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INTRODUCTION 

The problem of collider luminosity calculations has been known since the first 
proposals of colliding-beam accelerators*. As yet, nobody has come out with a 
sufficiently compact formula that describes the collider luminosity in the general 
case of collision of two beams with arbitrary parameters and allows analytical 
or numerical calculations to be performed without using mathematical modeling 
methods. 

The work on the NICA project at the Joint Institute for Nuclear Research [1] 
required collisions of different ion beams, including those with different. types of 
beam particles or different beam structure, e.g., collision of a bunched beam with a 
coasting beam, etc. This is how the asymmetric collider came into being. ·It turned 
out that no convenient formulas for analytical calculations of luminosity of these 
colliders could be found in the literature, including various reviews. They usually 
offered classical formulas suitable only for symmetric colliders with beams having 
identical parameters and differing, perhaps, only by the electric charge of the beam 
particles - electr~m-positron and proton-antiproton colliders [2, 3]. Sometimes, 
simplified formulas are given [4, 5], which do not involve the so-called "hourglass 
parameter" (Sec. 1.2 below). 

Attempts to derive a formula for a rather general case usually lead to cumber
some expressions with multiple integrals over six coordinates of the coordinate
momentum space [6]. 

The need for this kind of formula persists despite highly developed methods 
for numerical modeling of particle dynamics in charged-particle accelerators. This 
formula is needed for carrying out calculations at the level of estimates, which is 
necessary for selecting initial collider parameters. 

Section 1 of this work is an extended version of [7]. The case under consid
eration is a collision of two beams whose parameters (type of colliding particles, 

*The first formula for estimation of luminosity was proposed by D. Kerst in his report presented 
in 1956 (Kerst D. W. Properties of an Intersecting-Beam Accelerating System// Proc. Intern. Conf. 
on High Energy Acee!., Geneva, 1956. P. 37): the number of events per unit time for processes with 
the cross section in collisions of two bunches with the number of particles N 1 and N 2 and length I 
at the particle velocity vis n = 2N1N2 vlA. 
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their number in the beam (bunch), and their energy) can be different, as also 
can be the size and shape of the collider rings, etc. Detailed consideration is 
given to the version of the collider in which axes of the colliding beams coin
cide in the interaction region ("head-on colli'sions") so that the beams can have 
common final-focus lenses. The version of the collider with intersecting beams is 
briefly presented. The "unavoidable" misprints made in the original version are 

corrected. 
Section 2 describes a method for optimizing parameters of a cyclic collider 

by minimizing betatron frequency shifts caused by the action of the beam space 
charge. The author's first attempt (not quite successful) of this publication was 
made in [8]. The recently obtained refined version of the formula for the beam
beam effect is used. 

Section 3 contains numerical examples of luminosity calculations for a few 
types of symmetric and asymmetric colliders, including the "equilibrium" -beam 
collider [9], which is of interest for modern nuclear physics. 

The results are applicable to both counter-propagating and merging beams. 
All luminosity formulas and their numerical values are given for one inter

action point (IP) of a collider. 

1. ASYMMETRIC COLLIDING BEAMS 

1.1. Luminosity: General Case. The density distribution of the particles of 
a bunched beam, Gaussian in all three dimensions (x, y, s), has the form 

Ni { 1 ( x
2 

y
2 

s
2 

) } Pi(t) = 
3

;
2 

exp -- -2-- + -2- + 2 · 
(2n) 0-xi (t) 0-yi (t) 0-si 2 a-xi (t) 0-yi (t) 0-si 

(1.1) 

Here Ni is the number of particles in a bunch of the ith beam; i = 1, 2 is the 
beam number; and a-ai is the Gaussian parameter of the bunch of the a-degree 
of freedom of the beam (a = x, y, s). A similar density distribution formula for 
a coasting beam with the uniform density distribution over the circumference of 
the ring and the number of particles Ni is 

Ni { 1 ( x
2 

y2 ) } Pi(t) = ------- exp -- - 2-- + - 2-- • 
21l"O-xi (t) 0-yi (t) Cring 2 0-xi (t) 0-yi (t) 

(1.2) 

To simplify the description of the collision kinematics (Fig. 1), we choose the 
time reference and the origin of coordinates so that at t = 0 the centers of both 
bunches are at the origin of coordinates (x = y = s = 0): s~ (0) = sg(o) = 0. 

This means that the collision time t is 
s1 

-oo < t = - < 00. 
V1 

2 

------

The coordinates of the bunch centers s? vary with time as 

s?(t)=vit, xf=yf=0. (1.3) 

We restrict ourselves to the case of the so-called head-on collisions, when 
the axes of the bunches coincide with each other and with the s axis (Fig. 1). We 
also need the coordinates of the colliding particles T/i measured from the centers 
of their bunches (in the laboratory systeµi!). Then the Si coordinate of the ith 
particle in the laboratory system is (Fig. 1) 

Si (t) = s? (t) + T/i· (1.4) 

The transverse coordinates of the particle are still measured from the s axis 
in the laboratory system. The time dependence of the transverse sizes of the 
bunches O-xi (t), O-yi (t) arises from their motion in the focusing system 

0-ai (t) = ,/(aiBai(Si (t)), CY= X,Y, i = 1, 2, (1.5) 

where Eai = const is the beam emittance, 

Bai (si(t)) = B* ·+ s7 (t) 
m B*-a, 

(1.6) 

is the betatron (beta) function of the focusing system, B~i is its minimum value 
usually achieved at the interaction point (IP) s = 0, and Si ( t) is the coordinate of 
the particle at the time t. 
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Fig. 1. Collision scheme of two bunches in the y = 0 plane. 01,2 are the centers of 
the bunches; 'T]i,2 are the distances of the interaction point (IP) of two particles from the 
centers of the bunches; Scali is the same, from the origin; B1,2(s) are the envelopes (beta 
functions) of the first and second beams 
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We also assume that dispersion in the beam interaction region is zero, which 
occurs in most cases. 

Within the collision time of two bunche.s, the layer of the first-bunch par
ticles p1 (x, y, 'T/1, t) d'T]1 intersects bunch 2, colliding with the particle layer 
p2 (x, y, 'T/2, t) dry2 at each point s(t). The coordinates of this point s(t), si(t), 
s?(t), and 'T/i(t) are related to one another by the equalities (Fig. 1) 

s (t) = s1 (t) = s1 (t) + 'T/1 = s2 (t) = sg (t) + 'T/2· (1.7) 

Now we can write down the "obvious" expression for the luminosity at one IP: 

00 00 lD lD 

L=nbunchfo J dx J dy J dry1 J dry2p1(x,Y,TJ1(t))p2(x,y,TJ2(t)), (1.8) 

-oo -oo -lD -lD 

where nbunch = min{ nbunchl, nbunch2} is the smallest number of bunches in 
beams 1 and 2, and f O is the rotation frequency of the particles of the beam 
with the smallest number of bunches. This choice of the nbunch and f o values 
follows from the collision synchronization condition (Sec. 1.5). Integrals over the 
longitudinal coordinates ry1 and ry2 are approximately taken in finite terms with 
the values ± lv defined below in the comments on formula (1.11). 

Considering conditions (1.3) and (1.4), from equalities (1.7) follows the 
relation between the coordinates 'T/1 and 'T}2: 

'T/2(t) = 'T/1 + ( 1 - ~:) s1(t). 

Here v1,2 are the algebraic values for the velocities of particles 1 and 2. 
Introducing the designations so(t) = s~(t), 'TJ = 'T/1, we write 

'T/2 = TJ+ Vso, V = l - V1 
V2 

(1.9) 

The parameter V ;;;:, 1 is for counter-propagating colliding beams, and V ~ l is 
for merging beams. 

Since we introduced the variable so ( t) = v1 t and expressed 'T/2 in terms of 'TJ 
and s0 , integration over the collision time in (1.8) can be replaced by integration 
over s0 (the coordinate of the center of the first bunch), and integration over the 
bunch lengths can be replaced by integration over the variable 'T/· The variable 
replacement Jacobian is 

D('T/1, 'T/2) = V. 
D(so, TJ) 

4 

(1.10) 

As a result, we arrive at the expression 

lD 00 00 00 

L = nbunc~N1N2fo V j dso J dry J 'l/Jx (x) dx J 'l/Jy (y) dy x 
(21r) as1as2 _

00 -ID -00 -oo 

x ex;[_! ( 'TJ: + (TJ+ Vsol)] 
2 a 1 a2 , 

s s2 

(1.11) 

where 

1 X 
'l/Jx (x, so, 'T/1) = axi(so, ry) ax2 (so, TJ) 

[ ( 
1 1 ) x

2
] x exp - 2 + 2 - , 

ax1(so,TJ) ax2 (so,'TJ) 2 
(1.12) 

and 2lv is the longitudinal (s) size of the region where the axes of both beams 
coincide and the detector is located. Local luminosity at so = ±lv decreases by 
a few orders of magnitude from the maximum value at s0 = 0 due to increasing 
beta function, as is shown in Sec. 1.5. 

The function 'l/Jy(Y, s0 , ry1 ) is found by replacing the subscript and the 
argument x with y. 

Integration of 'l/Jx over dx gives 

00 ~ J 'l/Jx (x, so, 'T/1) dx = Ja;1 (so, TJ) + a;2 (so, TJ). 
(1.13) 

-oo 

00 

The integral J 'l/Jy (y, s0 , ry1 ) dy is similarly calculated by replacing x with y. 
-oo 

Using values (1.5) for axi, we write 

✓ a;1 (so, TJ) + a;2 (so, TJ) = Jc:x1Bx1 (so, TJ) + Ex2Bx2 (so, TJ). (1.14) 

Functions Bxi are defined in (1.6). A similar expression for ayi is obtained by 
replacing x with y. 

Substituting values of integral ( 1. 13) and denominator ( 1.14) as well as their 
y-analogues in (1.11), we arrive at quite a cumbersome expression for the lumi-
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nosity of the collider with completely asymmetric bunches 

lv oo 

L nbunchN1N2fo V J d J d = 2 So 17 X 
(21r) O"s10"s2 

-lv -oo 

2 a-;1 O"s2 
exp{-~ [-

17
2 

+ ( 17 + Vs
0

)

2

]} 

X---;================================= 
J(sx1Bx1 (so, 17) + E:x2Bx2 (so, 17)) (cy1By1 (so, 17) + E:y2By2 (so, 17)) 

(1.15) 

Note that this is the collider luminosity at one IP. In addition, beta functions 
at IPs have different values (Bx,yh,2 if particles 1 and 2 differ in at least one 
parameter - charge, mass, or energy. Therefore, we can introduce the "parameter 
of relative magnetic rigidity" A: 

A= Bi. 
B* 2 

(1.16) 

Since the betatron functions B 1,2 are proportional to the magnetic rigidity of the 
colliding particles (similar to focal lengths of magnetic lenses), it can be expected 
that the parameter A is described by the expression 

A= PI Z2. 
Z1 P2 

(1.17) 

Here Z1,2 and p 1,2 are the charge and the momentum of the particles of beams 1 
and 2. At equal velocities of particles 1 and 2, expression ( 1.17) does not depend 
on the particle velocity and is 

Ao = m2 A1 Z2 , 
m1 Z1 A2 

where A1,2 are the atomic weights of the particles, and m 1,2 are the masses of the 
nucleons of colliding particles 1 and 2 (difference of m 2 /m1 from unity is less 
than 1 • 10-3 for all nuclei of the Periodic Table). However, values of A (1.17) 
and Ao are approximate, since the beta function in the common region of the rings 
is greatly affected by the parameters of the focusing systems in the individual 
sections. 

With beams of different particles, we also have A = 1 if in their common 
(interaction) region the focusing systems of two collider rings do not have fo
cusing elements that govern the beta functions of the collider rings. This takes 
place, for example, in colliders with intersecting rings (Sec. 1.6). 

Expression (1.15) is substantially simplified in three particular cases consid
ered below. 

6 

1.2. Identical Colliding Beams. For identical counter-propagating colliding 
beams we have 

v1 = -v2, V = 2, B;1 = B;2 = B;, B;1 = B;2 = B;, 
0"s1 = 0"s2 = O"s, f:xI = E:x2 = Ex, f:yI = E:y2 = E:y. 

(1.18) 

Taking into account the values of Bo:i (1.6) and 17 (1.9), from (1.15) we obtain 

nbunchN1N2fo • ( 
L = 2 2 X Inti Bx, By, o-8 ), 

81r 0"8 JcxE:yB~B~ 

1 X 

Int, ~ 2] dso 1 "" 1[1+ ( son~ ")'] [ I+ ('0nt )'] , 

[ 
172 + (17 + 2so) ] · 

x exp - 2a; 

Transforming the numerator of the exponent 
0

index 

17
2 + ( 17 + 2so )2 = 2 [ ( so + 17) 

2 + S6] , 
going from the integration variables s0 and 17 to the variables s0 and ¢ = s0 + 17, 
and calculating the transition Jacobian D ( s0 , 17) / D ( s0 , cp) = 1, we obtain 

oo e-<!>2/a; dcp. 

Int,~ 21 e-❖~d,o_l I[,+(:;)'] [, + U:) '] 

Thus, the double integral is transformed to a product of two integrals. When 
0"8 « lD, the first of them, the integral over s0 , is o-8 .,/ir. When B; = B; = B*, 
we obtain· the known expression for the luminosity of a collider with axially 
symmetric beams (see [2], formulas (6.134), (6.135)) 

£ = nbunchN1N2fo 
41r~B* <!.>HG, 

00 2 
2 e-u du 

<l>ttc (a) = ..fir fl+ (au/' 
0 

a= O"s B* · (1.19) 

Here <l>ttc (a) is the hourglass parameter describing luminosity dependence on as 
and B*. 
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1.3. Collision of the Coasting Beam with the Bunched Beam. As before, 
we consider the focusing system axially symmetric in the interaction region, but 
now the beams have particles of different types and differ, generally speaking, by 
energy. Therefore, • 

B * B* - B* _j_ B* B* - B* xl = yl = 1 r x2 = y2 = 2· (1.20) 

The luminosity formula for the case where one of the colliding beams (N2) is 
a coasting beam with uniform density (1.2) over the ring circumference Cring 
differs from (1.15) by the expression in the denominator of the fraction in front 
of the integral, which is now (27r) 312asCring· Here as = as1 is the "Gaussian" 
length of the beam bunch. 

For axially symmetric beams, formula (1.15) takes the form 

nbunchN1N2fo ( ) 
L = ( )3/ 2 X Int2 B1, B2, as , 

27!" as Cring 

lv lv 

Int2 = V j dso j dry x 

-Iv -lv 

1 { ~ } 
* so + ry * so + ry · as 

x [ 2] [ 2] exp - 22 • (1.21) 

c1B1 1+ ( sr-) +c:2B2 1+ (~) 

Here nbunch and f O are the number of bunches in the bunched beam and the 
rotation frequency of its particles. Generally speaking, the parameter V can 

differ from 2. 
Let us transform variables in the same way as above, 

¢ = so + ry, 'lj; = ry. 

The transition Jacobian is D(s0 ,ry)/D(¢,'lj;) = 1. As a result, integral (1.21) is 
divided into two independent integrals: 

lv 2lv 

Int2 = VJ exp ( - :
2

2 ) d'lj; J 2 d¢ 2 

-In u, -"v c,B; [I+(%;)] +c,B; [I+(:;)] 
Integrating, we obtain 

L = nbunchN1N2fo Ver[ (~) x 
27l"Cring -J'i,a s 

X 
BiB2 

(c:1Bi + c2B2)(c:1 B2 + c2Bi) 2 arctan (XD ), (1.22) 

8 

XD = 

Under the condition that 

c1B2 + c2Bi 2lD 

c1Bi +c:2B2 JBiB2. 

as, Bt2 « lD « Cring, XD » 1, 

expression (1.22) takes a more compact form 

£ = nbunchN1N2fo V 
2Cring 

BiB2 
(c:1Bi + c2B2)(c:1B2 + c2Bi)' 

Expression (1.24) can be simplified using parameter >. (1.16): 

L = nbunchN1N2fo vJ A 
2Cring >.(cI + c~) + c1c2(l + >.2) · 

(1.23) 

(1.24) 

(1.25) 

And a very simple expression for the luminosity is obtained for the colliding 
beams with identical particles, energies, . and emittances: >. = 1, V = 2, and 
€1 = €2 = €, 

L = nbunchN1N2fo 
2Cringc 

(1.26) 

1.4. Collision of Two Coasting Beams. Under conditions (1.20) and Bi 2 « 
C1,2, in the way similar to (1.21), we obtain luminosity from (1.15), ' 

L N1N2fo I 
= 2C1C2 x nt3 , 

lv lv 

Int3 = V J dso J dry 
2 

l 
2 

• 

-lv -lv ciBi [ 1 + ( soB~ ry) ] + c:2B2 [ 1 + ( soB~ ry) ] 

Here N1 and N2 are the numbers of particles in beams 1 and 2, and C1 and 
C2 are the circumferences of the storage rings. The collision frequency is f o = 
max{ vi/C1, v2/C2}-

Integrating as in (1.21)-(1.25), we obtain 

N1NdoVlD 
L = 7rC1C2 

BiB2 
(c:1Bi + c:2B 2)(c:1B 2 + c:2Bi) 2 arctan (XD ), (1.27) 

where the parameter XD is defined in (1.22). When Bi,2 « lD, XD » 1, we 
obtain 

N1NdovzD 
L = C1C2 

). 

(c:1>. + c2)(c:1 + c:2>.) · 

9 
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For identical collider rings and colliding beams, there is V = 2 and >. = 1, 
and formula ( 1.28) takes the form 

L N2 Jo z• 1 2 = c2c D· ( . 9) 

1.5. Distribution of Luminosity over the Interaction Region Length. Mod
ulation of collider beta functions (1.6) near the IP inevitably leads to luminosity 
variation along t~e interaction region length. It is most simply demonstrated 
for identical colliding beams (Sec. 1.2). Indeed, the derivative of the luminosity 
with respect to the coordinate s0 is proportional to the integrand function in the 
expression for IPHc(a) in (1.19): 

dL ( dL) e-(so/a,)
2 

dso = dso max l + ( ;~ )2 · 
Introducing the variable x = s0 / B*, we obtain the luminosity distribution func
tion normalized to the maximum 

e-Cx/a)2 <7s 

h (x) = 1 + x2 ' a = B* . 
(1.30) 

1 r----------------
h(x) 

0.8 

0.6 

0.4 

0.2 

0 -5 -4 -3 -2 -1 0 2 3 4x5 

Fig. 2. Functions (1.30) of the luminosity distribution 
over the beam interaction region: a = 10; 3; 1; 0.3 

The graphs of this func
tion (Fig. 2) show that as <7 s 

(parameter a) increases, the 
luminosity distribution func
tion broadens until its width 
reaches saturation (x > 5). 

This saturation corresponds 
to the collision of two coasting 
beams (Sec.1.4). In addition, 
the results presented in Fig. 2 
allow choosing 

lD = 3B*. (1.31) 

1.6. Collision of Intersecting Beams. To increase luminosity in modern 
colliders, a multibunch regime is used, which usually implies that there are two 
independent rings to avoid parasitic collisions in the common regions of the 
trajectories and collision of beams at an angle. This is called "intersecting beams". 
Outside the interaction region, the beams are separated far enough, so that their 
focusing systems do not have common elements, which allows independently 
adjusting parameters of two colliding beams in an asymmetric collider. This is 
especially important for the electron-ion collider (Sec. 3.3). 

10 

The longitudinal axes of the focusing systems of two rings govern the axes 
of the colliding beams, while their local beta functions are still described by 
relations (1.6) but in the "intrinsic" coordinates of the rings Xai, whose axes Si 

intersect at the IP at the angle of 20 ("full crossing angle") (Fig. 3). The rings are 
arranged so that all three axes s1 , s 2 , and so lie in the same plane. The axes Yi 

also lie in this plane, and the axes Xi coincide and are orthogonal to the (si, Yi) 

plane. The directions of the axes are not chosen at random: this choice ensures 
the fastest separation of the beams, which is needed if <7xi )', <7yi• 

The efficiency of beam separation in the interaction region is usually esti
mated by the ratio between the y coordinate of the point on the bunch axis as 
far as <78 from the IP (r5y0 = <78 sin 0, Fig. 3) and the projection of the transverse 
size of the bunch <7y on the Yo axis (t1y0 = <7y cos 0). This parameter is referred 
to as the Piwinski angle 

17s 
¢ = -tan0. 

<7y 
(1.32) 

The length of the interaction region (colored grey in Fig. 3) 2lD can be esti
mated as 

l0=_!!3:_ sin 0 ' 17 
x << <7 s. 

(1.33) 

In the general case, it is 
l -~ 
<1>- ✓1+¢2' 

(1.34) 

Note that for ¢ » 1 and 0 « 1, formula (1.34) coincides with (1.33), and for 
q> « 1, lD ~ 17s, 

In colliders with intersecting beams, the angle 0 « 1. For example, in the 
LHC the angle 0 referred to as the half crossing angle varies from 0.6 µrad 
to 0.32 mrad depending on the chosen collider regime and the experimental 
requirements [10], and in the KEKB it is 11 mrad [11]. Therefore, to estimate 
the luminosity of a collider with intersecting beams, one can use the above 

Yo 

Fig. 3. Collision scheme of intersecting beams for ¢ » 1; the oval boundaries show the 
"l sigma sizes"; colored grey is the particle interaction region 
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formulas (Secs.1.1-1.4), replacing (J'Y with (J'yJI + ¢2 and using formulas (1.33) 
and (1.34) for lv. 

Nevertheless, the scheme of intersecting beams gives rise to two other unde
sirable effects for compensating which the so'-called crab technique is used *. 

The first effect is a nonzero collision angle 20 of two counter-propagating 
bunches. To eliminate it, the "crab crossing" scheme is used [12]. On the 
trajectories of each beam, upstream and downstream of the IP, RF cavities are 
installed, which are tuned to the mode with the transverse magnetic field that 
reverses its sign during the passage of the bunch and is zero during the passage 
of the center. As a result, the "head" and the "tail" get oppositely directed field 
kicks, and bunches rotate around the axis (in Fig. 3) and arrive at the IP in the 
phase with their axes directed towards each other. The cavities downstream of 
the IP restore the initial orientation of the bunches. 

The purpose of this operation is to suppress synchrobetatron resonances (more 
exactly, violate their excitation condition), which arise from bunches colliding at 
an angle. Resonances, including those of lower orders, are due to correlation 
between the transverse coordinate of the particles in the system of the counter
propagating beam (that is, the transverse impact) and the longitudinal coordinate. 
They are eliminated using the crab crossing scheme. 

The other effect is more complicated. When the betatron function is decreased 
(for increasing luminosity) to the size of the interaction region, nonlinear beta
tron resonances are excited due to interaction of the particle with the field of the 
counter-propagating bunch (see also the "beam-beam effect", Sec. 3.1). To elim
inate this effect, P. Raimondi proposed a method called the "crab waist" [13-15]. 
Special sextupole lenses are mounted in both rings in front of and behind the IP 
so that betatron resonances arising from the beam-beam effect are suppressed. 

Unfortunately, the crab crossing and crab waist methods are incompatible, 
and one has to choose that of the two which gives higher luminosity in a particular 
case. The crab technique is an excellent choice for electron-positron colliders but 
is not always suitable for ion colliders. 

Treating the "crab technique" in more detail is beyond the scope of this paper 
(see, for example, [16]). 

1.7. Synchronization of Collisions. An asymmetric collider with bunched 
colliding beams is the most complicated version in terms of synchronizing colli
sions of two bunches of the beams. Bunched beams collide in the same region, 
common for both rings, if the particle revolution frequency Ji,2 and the number 
of bunches in the beams (nbunchh, 2 satisfy the equality 

n1 Tibunchl f1 = n2 Tibunc)12 f2, (1.35) 

*The technique was named by analogy between the motion of a bunch between "crab" resonators 
and the motion of a crab, which is known to move sideways ("physicists joking"). 
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where n1, 2 are integers. The optimal choices of the ring sizes and the particle 
energy are such that n 1 = n2 = 1. In this case, the collision frequency is 

fcoll = Tibunchl f1 = Tibunch2 f2. (1.36) 

This is the parameter nbunch Jo in the collision of two bunched beams (see (1.8), 
(1.11), (1.15), etc.). Synchronization condition (1.35) is only fulfilled for partic
ular energies (velocities v1 , v2 ) of the colliding particles 

n1 Tibunchl C2 
V2 = V1 -. 

n2 nbunch2 C1 
(1.37) 

Since the parameters n1,2 and nbunchl,2 are integers, the minimum change in the 
particle energy can only occur stepwise with steps 6.n = 1. Scanning with a 
smaller step requires special measures for changing the orbit length of one of the 
beams. 

Given equal ring circumferences and equal numbers n1 = n2 and nbunchl = 
nbunch2, particle velocities should obviously be chosen equal, and scanning in 
velocity (but not in energy!) can be performed with arbitrary but equal steps. If 
one or both beams are coasting, this problem does not exist. The aforesaid is 
especially important for colliding beams of moderately relativistic particles, as, 
for example, in electron-positron colliders [ 17]. 

When a coasting beam collides with a bunched beam, we have !coll = 
nbunchf o, where TI bunch and f o are the parameters of the bunched beam; and 
when two coasting beams collide, we have 

!coll= max{Ji, h}, 

where Ji, 2 are the revolution frequencies of the particles of the first and second 
beams. 

2. OPTIMIZATION OF THE CYCLIC COLLIDER LUMINOSITY 

2.1. Beam Space Charge Effects. The problem of stable motion of charged 
particles in cyclic accelerators is quite well studied, and various methods are de
veloped for suppressing the destructive effect of instabilities. Among the strongest 
and hardest-to-suppress instabilities are space charge effects, which lead to a fre
quency shift of the particle betatron oscillations under the action of the intrinsic 
electromagnetic field of the beam (Laslett effect) and the field of the counter
propagating beam in the collider (beam-beam effect). The method of choosing 
optimum beam parameters to minimize these two effects is considered in this 
section. 

13 



Laslett Effect. The charge density distribution of a Gaussian bunch of parti
cles with charge Z e is described in the laboratory system by the formula 

pz (x, y, s) = ZeP,(x, y, s). (2.1) 

Here p(x, y, s) is the bunch particle density distribution (1.1). In what follows, we 
consider long bunches Us » Ux, Uy, for which the electric field of the Gaussian 
bunch having an elliptical cross section with the semiaxes Ux and Uy in the region 
x « Ux and y « Uy is described by the formula (see, for example, [18]) 

X 

E ( )
- 2p0 (s) Ux ( )- ZeN -s2/2 2 

{ 

- , x - component, 

x y s - X y Po s - ---e us. 
' Ux + Uy -, y - component, v'2irus 

Uy 
(2.2) 

The magnetic field of the bunch in the laboratory system is connected to the 
electric field by the known relation B = 1/c [v, E]. From here on, all vector 
quantities are bold printed; v is the bunch velocity along the s axis. 

The force exerted on the bunch particle by the bunch field is described by 

the expression 

F = Ze ( E+ ~[v, BJ)= Ze (E-,6
2
EJ_), (2.3) 

f3 = v / c, c is the speed of light. The transverse component of the force F is 

Ze ( 2)-1/2 Fj_= 2 EJ_, ry= 1-,6 . 
'Y 

(2.4) 

The equation of betatron oscillations of a particle with mass M in the focusing 
system of the collider ring with allowance for the action of the bunch field on 
this particle is described by the expression 

[
d2x 2 2 ] ZeEx 

ryM dt2 + Qxwax = ~' (2.5) 

where Qx is the number of the particle betatron oscillations along the x coordinate 
for one particle tum in the ring (betatron number), and w0 is the revolution 
frequency. Let us introduce the betatron frequency shift tlqxwo that appears 
under the action of the x-component of force F J_ (2.4) and transform Eq. (2.5) 

into 
d

2
x __ (Q2 2 _ ZeEx) 

dt2 - xWoX ry3 M . 

Then we express the right-hand side as -(Qx+tlqx)2w5x. Ifs« Us, tlqx « Qx, 
from equality of two expressions we obtain 

tl ZeEx Z 2Nrp 1 
qx ~ - 3 2 = 3A( ( )) ~ r.c · 2QxryMwax 'Y O'xO'x+uy Qxwav21Ws 

(2.6) 

14 

Here we used the equalities and the following notation: N is the number of 
particles per bunch (or beam); rp = e2 /mpc2 = 1.535 • 10-16 cm is the classical 
proton (nucleon) radius; mp ~ 938 MeV/c2 is proton (nucleon) mass; and A is 
the particle mass in atomic mass units. We also used equalities where (Bx) is the 
circumference-average x-beta function, and Ex is the x-emittance of the beam. 
Ultimately, we obtain (see also [19]) * 

tlqx=- Z
2
Nrpkbunch(Bx) 

27r,62ry3 A(ux(Ux + Uy)) 

Z 2Nrp ,./lJ;, k . 
27l',62ry3 A -.jE;( JEx(Bx) + JEy(By)) bunch, 

k 
Cring 

bunch = r.,= ; 
y27l'Us 

tlqy is found using the replacement x .-, y. 

(2.7) 

At Bx = By and Ex = Ey = E, we arrive at the classical Laslett formula [20] 

Z
2 

rpN kbunch• 
t::.q = -A 47l',62ry3E (2.8) 

For coasting beams, it is enough to put kbunch = 1 in (2.7) and (2.8), which can 
be ascertained by repeating calculations (2.3)-(2.8) for p(x, y, s) (1.2) at x « ux, 
y « Uy, 

Beam-Beam Effect. When particle 1 crosses counter-propagating particles of 
bunch 2, it gets a momentum increment under the effect of the electromagnetic 
field of the bunch, 

00 

Ap12 = / F12(t) dt, 

-oo 

where (see (2.3)) 

F1_2 = Z1e ( E2 + c
1
2 [v1[v2,E2ll) = Z1e(E2 - (/31,/32)E_!_2). 

Here /31,2 = V1,2/ c; E 2 is the vector of the electric field of bunch 2 in the 
laboratory system at the location of particle 1; and E _]_ 2 is its component transverse 
to the s axis. 

*This formula is valid for electrons (positrons) at A = 1 with replacement of rp with re, the 
classical electron radius. 
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The time dependence of the transverse coordinates of particle 1 in the labora
tory system xa1(t) is found using the invariant (xa1(t))2/Ba1(s(t)) (Fig.land 
formula (1.6)): 

Xa1(s(t)) = Xai(0) i+ (~:))2 
al 

(2.9) 

The longitudinal coordinate s(t) is defined in (1.7), and B~1 = Ba1(0) (1.6). 
The coordinates of particle 1 with respect to the center of bunch 2 is found using 
Fig. 1 and equalities (1.7) and (1.9): 

Xa2(t) = Xa1(t), 112(17, so)= 17 + Vso. (2.10) 

The particle momentum increment in the (x, s) plane is defined by the x

component of the force F 12 

Fx12 = Z1e(l- (/31,/32))Ex2(t). (2.11) 

The component Ex2 of the bunch 2 field at the point (x 1,0,s(t)) is found 
from (2.2): 

E () 2Z2eN2 (-17~(t)) () x2 t = -----------exp --2- X1 t . 
O"x2(t) (O"x2(t) + O"y2(t)) ./27iO"s2 . 20"s2 

(2.12) 

The transverse "O" sizes" of bunch 2 on the coordinate s(t), O" x2(t) and O"y2(t), are 
defined in (1.5) and (1.6) for the beta functions Ba2 (s) of the bunch 2 particles 
at the point (x1(t),0,s(t)), and x1 (t) is the coordinate of particle 1 (2.9) at the 
same point. Note that particles 2 and 1 are at the point s(t) at the time 

s - T/ 
t (s, 17) = --. 

VI 

This equality allows time dependence of the parameters to be transformed to their 
s dependence. 

In one collision, particle 1 receives a transverse momentum (average over 
many revolutions (!)) 

t2 

.6.px12(11) = J Fx12 (s(t)) dt = 4Z1Z2e2N2 1-ri,/32) 1?(17), 
O" s2 1 C 

~t, [ 2] (2.13) 
<1?(

17
) = _1_ xi(s) exp _! 112(11, s) ds 

./27i f O"x2(s)(O"x2(s) + O"y2(s)) 2 ( O"s2 ) · 
-lv 

The coordinate x 1(s) is defined in (2.9); and the parameters O"a2(s), in (1.5) 
and (1.6). 
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Multiple intersection of bunch 2 by particle 1 results in a betatron oscillation 
frequency shift 6 2 (conventional designation). This is known as a parameter of 
the beam-beam effect (BB), or, briefly, the beam-beam tune shift. 

The quantity 6 2 can be found in the thin lens approximation by calculating 
the transition matrix for a particle revolution in the collider ring with allowance 
for perturbation of the particle motion by the electromagnetic field of counter 
bunch 2 (see Appendix). Knowing the transverse increment of the transverse 
component of particle 1 momentum flpxi2 (2.13) and ignoring the change in the 
x 1 coordinate after one passage through bunch 2, one can replace bunch 2 by a 
thin lens with the focal length f ss 

1 

fss 

1 flPxl2 
----' 
X1 (0) PI 

X1 (0) = Jsx1B;1. (2.14) 

Here B;1 is the betatron fu_nction at the IP in the absence of the perturbing 
thin lens. The phase shift of betatron oscillations after each intersection is (for
mula (A.3) in Appendix) 

B;l 
.6.cp = 2fss · (2.15) 

To this phase shift of betatron oscillations there corresponds their frequency tune 
shift 

~xl2 = flcp = B;l _1_ flPxl2 . 
21r 41r X1 (0) PI 

Substituting fss (2.14) and .6.px12 (2.13), we obtain 

Z 1Z2 rpN2 1- (/31,/32) B;1<I?x 12 (17), 
~x12(17) = T 27rcx2 /3i,'1 B;2 (2.16) 

<f?x12(17) = 

I In VI + ( i:J X 

~ ,fSi £ I (-s r ( l + (-s) 2 

+ E:y2B~2 1 + (+) 2 ) 1 + B* B* 2 E:x2Bx2 By2 x2 X 

{ 
1 (172(17,s))

2
} ~-

x exp -2 O"s2 O"s2 

We underline that formula (2.16) describes the absolute value of the BB 
parameter. The choice of its sign is discussed at the beginning of Sec. 2.2. 
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The parameter <l>x 12 (17), unlike <T>(17) (2.13), is here transformed to a dimen
sionless form. In addition, it is written in terms of emittances and beta functions 
of beams, which is convenient for numerical calculations. This parameter is an 
analogue of the known hourglass parameter-(1.19) in luminosity formulas. The 
beam-beam effect parameters for the y-degree of freedom ~y12 and <l>y12 are 
obtained from (2.16) using the replacement x +-> y. To estimate the beam-beam 
effect, it is sufficient to consider the case of 17 « O's. In this case, the parameter 
<l>x12 does not depend on 17 and becomes constant. Here, as in the luminosity 
formulas in Sec. I, one should set lD = 3B* (1.31) for coaxial beams and (1.33) 
and (1.34) for intersecting beams. 

Note that formula (2.16) differs from those encountered in the literature: they 
lack the parameter <I>x12 (at least, the author failed to find formulas that involve 
it) (see, for example, [21]). 

In the case of identical counter-propagating axially symmetric beams with 
particles of equal velocities and with equal emittances in the axially symmetric 
focusing system of the collider 

Z1 = Z2 = Z, A1 = A2 = A, v1 = -v2, /31 = -/32 = /3, V = 2, 
(2.17) 

- B* B* B* B* - B* Exl = Ex2 = Eyl = €, O'sl = O's2 = O's, xl = yl = x2 = y2 = , 

expressions (2.15) and (2.16) are greatly simplified: the parameters ~ for both 
beams coincide and are 

_ Z
2 

rpN2 1 + /32 
>-o<I>x(1J), 

~x(1J) = ~y(1J) - A 41r1: /32'Y 

lv/B* 
2 1 1 / 1 e-2(x/a) dx = 

<I>x,y12(11 = O) = ;-~ ✓1 + X2 
-lv/B* 

lv/as (2.18) 
1 

~ J 
-lv/a, 

1 
Jl + (au)2 e-2u2 du, 

O's 
a= B*' 

so so 
X = B*' u = O's. 

When O's - 0, we have a - 0 and accordingly obtain 

(X) 

( ) 1 / -2u2 <I>x,yl2 11 = 0 - ~ e du = l. 
-(X) 

As the emittance increases, the function <l>x,y12 monotonically decreases, being 
0.913 at a = 1 and 0.554 at a = 5. 
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The beam-beam effect in the collision of a particle with a coasting beam is 
described by expressions (2.16) and (2.18), in which the bunch length O's is taken 
to be equal to the ring circumference Cring (see Sec. 3.2). 

Note that the betatron tune shifts 6:.q and ~ depend on the particle energy 
through the Lorentz factors {3 and 'Y· 

2.2. Optimization of the Collider Luminosity. In ion colliders the betatron 
tune shifts, both 6:.q and ~. have a negative value. This fact has a simple ex
planation: particles of both counter-propagating bunches have a positive charge 
(except for an exotic case of negatively charged ions of one of the beams). 
Therefore, the forces of the space charge of both the reference and the counter
propagating bunches are directed outward of the axis. This determines the signs 
of the betatron tune shifts (see formulas (2.5), (2.6)). The effect is different in 
electron-ion, electron-positron, and proton-antiproton colliders: the force of the 
counter-propagating beam is attractive, and the ~-parameter is positive. Neverthe
less, both effects influence independently on particle dynamics, and the process 
of beam instability development when the particle betatron frequency approaches 
the resonance value is rather complicated. Therefore, for simple estimates, the 
criterion of betatron oscillation stability can be the requirement that the sum of 
the moduli of the tune shifts does not exceed a certain maximum value: 

l!:iql + l~I :s; 6.Qmax· 

Further we use, for brevity, the symbols 6:.q = 16.ql and~= 1~1-
It is known from practice that an intense beam is stable (with all other 

conditions fulfilled) if 
6:.Q :s; 0.05. (2.19) 

It is the first optimization criterion. When choosing optimal parameters of collider 
beams, it is enough to ensure fulfillment of this condition for the largest of two 
pairs of parameters l:iqx, ~x and 6:.qy, ~y- We will consider the x-parameters as 
having the largest values (when O'x « O'y) and will thus concern ourselves with 
the problem of optimizing these very parameters. 

Let us write the parameters of the first beam /:iq1 (2.7) and 6 2 (2.15), 
(2.16) as 

Zr Z1Z2 
6:.qxl = Ai N1ax1, ~xl2 = TN2bx1, 

Tp J(BxJkbunchl 
axl = {32 3 ( ~-~ ~--) ' 

7r 1 'Y1 y€tl Jcxl (Bx1) + Jcyl (By1) 
(2.20) 

b _ Tp l- (/31, /32) B;l<l> ( ) 
xl - -- {32 B* xl2 1J 

27rc x2 1 "fl x2 

19 



and do the same for the parameters of the second beam ~q2 and 61, making the 
replacement 1 .-+ 2. Then we write two equations: 

~qxl + ~xl2 =; ~Qxl, 

~qx2 + ~x2l = ~Qx2· 
(2.21) 

Now it would seem possible, on demanding that condition (2.19) be fulfilled 
for both beams (~Q1,2 ~ 0.05) and writing the parameters ~q and ~ in the 
form (2.20), to obtain a system of two algebraic equations in N1 and N2: 

Z'f Z1Z2 
Ai ax1N1 + Tbx1N2 = ~Qxl, 

(2.22) 
Z? Z1Z2 
A

2 
ax2N2 + ---x:;-bx2N1 = ~Qx2· 

Note that these equations are interrelated through the BB effect in terms of 
the parameters ~x12 and ~x21 . However, an attempt to straightforwardly solve 
this system of equations reveals that at particular energies the determinant of 
the system vanishes, which means that there is no solution. Therefore, the 
beam parameters have to be optimized on the basis of physical and obvious 
mathematical considerations. 

Let us assume that both the collider rings and colliding beams 1 and 2 are 
tuned so that their Laslett shifts are equal (the second optimization condition): 

~qxl = ~qx2 = ~qx. (2.23) 

Then the number of particles in the bunches of these beams satisfies the condition 
(see (2.20)) 

N1 _ A~ Z? ax2. (2_24) 
N2 Z1 A2 axl 

Substituting Nif N2 (2.24) into the ratio of the parameters ~qi~, we obtain 

~qx = Ao ax2 
~xl2 bxl ' 

~qx 1 axl 

~x2l = Ao bx2 . 
(2.25) 

These relations allow the parameters ~x12 and ~x21 to be eliminated from equa
tions (2.21), and system of equations (2.22) involves only three unknowns -
~qx, ~Qxl, and ~Qx2: 

( 
bx1 ) ~qx 1 + -,- = ~Qxl, 

AOax2 
(2.26) 

( 
Aobx2) ~qx 1 + -- = ~Qx2• 
axl 
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It follows that the shifts ~Qx1 and ~Qx2 are not independent parameters. Choos
ing, for example, the value ~Qx1, we unambiguously determine the values ~qx 

and ~Qx2: 

Aoax2 ~Qx1, 
~qx = Aoax2 + bx1 

axl + Aobx2 Aoax2 ~Qxl· 
~Qx2 = Aoax2 + bx1 axl 

(2.27) 

Then we find ~x12 and ~x21 from (2.25) and N 1 and N 2 from (2.20). Thus, all 
parameters needed for luminosity calculations are determined. 

Generally speaking, the first criterion can be violated so that the function 
~Qx2(Eion) grows above the limiting value (e.g., 0.05). In this case, ~Qx1 has 
to be decreased until ~Qx2 drops below 0.05. 

The presented method for optimization of collider parameters imposes limits 
on the intensity of the colliding beams and thus on the collider luminosity. But 
this does not mean that there is no way to increase luminosity. Indeed, the 
above optimization was performed for the chosen values of the focusing system 
parameters (B*), beam emittances (c:), and longitudinal bunch sizes (as) for 
bunched beams. Actually, three sets of these parameters remain free. Their 
choice determines the luminosity after the optimization. And they have their own 
limits. 

Let us begin with the emittance. As follows from general formula for lumi
nosity (1.15) and its particular cases, luminosity is proportional to a product of 
the numbers of particles in the colliding beams (or their bunches) N1 and N2 and 
inversely proportional to the beam emittances. The maximum number of particles 
is in turn directly proportional to the emittance, as follows from (2.20). As a 
result, luminosity is also directly proportional to the emittance: 

N1N2 
L rx -- rx c:. 

€ 
(2.28) 

Thus, luminosity can be increased by increasing emittances of colliding beams 
and accordingly the number of particles in them (!). But sooner or later the 
intensity in the injection system of the collider complex comes to its limit. 

Influence of two other parameters is less obvious. Luminosity (1.15) is in
versely proportional to the beta function at the interaction point B* and depends 
on the relation a = as/ B*, the so-called hourglass effect. This effect is particu
larly manifested for two identical bunched beams (1.19). The function <l>Hc(a) 
monotonically decreases from 1 at a = 0 to 0.287 at a = 5, and it thus follows 
that longitudinal compression of the bunch at the constant number of particles in 
the beams (bunches) does not give a considerable increase in the luminosity at 
as< B*. For example, <l>Hc(l) = 0.7578. 

At the same time, the maximum number of particles in bunched beams 
is proportional to the bunch length (1/kbunch)- Consequently, dependence of 
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luminosity on the longitudinal bunch size is similar to its dependence on the 
emittance: increasing the bunch length, one can increase luminosity proportionally 
to the bunch length a 8 , simultaneously increasing the number of particles in a 
bunch. However, in addition to "technical" limits of intensity, there arises a 
bunch length limit due to the requirement of localization of the beam collision 
region (see Sec. 1.5 and Fig. 2). In fact, one has to choose between the amount 
of luminosity and the acceptance of the detector. 

Examples of the application of the presented method for optimization of 
collider parameters are given in Sec. 3. 

3. EXAMPLES OF OPTIMIZATION 
OF THE CYCLIC COLLIDER LUMINOSITY 

In this section we give four examples of choosing optimal parameters for 
different versions of cyclic ion colliders, including the electron-ion and merging
beam colliders. The parameters of the collider and its beams are formulated in 
each example. 

3.1. NICA Ion Collider in the Symmetric Mode. The symmetric mode of 
the ion phase of the NICA collider implies collision of two bunches of 197 Au 79+ 
nuclei at one IP (Table 1). 

In this section the parameter A is unity due tci the symmetry of both the 
beams and the focusing system. 

As the calculations show (Fig. 4, a), the effect that governs the beam intensity 
and consequently the luminosity is the Laslett effect (!:lq (2.7), (2.8)). The BB 
effect(~ (2.16), (2.18)) becomes noticeable at an energy above 3 GeV/u. The sum 
of the betatron frequency shifts !:lq and~ remains constant, !:lQ1 = !:lQ2, = 0.05. 
The parameter <1> 12 (2.16) is 0.457. 

The maximum luminosity calculated by formula (1.19) (Fig.4,b) amounts to 
5.7.1027 cm-2 . s-1 at the energy of 4.5 GeV/nucleon. But this requires a rather 
high beam intensity with 6.9 • 109 ions per bunch. 

Table 1. Parameters of the NICA collider at the collision of gold nuclei (symmetric 
mode) 

Parameter Rings 1 and 2 

Ring circumference, m 503.04 

Ions 197 Au79+ 

Ion energy, GeV/nucleon 1.0-4.5 

Minimum beta function at IP B*, cm 60 
Ion bunch emittance, 1r • mm • mrad 1.1 

Bunch length O"s, cm 60 
Betatron tune Qx 9.44 
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Fig. 4. Dependence of the parameters of the ion collider with the bunched 197 Au 79+ beams 
on the ion energy E;; ~Q = 0.05: a) Laslett parameter ~q (solid curve) and the BB 
parameter ~ (dashed curve); b) collider luminosity L;; (solid curve) and the number of 
particles per bunch N; ( dashed curve) 

As the energy of colliding particles increases, the space charge effects reverse 
the roles: the parameter of the space charge effect is larger than the Laslett 
parameter. This is demonstrated in collisions of proton beams, which are planned 
in the NICA project [1], with polarized protons and deuterons (Fig. 5). 

The symmetric mode of two identical coasting beams (Fig. 6) convincingly 
shows how their being unbunched affects ihe luminosity: it (formula (1.29)) 
decreases by a few orders of magnitude. This is an almost obvious result. Less 
obvious is that the main limitation is the BB effect (Fig. 6, a). 

The luminosity is calculated by formulas (1.28) and (1.29). Here the emit
tance of the coasting beams was increased to 11 7r •mm• mrad, which, in accor
dance with (2.28), led to a proportional IO-fold increase in the luminosity. 

As compared to the previous case of bunched 197 Au 79+ ion beams (Fig. 4 ), 
the parameters of the BB effect and the Laslett effect changed places, and now 
the beam intensity limits the BB effect. 
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Fig. 5. Dependence of the parameters of the proton-proton collider on the proton energy 
Ep; ~Q = 0.05: a) Laslett parameter ~q (solid curve) and the BB parameter ~ (dashed 
curve); b) collider luminosity Lpp (solid curve) and the number of particles per bunch Np 
( dashed curve) 
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Fig. 6. Dependence of the parameters of the ion-ion collider with the coasting 197 Au 79+ 
beams on the ion energy E;; beam emittances are ll 1C •mm• mrad. a) Laslett parameter 
D.q (solid curve) and the BB parameter.; (dashed curve); b) collider luminosity L;; (solid 
curve) and the number of particles in a beam N; (dashed curve) 

3.2. NICA Collider in the Asymmetric Mode. As an example of an asym
metric collider, we consider the NICA collider with colliding proton and deuteron 
beams. This problem appears in the nucleon spin physics studies, when it is pos
sible to discriminate between proton-proton and proton-neutron collisions. Of 
interest are both the cases of the resting center of mass (c.m.) of two colliding 
nucleons (pp or pn) and the case of the c.m. of the proton-deuteron system. In 
the first case, the proton and deuteron velocities are equal, and in the second case 
the deuteron velocity is lower than the proton velocity: 

f3N = /3p . (3.1) 

✓ Ai + /3i (1 - Ai) 

Here f3N and /3p are the velocities of the nucleus (deuteron) and the proton in 
units of the speed of light, Aµ = µAN, µ is the ratio of the nuclear nucleon mass 
to the proton mass, and AN is the atomic weight of the nucleus. This mode is 
of interest for studying possible tensor polarization in pd collisions. To calculate 
these collision modes, one should insert 

V = 1 + /3p 
f3N 

into the corresponding luminosity formulas and write 1 + /3 N /3p instead of 1 + /32 

in (2.16) and (2.18). In addition, in this proton-nucleus collision mode, when 
one of the beams is coasting, synchronization is optimal due to the difference in 
the proton and deuteron velocities. 

The results of the calculations for proton-nucleon collisions (i.e., in the 
proton and nuclear nucleon center-of-mass systems) at the NICA collider with 
the bunched deuteron and proton beams are given below (Fig. 7). Luminosity 
in proton-nucleon collisions is calculated by formula (1.19). The beams have 
equal emittances of 1.1 1r • mm • rnrad. The particle energy in the collider is 
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Fig. 7. Dependence of the parameters of the ion collider with the bunched deuteron and 
proton beams on the proton energy Ep; beam emittances are 1.1 1C •mm· mrad, B* = 3 m: 
a) Laslett parameter D.q (solid curve), the total betatron tune shift for protons D.Qp (dotted 
curve), and the BB parameter for protons on a deuteron bunch <;pd (dashed curve) and 
deuterons on a proton bunch <;dp (dash-dotted curve); b) collider luminosity Lpd (solid 
curve) and the number of particles in a deuteron bunch Nd (dashed curve) and a proton 
bunch Np (dotted curve) 

1-6 GeV/nucleon, and ,.fsNii = 3.87-13.87 GeV. The other parameters are 
the same as in Table 1. The parameter >. is put equal to unity because the 
NICA collider is supposed to have a unique beam convergence system, where 
convergence magnets are placed closer to the IP than the final focus lenses, which 
allows their independent tuning. In this example, the main limitation for the beam 
intensities and thus for the luminosity is also the Laslett effect. 

3.3. Electron-Ion Collider with an Equilibrium Ion Beam. The electron
ion collider with coasting and bunched beams can become an important nuclear
physics tool for studying rare and radioactive isotopes. This collider is likely to 
feature a very low ion beam intensity. It was proposed to solve its luminosity 
problem by using the so-called crystalline, or ordered, ion beam. 

The idea of this beam was proposed by V. V. Parkhomchuk in 1985 after 
successful experiments on suppression of the proton beam noise and compression 
of the proton beam in the NAP-M electron-cooled storage ring at the Institute 
of Nuclear Physics (Novosibirsk). In the 1990s, the experiments were repeated 
at several laboratories around the world, and the beam compression process was 
thoroughly investigated. Soon the first proposals of colliders with crystalline 
beams were put forward [22, 23]. However, further analysis showed that the 
intensity of the crystalline beams was quite low, and the luminosity of this collider 
would consequently be very low (see [9] for details). In a few independent 
experiments it was found that the crystalline (ordered) beam, which was a chain 
of ions circulating in a storage ring, has a linear density 

(
dNion) 5 . ~ ~ 3 • 10 10ns/m. (3.2) 
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The main advantages of the ordered beams are their very low emittance and 
particle momentum spread 

c ~ 0.1-1.8 nm, D.p/p ~ (1-5) • 10-5 (la). . 
Transition of the beam to the ordered state occurs abruptly as the beam 

density drops down to the critical value of about 90 ions/m. The transverse 
size of the beam and the momentum spread decrease by almost an order of 
magnitude. This is a sort of phase transition from the quasi-ordered state to the 
ordered one (Fig. 8). 

For bunched ordered beams, condition (3.2) is also fulfilled, but it is now the 
linear bunch density and not the average beam density. Therefore, it makes sense 
to use the bunched beam when there is a considerable deficit of ions. 
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Of practical interest is another property of these deep cooled ion beams: in 
the supercritical state the transverse size and the momentum spread increase from 
value (3.2) with increasing linear density in compliance with the law 

1/3 

a J_ (Ni) = a transition ( Ntra:ition) (3.3) 

This law is valid up to the maximal linear density of about 5 • 105 ions/m [9]. 
And it is the result of the equilibrium between the external cooling of ions by the 
electron beam and the internal heating by the so-called intrabeam scattering -
Coulomb scattering of beam ions off one another. Law (3.3) was experimentally 
verified for coasting beams. 

It is planned to use tlie equilibrium ion beam (3.3) in the electron-ion col
lider of the DERICA project (Dubna Electron-Radioactive Isotope Collider fAcil
ity) [27]. Table 2 presents possible parameters of the collider and its luminosity 
at collisions of electron bunches with the equilibrium ion beam (see [9] for de
tails). It is assumed that the scheme of intersecting beams is used in the collider 
(Sec. 1.6). Therefore, ,\ = 1. The angle ¢ (1.32) is taken to be negligibly small. 
The luminosity is calculated by formula (1._25). 

The estimates (Fig. 9) show that the eqtii_librium beam has a slightly higher 
luminosity than the bunched beam with a constant emittance until their trans-

Table 2. Parameters of the electron-ion collider 

Particles of collider beams 238u92+ ions Electrons 

Beam Equilibrium coasting Bunched 

Ring circumference, m 18.56* 16.0 

Particle energy, MeV/u, MeV 300 500 

Revolution frequency, MHz 10.547 18.75 

Number of particles in beam, bunch 1. 103-1- 107 1010 

Number of bunches - 9 

Bunch length, cm - 4 

Beam emittance, nm 0.01-170 50 

Transverse _bunch size, µm ~220 220 

Laslett tune shift t::.q ~ 0.004 7.6· 10-5 

BB tune shift eie, eei 0.08 ~0.Ql 

Beta function B* at IP, m 1.0 1.0 

Luminosity, cm-2 
· s- 1 7.5. 1023-1.7. 1027 

*The ring circumference is chosen so that synchronization condition ( 1.35) necessary for the 
bunched ion beam is fulfilled. 
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verse sizes become equal and is "outplayed" by the latter when the size of the 
equilibrium ion beam exceeds the transverse size of the electron beam. 

There are different causes why the ion and electron beam intensities are 
limited in this collider. The maximum number of particles in the ion beam 
is determined by the condition of maintaining the small transverse size of the 
bunch (3.3). The electron bunch intensity is dictated by the BB effect produced 
by this bunch on ions. In the numerical example, the parameter fie has the value 
that can be achieved only at the effective electron cooling of the ion beam. This, 
by the way, is also necessary for formation of an equilibrium ion beam. 

The necessity to use a coasting ion beam is caused by the collision syn
chronization requirements, which are fundamental in this case. Velocities of 
relativistic electrons and ions are considerably different, as is demanded by the 
experiment itself set up at this kind of collider [17]. Therefore, condition (1.35) 
can be satisfied for the bunched electron and ion beams only at strictly determined 
(discrete) particle parameters and ring sizes. But this rules out a possibility of 
smooth particle energy scanning, which is usually needed in nuclear-physics in
vestigations. The problem is eliminated in ultrarelativistic electron-ion colliders, 
where velocities of electrons and heavy particles almost do not differ from the 
speed of light. These colliders are under development at CERN (LHeC) and two 
US laboratories, BNL (eRHIC) and JLab (MEIC). 

Low intensity of equilibrium beams limits the area of their application to 
physics of rare (exotic) and radioactive isotopes [27]. 

3.4. Merging Ion Beams. The first proposal to use storage rings with electron 
cooling in nuclear-physics experiments [28] appeared in the late 1970s as the 
electron cooling method was under development at the Institute of Nuclear Physics 
(Novosibirsk). These experiments were started almost ten years later, when 
electron-cooled storage rings were built in several nuclear-physics laboratories. 
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Table 3. Parameters of the collider with merging beams 

Beam particles 23su92+ 235u92+ 

Beam Coasting Coasting 

Ring circumference, m 76.22 62.86 

Particle energy, MeV/u 785 500 

Magnetic field of dipoles, T 1.5 1.5 

Number of particles in a beam 4.9.1010 2.35. 1010 

Beam emittance, 1r • mm · mrad 1.1 1.1 

Laslett tune shift !:i,.q 0.043 0.043 

BB tune shift ~12, 61 0.007 0.002 

Beta function B* at IP, m 2.0 2.0 

Interaction region length, m 6.0 

Luminosity, cm-"2 • s-1 2.4. 1025 

The most extensive investigations were carried out at the Experimental Storage 
Ring (ESR) at the GSI (Darmstadt, Germany). At that time, it was proposed [29] 
to set up experiments at a collider with merging beams, whose particles move in 
the interaction region in the same direction at different velocities (energies). An 
experiment set up in this way opens up new possibilities for structure studies of 
radioactive nuclei. 

One of the possible applications of a merging-beam collider proposed in [30] 
is the study of vacuum physics in collisions of heavy nuclei, which give rise 
to a "supercritical" electric field that separates particles of a virtual electron
positron pair. This problem has been discussed for a long time. In a particular 
experimental scheme (Table 3), colliding particles are nuclei of two uranium 
isotopes 238U92+ and 235U92+ with their total center-of-mass energy chosen to 
be 6 MeV/u. This is enough to pass over the Coulomb barrier. It is also proposed 
to use the intersecting-beam scheme (Sec. 1.6) or the NICA collider scheme with 
colliding deuteron-proton beams (see above). 

The collision synchronization problem is solved, as in the previous section, 
by using two coasting beams. 

The collider luminosity is limited by the Laslett effect, which is due to 
relatively low energy of heavy nuclei. It is calculated by formulas (1.28) and 
(1.29), and, as assumed in [30], it is quite sufficient for the proposed experiment. 

CONCLUSIONS 

The above collider luminosity formulas for three different collision modes -
two bunched beams, two coasting beams, and a bunched and a coasting beam -
describe all possible applications of cyclic colliders. The proposed method for 
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optimization of the ion collider parameters allows their limiting values to be deter
mined and thus the maximum possible collider luminosity to be found. The main 
criteria limiting the luminosity, which are suggested and used in the numerical 
examples, are two space charge effects of tii.e colliding beams, the frequency shift 
of the transverse (betatron) particle oscillations under the action of the intrinsic 
electromagnetic field of the bunch (Laslett effect) and the frequency shift of the 
counter bunch field (BB effect). Collision synchronization conditions are formu
lated, which show the advantage of the coasting beam for the asymmetric collider 
(Sec. 3.2). The numerical examples demonstrate the cases where the Laslett effect 
is crucial (Secs.3.1, 3.2 for bunched ion beams, Sec.3.3 for an electron beam, 
and Sec. 3.4 for coasting ion beams) and the cases where luminosity is limited 
by the BB effect (Sec.3.1, coasting ion beams, and Secs.3.2, 3.3). In Sec.3.1, 
an intermediate case with colliding proton beams is shown, where the BB effect 
prevails at high energies. 
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Appendix 

THIN LENS APPROXIMATION 

The frequency shift of betatron oscillations 6 2 due to the beam-beam effect 
can be found by multiplying the transition matrix for the particle revolution in 
the collider ring (so-called Twiss matrix) 

( 
cos 'Po + a sin rpo f3 sin 'Po 

~~= . . 
-"( sm rpo cos rpo - a sm 'Po 

by the thin lens matrix 

Mt= ( \ O), 
-- 1 

f 

), 'Po= 21rQ, 

where the focal length f of the thin lens must be related to the phase shift of the 
betatron oscillations. 
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Considering the perturbation introduced by the thin lens, we find the transition 
matrix M* by multiplying the matrices Mring and M J: 

M* = MringMJ = 

( 

. f3o . 
_ cos rpo + ao sm rpo - f sm rpo 

- . 1 ao . 
-"(o sm 'Po - f cos rpo + ysm rpo 

f3o sin 'Po ) 

cos rpo - ao sin 'Po 
(A.I) 

Representing the terms of the matrix M* as 

rp* ='Po+ D.rp, D.rp « 'Poi f3 = f3o + D./3; a= ao + D.a, 'Y ='Yo+ D."f, 

where D.rp, D.a, D./3, D."( are the perturbations introduced by the thin lens, we 
write the matrix M* as 

M* = MA = ( cos rp* +_ a sinrp* 
-"(Smrp* 

f3 sin rp* ) 
cos rp* - a sin rp* · 

(A.2) 

Equating the corresponding terms of matrices (Al) and (A.2), we obtain in the 
linear D.-term approximation 

* A f3o · A ( • ) A • m 11 = m 11 --> - 1 sm rpo = - LJ.'fJ sm rpo - ao cos rp0 + LJ.C\: sm rp0 , 

m;'2 = mf'z --> 0 = f3o cos rpoD.rp + D./3 sin rpo, 

* A cos rpo ao sin rpo . 
m 21 = m 21 -t --

1
- + f = "(oD.rpcosrpo - D."(smrp0 , 

m;2 = m~2 -t O = - D.rp ( sin 'Po + ao cos 'Po) - D.a sin rpo. 

Thus, we obtained four equations in the unknowns D.rp, D.a, D.{J, and D."(: 

A ( • ) A • f3o • 
LJ.'fJ sm rp0 - a 0 cos rpo - LJ.O: sm rpo = f sm rpo, 

· D.rpf3o cos rpo + D./3 sin rpo = 0, 
1 

- D.rp"fo cos rpo - D."( sin 'Po = - 1 ( cos 'Po - ao sin rpo) , 

D.rp ( sin rpo + ao cos rpo) + D.a sin rpo = 0. 

Solving this system of linear equations by the known determinant calculation 
method, we find the determinant of the system DetA = -2 sin4 rp0 and the 
determinant with the replacement of the first column in DetA by the coefficients 
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of the right-hand side of the system Det'+' = -(/30 / f)sin4 rp0 • Their ratio yields 
the desired phase shift rp in the presence of the thin lens: 

Det'+'• _ /Jo 
~rp = Det~ - 2f. (A.3) 

This expression for ~rp exactly coincides with (2.15), since /Jo = B;1 is the 
betatron function at the location of the "perturbing" thin lens (when it is not 
there), and the focal length is f = !BB· 
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