

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Дубна

41004

39 - 04

П1-2004-39 346.60

Ю. А. Троян^{*}, А. В. Беляев, А. Ю. Троян^{*}, Е. Б. Плеханов, А. П. Иерусалимов, Г. Б. Пискалева, С. Г. Аракелян¹

ПОИСК И ИССЛЕДОВАНИЕ БАРИОННЫХ РЕЗОНАНСОВ СО СТРАННОСТЬЮ S=+1В СИСТЕМЕ nK^+ В РЕАКЦИИ $np \rightarrow npK^+K^-$ ПРИ ИМПУЛЬСЕ НАЛЕТАЮЩИХ НЕЙТРОНОВ $P_n = (5,20\pm0,12)$ ГэВ/с

Направлено в журнал «Письма в ЭЧАЯ»

*E-mail: atroyan@jinr.ru ¹ Физический институт им. П. Н. Лебедева РАН, Москва

введение

В работах [1, 2] Д. Дьяконов, В. Петров и М. Поляков предложили развитие схемы SU(3)-симметрии на состояния с положительной странностью S = +1. Было провозглашено существование антидекуплета 10, в который входят состояния, содержащие пять кварков ($uudd\bar{s}$). Динамика новых резонансов основана на модели кирального солитона. Это дало возможность оценить массы, ширины и квантовые числа ожидаемых новых эффектов, предложить формулу ротационного ряда, дающую зависимость масс резонансов от их спинов. В вершине антидекуплета в [1] стоит Θ -резонанс с массой M = 1,530 ГэВ/ c^2 , шириной $\Gamma \leq 15$ МэВ/ c^2 , гиперзарядом Y = 2, изотопическим спином I = 0, со спином-четностью $J^P = 1/2^+$.

Гипотеза авторов [1] детально обсуждается в целом ряде теоретических исследований, число которых приближается к 50. Подробные обзоры теоретических работ вместе с рядом критических замечаний можно найти в публикациях [3–5]. В [6, 7] развиваются совсем другие подходы к проблеме указанных резонансов: в [6] — объединение кварков в дикварки с возникновением сверхпроводящих слоев, в [7] представлена чисто кварковая картина, в которой могут возникать изоскалярные, изовекторные и изотензорные состояния из пяти кварков (и обычных, и странных), что сильно расширяет как возможный набор квантовых чисел и масс искомых резонансов, так и вероятности их распадов (например, Θ -частица может иметь набор квантовых чисел $1/2^-$, $3/2^-$, $5/2^-$).

Предсказанные в [1, 2] свойства частиц из антидекуплета таковы, что позволяют осуществлять прямой поиск эффектов. Это и сравнительно небольшие массы, и доступные для прямого измерения ширины. Поэтому появился целый ряд экспериментальных работ [8], в каждой из которых обнаружен резонанс в системах nK^+ или pK_s^0 с массой ~ 1,540 ГэВ/ c^2 и шириной $3 \div 25$ МэВ/ c^2 . Пока ни в одной из них не наблюдался не только ротационный ряд, но не наблюдалось даже и более одного резонансного состояния в указанных системах. Также не определялись ни спин резонанса, ни его четность. Это связано в первую очередь с небольшими статистиками экспериментов, недостаточными точностями и наличием разного рода выборок.

В предлагаемой работе мы попытались по возможности изучить более подробно характеристики наблюдаемых эффектов.

1. МЕТОДИКА ЭКСПЕРИМЕНТА

Исследования проводились на материале с 1-м водородной пузырьковой камеры (hydrogenous bubble chamber — HBC) ЛВЭ ОИЯИ, облученной пучками квазимонохроматических нейтронов из синхрофазотрона ЛВЭ. После ускорения дейтронов в синхрофазотроне ЛВЭ в 1972 г. был создан нейтронный канал на 1-м HBC. Целью экспериментов с нейтронами было изучение пентакварков в системах $\Delta^{++}\pi^+$.

Квазимонохроматические нейтроны ($\Delta P_n/P_n \approx 2,5\%$) получались в результате стриппинга ускоренных дейтронов на 1-см АІ-мишени, размещенной внутри вакуумной камеры синхрофазотрона. Нейтроны выводились из ускорителя под углом 0° к траектории ускоренных дейтронов. Очистка пучка нейтронов от заряженных частиц производилась магнитным полем ускорителя, в котором нейтроны проходили около 12 м, прежде чем выйти из синхрофазотрона. Пузырьковая камера находилась на расстоянии 120 м от Al-мишени. Пучок нейтронов был хорошо коллимирован и имел угловой разброс $\Delta \Omega_n \approx 10^{-7}$ ср. В пучке не было примесей ни от заряженных частиц, ни от γ -квантов. Подробное описание канала представлено в работе [9].

Однометровая HBC была размещена в магнитном поле величиной $\sim 17 \text{ к}\Gamma c$. В результате мы имеем хорошую точность измерения импульсов вторичных заряженных частиц (импульсы протонов в реакции $np \rightarrow npK^+K^-$ измерялись со средней точностью $\approx 2\%$, K^+ , $K^- \approx 3\%$). Углы вылета частиц измерялись с точностью $\leq 0, 5^\circ$.

Разделение каналов реакций производилось стандартным χ^2 -методом с учетом имеющихся уравнений связи [10]. В случае изучаемой реакции $np \rightarrow npK^+K^-$ есть одно уравнение связи на параметры (закон сохранения энергии) и экспериментальное χ^2 -распределение должно подчиняться теоретическому распределению χ^2 с одной степенью свободы.

На рис. 1, *а* представлены экспериментальное (гистограмма) и теоретическое (сплошная кривая) распределения χ^2 для указанной реакции. Видно хорошее совпадение вплоть до величины $\chi^2 = 1$. Для событий с $\chi^2 > 1$ имеется расхождение теоретического и экспериментального распределений. Поэтому в дальнейшем мы используем события, для которых $\chi^2 \leq 1$ (на рис. 1, *а* граница отмечена стрелкой). В 15% случаев события с таким ограничением удовлетворяют двум гипотезам: канал $np \rightarrow npK^+K^-$ и канал $np \rightarrow np\pi^+\pi^-$. При этом χ^2 для гипотезы с *K*-мезонами («*K*») всегда меньше, чем χ^2 для гипотезы с π -мезонами (« π »). Все данные события отнесены к гипотезе «*K*». Отличия разных тестовых распределений в однозначных ($\chi^2_{*K*} < 1$, $\chi^2_{*\pi*} > 6$, 4) и двузначных ($\chi^2_{*K*} < 1$, $\chi^2_{*\pi*} < 1$) событиях не обнаружены.

На рис. А, б изображено распределение недостающих масс в событиях с $\chi^2 \leqslant 1$. Видно, что распределение имеет максимум при значении недостаю-

щей массы, равной массе нейтрона с точностью $0, 1 \text{ МэВ/}c^2$, и симметрично относительно массы нейтрона. В дальнейшем для большей чистоты материала отброшено малое число событий со значениями недостающей массы вне интервала, отмеченного на графике стрелками.

Рис. 1. а) Экспериментальное (гистограмма) и теоретическое (сплошная кривая) распределения χ^2 для реакции $np \rightarrow npK^+K^-$; б) распределение недостающих масс для реакции $np \rightarrow npK^+K^-$ в событиях $\chi^2 \leq 1$

В результате этих отборов имеем 1558 событий реакции $np \rightarrow npK^+K^$ при $P_n = (5, 20 \pm 0, 12)$ ГэВ/с в условиях 4π -геометрии (отсутствие угловых выборок), результаты обработки которых и приведены ниже.

2. ФИЗИЧЕСКИЕ РЕЗУЛЬТАТЫ

На рис. 2 приведено распределение эффективных масс nK^+ -комбинаций из всех событий реакции $np \rightarrow npK^+K^-$ при $P_n = (5, 20 \pm 0, 12)$ ГэВ/с. Распределение аппроксимировано некогерентной суммой фоновой кривой, взятой в виде полинома Лежандра 8-й степени, и десятью резонансными кривыми в форме Брейта-Вигнера. Стрелками отмечены подобранные значения масс резонансов. Доля фона в этом распределении составляет 75,8 %.

60

. 50

30

20

10

Количество событий/0,010, ГэВ/*с*²

1,541

1,505 ,477 1,606

= 1157 событий

1,417 1,517 1,617 1,717 1,817 1,917

М_{пК}+, ГэВ/с²

 $np \rightarrow npK^+K^-$

 $-0,85 \leq \cos \Theta_{\mu} \leq 0,85$

1,781

1,870

 $\bar{P}_{n} = 5,20 \ \Gamma \Rightarrow B/c$

Рис. 2. Распределение эффективных масс $r.K^+$ -комбинаций из всех событий реакции $np \rightarrow npK^+K^-$ при $P_n = (5, 20 \pm 0, 12)$ ГэВ/с. Пунктирная линия — фоновая кривая, взятая в виде полинома Лежандра 8-й степени. Сплошная линия — сумма фоновой кривой и десяти резонансных кривых в форме Брейта-Вигнера. Нижняя гистограмма — распределение эффективных масс nK^+ -комбинаций, отобранных с условием $\{\cos \Theta_n^* < -0, 85 \cup \cos \Theta_n^* > 0, 85\}$

Рис. 3. Распределение эффективных масс nK^+ -комбинаций из реакции $np \rightarrow npK^+K^-$ при $P_n = (5, 20 \pm 0, 12)$ ГэВ/с для событий, отобранных с условием $\{-0, 85 < \cos \Theta_n^* < 0, 85\}$. Пунктирная линия — фоновая кривая, взятая в виде полинома Лежандра 8-й степени. Сплошная линия — сумма фоновой кривой и восьми резонансных кривых в форме Брейта-Вигнера

Требования к фоновой кривой заключаются, во-первых, в том, чтобы погрешности в коэффициентах каждого члена полинома при его подборе были не более 50% и, во-вторых, чтобы полином описывал экспериментальное распределение после «выбрасывания» резонансных областей с $\overline{\chi^2} = 1,0$ и $\sqrt{D} = 1,4$ (характеристики χ^2 -распределения с одной степенью свободы). Для распределения на рис. 2 $\chi^2 = 0,92 \pm 0,29$ и $\sqrt{D} = 1,33 \pm 0,20$. Эти же значения для фоновой кривой, нормированной на 100 % событий в графике (с резонансными областями), равны $\chi^2 = 1,40 \pm 0,19$ и $\sqrt{D} = 2,38 \pm 0,14$. Статистическая значимость резонанса с M = 1,541 ГэВ/ c^2 равна 4,5 S.D.

На том же графике (см. рис. 2) представлено распределение эффективных масс nK^+ -комбинаций, отобранных с условием $\{\cos\Theta_n^* < -0, 85 \cup \cos\Theta_n^* > 0, 85\}$, где Θ_n^* — угол вылета нейтрона в общей системе центра масс (с. ц. м.). Видно, что это распределение не имеет существенных выбросов и устранение данных событий может снизить уровень фона для резонансов.

На рис. З приведено распределение эффективных масс nK^+ -комбинаций для событий, отобранных с условием $\{-0, 85 < \cos \Theta_n^* < 0, 85\}$. Распределение аппроксимировано некогерентной суммой фоновой кривой, взятой в виде полинома Лежандра 8-й степени, и восемью резонансными кривыми в форме Брейта-Вигнера. Статистическая значимость резонансов, расположенных справа от M = 1,541 ГэВ/ c^2 , несколько выросла, а узких резонансов слева от M = 1,541 ГэВ/ c^2 несколько упала.

Для лучшего изучения маломассовых резонансов построено распределение эффективных масс nK^+ -комбинаций с шагом 5 МэВ/ c^2 (до массы $\sim 1,663$ ГэВ/ c^2). Это распределение (см. рис. 4) аппроксимировано неко-

Рис. 4. Распределение эффектив-

ных масс nK^+ -комбинаций из ре-

акции $np \rightarrow npK^+K^-$ при

 $P_n = (5, 20 \pm 0, 12)$ ГэВ/с для

событий, отобранных с условием

 $\{-0, 85 < \cos \Theta_n^* < 0, 85\}$. Пунк-

тирная линия — фоновая кривая в

виде полинома Лежандра 4-й сте-

пени. Сплошная линия — сумма фо-

новой кривой и шести резонансных

кривых в форме Брейта-Вигнера

4

герентной суммой фоновой кривой, взятой в виде полинома Лежандра 4-й степени, и шестью резонансными кривыми в форме Брейта-Вигнера. Резонанс с $M = 1,541 \ \Gamma$ эВ/ c^2 превышает фон на 5,2 S.D., с $M = 1,605 \ \Gamma$ эВ/ c^2 — на 5,4 S.D., с $M = 1,505 \ \Gamma$ эВ/ c^2 — на 3,1 S.D. Из данного графика более точно определяются ширины резонансов (сводку данных о резонансах см. в табл. 1).

Нами была предпринята попытка увеличить статистическую значимость некоторых резонансов. Она основана на предположении, что резонансы образуются при помощи механизмов K-обменов: в одной из вершин соответствующей диаграммы образуется известный резонанс (Σ^* или Λ^*), распадающийся на p- и K^- -мезон, в другой — один из искомых резонансов в системе nK^+ . При этом K^- -мезон от распада известного резонанса может быть скоррелирован с резонансом в системе nK^+ чисто кинематически. В результате в системе nK^+K^- в распределении эффективных масс могут возникать пики кинематического происхождения.

Рис. 5. Распределение эффективных масс nK^+K^- -комбинаций из реакции $np \rightarrow npK^+K^-$ при $P_n = (5,20\pm0,12)$ ГэВ/с. Нижняя гистограмма — распределение эффективных масс nK^+K^- , построенных так, чтобы эффективная масса nK^+ лежала в полосе резонанса с M = 1,541 ГэВ/ c^2

На рис. 5 представлено распределение эффективных масс nK^+K^- комбинаций. В распределении отчетливо виден ряд особенностей. Соответствующих нуклонных резонансов, распадающихся по схеме $R \rightarrow NK\bar{K}$, в таблицах мировых данных нет. Это как раз те кинематические отражения, о которых шла речь выше. На том же рис. 5 приведено распределение эффективных масс nK^+K^- , построенных так, чтобы эффективная масса nK^+ лежала в полосе резонанса с M = 1,541 ГэВ/ c^2 . В данном распределении ясно видны два стущения в интервалах масс nK^+K^- 2,020 ÷ 2,150 и 2,240 ÷ 2,280 ГэВ/ c^2 . Соответствующие сгущения существуют и для резонансов в системе nK^+ с M = 1,606 ГэВ/ c^2 и M = 1,687 ГэВ/ c^2 .

Выбирая области масс nK^+K^- , соответствующие отражениям резонансов в системе nK^+ с этими массами, получаем распределения эффективных масс nK^+ , представленные на рис. 6 для резонансов с массой 1,541, 1,606, и 1,687 ГэВ/ c^2 .

Под каждым графиком приведены значения областей, выбранных по массам nK^+K^- , и указаны границы дополнительного ограничения по углам вылета вторичного нейтрона в общей с. ц. м. Это дополнительное ограничение по углам несколько уменьшает фон, но основной эффект усиления происходит из-за ограничения по массам nK^+K^- .

Рис. 6. Распределение эффективных масс nK^+ -комбинаций из реакции $np \rightarrow npK^+K^-$ при $P_n = (5, 20 \pm 0, 12)$ ГэВ/с для резонанса с массой: а) 1,541 ГэВ/с²; б) 1,606 ГэВ/с²; в) 1,678 ГэВ/с². Под графиками приведены значения областей, выбранных по массам nK^+K^- , и указаны границы дополнительного ограничения по углам вылета вторичного нейтрона в общей с. ц. м. Пунктирными линиями обозначены фоновые кривые. Сплошные линии — аппроксимирующие кривые

Каждое из полученных распределений аппроксимировано некогерентной суммой фоновой кривой, взятой в виде полинома Лежандра, и резонансными кривыми в форме Брейта-Вигнера.

В результате мы имеем значительное усиление эффектов от трех обработанных таким образом резонансов (величины стандартных отклонений приведены на графиках рис. 6). При этом число событий в пиках не уменьшается по сравнению с обработками, представленными на рис. 2–4.

На рис. 7 представлены распределения эффективных масс pK^- -комбинаций с теми же условиями выборок, что и на рис. 6. Видны особенности в распределении эффективных масс pK^- , соответствующих известным Σ^* -, Λ^* -резонансам (данные особенности хорошо видны и в распределении эффективных масс pK^- , построенном без указанных ограничений).

Рис. 7. Распределение эффективных масс pK^- -комбинаций из реакции $np \rightarrow npK^+K^-$ при $P_n = (5, 20 \pm 0, 12)$ ГэВ/с. Под графиками приведены значения областей, выбранных по массам nK^+K^- , и указаны границы дополнительного ограничения по углам вылета вторичного нейтрона в общей с. ц. м. (*a-в* соответствуют рис. 6)

Нами сделаны оценки спинов наблюдаемых резонансов в системе nK^+ . Для этого были построены распределения углов вылета нейтронов от распада резонансов по отношению к направлению полета резонанса в общей с. ц. м. реакции. Все величины переведены в систему покоя резонанса (спиральная система координат). В спиральной системе координат угловые распределения распадной частицы описываются суммой полиномов Лежандра четных степеней, максимальная степень которых равна (2J - 1), где J — спин резо-

Рис. 8. Распределения углов вылета вторичных нейтронов в спиральной системе координат для резонансов с массой: *a*) 1,477 ГэВ/ c^2 ; *b*) 1,505 ГэВ/ c^2 ; *b*) 1,541 ГэВ/ c^2 ; *c*) 1,606 ГэВ/ c^2 ; *d*) 1,638 ГэВ/ c^2 ; *e*) 1,687 ГэВ/ c^2

нанса (для полуцелых спинов). Таким способом оценивается значение нижней границы спина резонанса. Авторы благодарны В.Л.Любошицу за написание соответствующих формул. На рис. 8 приведены угловые распределения для шести резонансов, массы которых находятся в указанных на графиках интервалах. Фоновые распределения строятся из интервалов справа и слева от

соответствующей полосы резонанса и вычитаются с массой, соответствующей доле фона в резонансной области. При построении этих распределений никаких ограничений по углам вылета частиц не применялось (использование ограничений по углу вылета вторичного нейтрона не изменяет результатов). При аппроксимации распределений требовалось, чтобы погрешности в коэффициентах подобранных полиномов Лежандра не превышали 50 %.

Из приведенных на рис. 8 графиков видно, что для резонанса с 1, 467 < M < 1,487 ГэВ/ c^2 распределение изотропно и полиномов высших степеней для его описания не требуется, следовательно, его спин $J \ge 1/2$. Для резонанса с 1,500 < M < 1,510 ГэВ/ c^2 наиболее вероятное значение спина $J \ge 3/2$, хотя и оценка $J \ge 1/2$ тоже имеет довольно большой доверительный уровень. Для резонанса с 1,530 < M < 1,550 ГэВ/ c^2 (резонанс, наиболее широко обсуждаемый в публикациях) мы имеем для спина $J \ge 1/2$ доверительный уровень значительно меньший, чем для более высоких значений спина. Наибольший доверительный уровень имеет оценка с пина $J \ge 5/2$. Резонанс с 1,595 < M < 1,615 ГэВ/ c^2 имеет довольно уверенную оценку $J \ge 7/2$.

Качественную оценку можно сделать из вида графиков: они должны иметь (2J-3)/2 экстремумов плюс один «тривиальный» при $\cos \Theta = 0$, т. е. для спина $J \ge 7/2$ экстремумов должно быть два и «тривиальный» при $\cos \Theta = 0$, что довольно хорошо (в пределах погрешностей) просматривается на графике рис. 8, *г*.

На рис. 8, д, е представлены результаты исследования спинов для более тяжелых резонансов. Для 1,630 < M < 1,655 ГэВ/ c^2 с хорошим уровнем доверия имеем $J \ge 7/2$, для 1,670 < M < 1,730 ГэВ/ c^2 с еще большей уверенностью — $J \ge 9/2$. Тяжелый резонанс с 1,760 < M < 1,790 ГэВ/ c^2 имеет слабые оценки, что связано с довольно плохим в этой области разрешением по массам и увеличивающимся здесь влиянием фона на оценки спина.

Результаты настоящей работы представлены в табл. 1.

В первой колонке помещены экспериментальные значения масс резонансов с их погрешностями; во второй — экспериментальные значения полных ширин резонансов; в третьей — значения истинных ширин резонансов с их погрешностями.

Истинные ширины резонансов получаются после квадратичного вычитания из экспериментальной ширины значения функции разрешения по массам, которая увеличивается с ростом массы по закону

$$\Gamma_{\rm res}(M) = 4, 2\left[\left(M - \sum_{i=1}^{2} m_i\right)/0, 1\right] + 2, 8,$$

где M — масса резонанса, m_i — масса покоя входящей в резонанс частицы i,

Таблица І

$M_{ m exp}\pm\Delta M_{ m exp},$ ГэВ/ c^2	$\Gamma_{ m exp}\pm\Delta\Gamma_{ m exp}$, ГэВ/ c^2	$ \Gamma_{\rm Res} \pm \Delta \Gamma_{\rm Res}, \ Γ ightarrow {\rm B}/c^2 $	J_{exp}	S.D.
$1,447\pm0,007$	$0,005\pm0,004$	$0,004\pm0,004$		3,2
$1,467\pm0,003$	$0,008\pm0,003$	$0,008\pm0,004$	—	2,3
$1,477\pm0,002$	$0,005\pm0,003$	$0,002^{+0,006}_{-0,002}$	1/2	3,0
$1,505\pm0,004$	$0,008\pm0,003$	$0,005\pm0,005$	3/2	3,5
$1,541\pm0,004$	$0,011 \pm 0,003$	$0,008\pm0,004$	5/2	6,8
$1,606\pm0,005$	$0,014\pm0,005$	$0,011\pm0,006$	7/2	5,2
$1,638\pm0,005$	$0,016 \pm 0,011$	$0,012^{+0,015}_{-0,012}$	7/2	3,6
$1,687\pm0,007$	$0,027\pm0,007$	$0,024 \pm 0,008$	9/2	6,8
$1,781\pm0,008$	$0,029\pm0,012$	$0,023\pm0,015$	—	4,1
$1,870\pm0,019$	$0,036\pm0,010$	$0,032\pm0,011$		5,9

M и m_i взяты в единицах ГэВ/ c^2 , величины 4,2 и 2,8 — в единицах МэВ/ c^2 [11]. Например, величина полной ширины функции разрешения для резонанса с M = 1,541 ГэВ/ c^2 получается ≈ 7 МэВ/ c^2 .

В четвертой колонке табл. 1 приведены значения спинов резонансов. Это нижние границы спинов, как объяснялось при обсуждении процедуры оценки спинов.

В пятой колонке табл. 1 приведены статистические значимости резонансов, определенные как отношение числа событий в резонансе к квадратному корню из числа фоновых событий под резонансом.

Оценка сечения образования резонанса с M = 1,541 ГэВ/ c^2 в системе nK^+ из реакции $np \rightarrow npK^+K^-$ при $P_n = (5,20\pm0,12)$ ГэВ/c дает $\sigma = (3,5\pm0,7)$ мкб.

3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ И ВЫВОДЫ

Мы попытались систематизировать полученные результаты, используя формулу для ротационных уровней, предложенную в работах Дьяконова и др. [1, 2]:

$$M_J = M_0 + kJ(J+1).$$
 (1)

Здесь M_J — масса резонанса, J — его спин, M_0 — масса покоя солитона, k — величина, обратная удвоенному моменту инерции солитона (используется терминология [2]).

Если внимательно посмотреть на графики распределения эффективных масс nK^+ -комбинаций (особенно на рис. 4, где построение выполнено с шагом 5 МэВ/ c^2), то можно заметить, что наряду с сильными особенностями имеются и более слабые: при M = 1,467 ГэВ/ c^2 , выброс при массе в районе M = 1,565 ГэВ/ c^2 и другие. Поэтому мы производили аппроксимацию

Таблица 2

N₂	$M_0 = 1,462, \ \Gamma$ эВ/ c^2		k = 0,0090		$M_0=1,471,$ ГэВ/ c^2		k = 0,0107	
	J	M_J	$M_{\rm exp} \pm \Delta M_{\rm exp}$	J_{exp}	J	M_J	$M_{\rm exp} \pm \Delta M_{\rm exp}$	J_{exp}
1.	1/2	1,469	$1,467 \pm 0,003$	_	1/2	1,471	$1,477 \pm 0,002$	1/2
2.	3/2	1,496	$1,505 \pm 0,004$	3/2	3/2	1,511	$1,505 \pm 0,004$	3/2
3.	5/2	1,541	$1,541 \pm 0,004$	5/2	5/2	1,565		
4.	7/2	1,604	$1,606 \pm 0,005$	7/2	7/2	1,640	$1,638 \pm 0,005$	7/2
5.	9/2	1,685	$1,687 \pm 0,007$	9/2	9/2	1,736	—	
6.	11/2	1,784	$1,781 \pm 0,008$	_	11/2	1,854	$1,870 \pm 0,019$	
7.	13/2	1,901	$1,870 \pm 0,019$	—			. ,	
a						б		

распределений масс в зависимости от спина в двух вариантах. Оба они представлены в табл. 2: a - для «сильных» резонансов, $\delta - для$ «слабых». Видно хорошее согласие экспериментальных данных с формулой (1). В табл. 2, a самая большая предсказанная масса 1, 901 (J = 13/2) может обрезаться справа фазовым объемом и на эксперименте проявляться при меньшей массе. В табл. 2, δ в третьей и пятой строках отсутствуют сведения об экспериментальных значениях масс и спинов. При этих массах имеются выбросы, которые не обеспечены статистически как резонансы.

Беря моменты инерции в виде $I = M_0 r^2$ и используя значения k = 1/2I из табл. 2, можно определить радиус солитона. Он оказывается равным $\approx 1,2 \, \phi$ м, т. е. близок к π -мезонному радиусу ($\approx 1,35 \, \phi$ м).

Мы сделали другую аппроксимацию наблюдающихся нами ротационных полос, где масса возбужденного состояния зависит не от спина резонанса, а от его орбитального момента *l*:

$$M_l = M_0 + kl(l+1).$$
(2)

Результаты представлены в табл. 3: a - для «сильных» резонансов, $\delta - для$ «слабых». Значения орбитальных моментов выбраны произвольно, но так, чтобы они не противоречили оценкам спинов. Эти описания лучше удовлетворяют экспериментальным данным. Кроме того, «в игру вошел» резонанс при M = 1,447 ГэВ/ c^2 , который проявляется в большинстве наших распределений и о котором говорится в нескольких теоретических анализах.

При сделанных предположениях об орбитальных моментах четность резонанса с $M = 1,541 \ \Gamma$ эВ/ c^2 отрицательна. Если учесть еще значение его спина J = 5/2, то можно придти к выводу, что этот резонанс не находится в вершине антидекуплета, предложенного в [1, 2]. Но есть вероятность, что в вершине находится резонанс с $M = 1,501 \ \Gamma$ эВ/ c^2 , у которого положительная четность и спин, равный 1/2. Наше определение спина резонанса при

Таблица 3

M	$_0 = 1,481$, Γэ \mathbf{B}/c^2	k = 0,010	M	$_{0} = 1,447, \ \Gamma$ эВ/ c^{2}	k = 0,010
l	M _ℓ	$M_{ m exp}\pm\Delta M_{ m exp}$	l	Me	$M_{ m exp}\pm\Delta M_{ m exp}$
0	1,481	$1,477 \pm 0,002$	0	1,447	$1,447 \pm 0,007$
1	1,501	$1,505\pm0,004$	1	1,467	$1,467 \pm 0,003$
2	1,541	$1,541 \pm 0,004$	2	1,507	$1,505 \pm 0,004$
3	1,601	$1,606 \pm 0,005$	3	1,567	<u> </u>
4	1,681	$1,687 \pm 0,007$	4	1,647	$1,638 \pm 0,005$
5	1,781	$1,781 \pm 0,008$	5	1,747	
6	1,901	$1,870\pm0,019$	6	1,867	$1,870\pm0,019$
	a				6

 $M \approx 1,505 \ \Gamma
i B/c^2$ не противоречит тому, что в этом месте могут находиться два резонанса с $M = 1,501 \ \Gamma
i B/c^2$ и спином-четностью $J^P = 1/2^+$ и резонанс с $M = 1,507 \ \Gamma
i B/c^2$ со спином-четностью $J^P = 3/2^-$. При этом оба они очень узкие, но сдвинуты друг относительно друга, что в результате дает среднее значение экспериментальной $M = 1,505 \ \Gamma
i B/c^2$. В области малых масс, таким образом, требуются очень точные и по разрешению, и по статистике эксперименты.

Мы считаем необходимым сделать еще одно замечание.

Проблема пентакварков возникла еще в 60-х гг. прошлого столетия. Я. Б. Зельдович и А. Д. Сахаров [12] впервые трактовали наблюдавшиеся тогда эффекты в системе $p\pi^+\pi^+$ как проявление пентакварковых состояний. Наши первые работы [13] на эту тему стимулировали создание уникального нейтронного пучка [9] на 1-м НВС ЛВЭ после ускорения дейтронов на синхрофазотроне ЛВЭ. В 1979 г. в журнале «Ядерная физика» [14] была опубликована наша работа по наблюдению довольно узкого ($\Gamma = 43 \text{ МэВ}/c^2$) резонанса в эффективных массах $\Delta^{++}\pi^+ (\Delta^-\pi^-)$ -комбинаций прц $M = 1,440 \text{ ГэВ}/c^2$ со статистической значимостью 5,5 S.D. Эти резонансы можно было трактовать как пятикварковые состояния *uuuud* (*dddd*u) для $\Delta^{++}\pi^+ (\Delta^-\pi^-)$. В том же исследовании построена траектория Редже для состояний с J = T и показано, что на ней находятся N, Δ , E_{55} (обнаруженный нами с $M = 1,440 \text{ ГэВ}/c^2$). Наклон траектории был около 1, 68 (ГэВ/ c^2)⁻².

Существование таких новых резонансов с J = T предсказывалось в работах А. А. Григоряна и А. Б. Кайдалова [15] при исследовании ими сверхсходящихся правил сумм для рассеяния реджеонов на частицах. Их предсказания совпали с нашими данными.

В 1983 г. нами была опубликована следующая работа на эту тему [16] с увеличенной статистикой. Зафиксировано еще два состояния с $M = 1,522 \ \Gamma$ эB/ c^2 и $M = 1,894 \ \Gamma$ эB/ c^2 . Таким образом, проблема состояний с числом кварков больше трех обсуждается давно и есть схемы, имеющие предсказательную силу.

По нашему мнению, вопрос о числе кварков не является важным в предложениях Д. Дьяконова, В. Петрова и М. Полякова. Симметрийный подход вообще не использует понятие «кварк». Данный подход очень общий, а потому и гораздо более важный, чем модельные соображения.

Что касается экспериментальной ситуации, то она представляется нам чрезвычайно сложной. Во всех экспериментах, где наблюдались эффекты в системах nK^+ или pK_s^0 , видят только один пик при массе в районе 1,530–1,540 ГэВ/ c^2 . Это связано, по-видимому, с низкой первичной энергией, недостаточным разрешением по массам, малой статистикой и наличием различных выборок в экспериментах.

Нам представляется, что наиболее существенным сейчас является наблюдение еще хотя бы одного резонанса, определение спинов хотя бы двух резонансов и точное определение их ширин. Предсказываемый закон роста ширин резонансов с ростом их спина $\Gamma \sim J^3/M^2$ [2] очень жесткий. При увеличении спина в 5 раз ширина возрастает в 125 раз и увидеть что-либо на эксперименте можно, если и массы резонансов сильно возрастут, что трудно для наблюдения, и вызывает вопросы о справедливости нерелятивистского подхода, используемого в модели кирального солитона.

Авторы благодарят В.Л.Любошица за постоянную помощь в работе, которую он оказывает на протяжении многих лет, а также Е.А. Строковского и М.В. Токарева, которые не только привлекли наше внимание к данной физической проблеме, но и постоянно предоставляют важную физическую информацию.

Благодарим Е. Н. Кладницкую за ряд полезных замечаний.

Мы признательны всем сотрудникам ОИЯИ, помогающим нам в обработке материала: лаборантам ВБЛВЭ, инженерам ЛИТ, обслуживающим соответствующую аппаратуру.

Работа выполнена в рамках темы 03-1-0983092/2004 в ВБЛВЭ ОИЯИ.

ЛИТЕРАТУРА

1. Diakonov D., Petrov V., Polyakov M. // Z. Phys. A. 1997. V. 359. P. 305-314.

2. Diakonov D. // Acta Phys. Polonica B. 1994. V. 25, № 1-2.

3. Ellis J., Karliner M., Praszalowich M. hep-ph/0401127.

4. Borisyuk D., Faber M., Kobushkin A. hep-ph/0307370.

5. Borisyuk D., Faber M., Kobushkin A. hep-ph/0312213.

6. Jaffe R., Wilczek F. hep-ph/0307341.

7. Capstick S., Page P.R., Roberts W. hep-ph/0307019.

- Nakano T. et al. (LEPS Collab.) // Phys. Rev. Lett. 2003. V. 91. P.012002; hep-ex/0301020;
 Barmin V. V. et al. (DIANA Collab.) // Phys. At. Nucl. 2003. V. 66. P. 1715; Yad. Fis. 2003. V. 66. P. 1763; hep-ex/0304040;
 Stepanyan S. et al. (ClAS Collab.). hep-ex/0307018;
 Barth J. et al. (SAPHIR Collab.). hep-ex/0307083;
 Kubarovsky V., Stepanyan S. (CLAS Collab.). hep-ex/0307088;
 Asratyan A. E., Dolgolenko A. G., Kubantsev V. A. hep-ex/0309042;
 Kubarovsky V. et al. (CLAS Collab.). hep-ex/0311046;
 Airapetian A. et al. (HERMES Collab.). hep-ex/0312044;
 Chekanov S. (ZEUS Collab.). http://www.desy.de/f/seminar/Checanov.pdf;
 Togoo R. et al. // Proc. Mongolian Acad. Sci. 2003. V. 4. P. 2;
 Aleev A. et al. (SVD Collab.). hep-ex/0401024.
- Gasparian A. P. et al. JINR, 1-9111. Dubna, 1975; Pribory i Teknika Eksp. 1977. V. 2. P. 37.
- Troyan Yu. A. et al. // Phys. At. Nuc. 2000. V. 63, № 9. P. 1562-1573; Yad. Fiz. 2000.
 V. 63, № 9. P. 1648-1659.
- 11. Troyan Yu. A. et al. // JINR Rapid Commun. 1996. № 6[80]-96. P. 73.
- 12. Zeldovich Ya. B., Saharov A. D. // Yad. Fiz. 1966. V. 4. P. 395.
- Moroz V. I., Nikitin A. V., Troyan Yu. A. JINR, E1-3940. Dubna, 1968; Yad. Fiz. 1969.
 V. 2. P. 9.
- 14. Abdivaliev A. et al. // Yad. Fiz. 1979. V.6. P.29.
- 15. Grigorian A., Kaidalov A. // Yad. Fiz. 1980. V. 32. P. 540; Grigorian A., Kaidalov A. // Pisma v JETF. 1978. V. 28. P. 318.
- 16. Abdivaliev A. et al. // Yad. Fiz. 1983. V. 3. P. 37.

Получено 23 апреля 2004 г.

14