a
o g=lC 4+ ==(C C) Cosdp +4C, 1P > (e)

A present knowledge of the o dependence on energy does
L ]

not allow us to give an unambiguous eanswer whether formula (6)
is exactly right. However we can state that the formula (6) fits t’he
experimental with 10% accuracy in -G, and = 3% in <l-f->M .

On the basis of formula (6) one can attempt to compare the
cross sections of so called "peripheral" collision with that for a
"central" one in P~P inelastic interactions. In fact if the contri-
bution of the wave connected with <P1 >K to the o, is a diffrac~
tion shadow of "peripheral" inelastic interactions the relevant cross

2
will be proportional to C, <P, > . Furthermore if the

section o
p 4



other contribution o, is a diffraction shadow of the "central" In-
elastic interactions the inelastic "central" cross section o, will be
proportional to 4C,;< Pf-> . Hence putting cl-ao, C, = 0.2 one
obtains o, = 001 o, . Denoting % e the cross section in the
. ’ %
interference region we obtain from (6) G o =32(C C " Cosgp< P_f_ >,

=-120° -6, 2
For - 0’ ap,o 6.4 <PJ,' > = 0,08 dp .

Qualitatively this is confirmed by a fact that "central" collisions
have not been observed in the study of inelastic interactions. In
fact there is no rapivd change of transverse momentum < Pf >“ and
the angular distribution of surviving baryons with the increase of,
for example, multiplicity’ of secondary particles.

In the study of inelastic collisions it is necessary to obtain
much better statistics . in" order to attempt to separate the central
collisions, the cross . sections of which can be small analogously

to the large angle elastic scattering,
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Fig.1. Elastic P~P scattering cross section at 10.1, 111, 12.1Gev/c.
Experimental points from /6/. The curve is computed according

to (2). .




de af . "
dt 0

| ®

2
Proove

Fig.2, El.astic P-PScattering cross sectlon at 11 Gev/c. Experimental
points from /6,7,8/, The curve is computed according to (2).
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Fig.3. Elastic P=P scattering cross section 2
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110 Gev/c Gontinuous

curves are the same as in Fig,2, Dashed curves are computed‘

according to (4). The upper curve refers to ¢=0°, the lower
one - to ¢ =180° .
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Fig.4. Elastic P~p sc7ttfring Cross section at 8,5 Gev/c, Experimen~
tal points from /6/, The curve ig Computed accordij

ng to (4),
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tion at 12.4 Gevlc. .
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Fig.5. Blastic P-P sc?::l::-‘:lgt:rom /6], The curve is compute

tal points are

to /47
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Fig.6. Elastic scattering cross section at 1.0 Gev/c. Experimental
points are taken from (6), The continuous curve is computed
according to formula (5) at <PI->“ =0,355 Gev/c, The upper
dashed curve correponds to <'P1> =0,365 Gev/c. the lower
one-to < P_f- » 20.345 Gevfc. -

W
C,= 80.10"27 cm2(Gev/c)—2 . _C,-O.2°1O—27cm2(G_-ev'/c)—,2
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