

X

17-16

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Лаборатория высоких энергий

В.С. Пантуев, М.Н. Хачатурян

Д-880

сечение взаимодействия нейтронов с ядрами при энергии 8,3 бэв мэть, 1962, 142, 63, с909 - 910.

В.С. Пантуев, М.Н. Хачатурян

207

حر

1346

Д-880

СЕЧЕНИЕ ВЗАИМОДЕЙСТВИЯ НЕЙТРОНОВ С ЯДРАМИ ПРИ ЭНЕРГИИ 8,3 БЭВ

Направлено в ЖЭТФ

Объединенный инстит засрыах исследова « БИБЛИОТЕКА Полные и неупругие сечения взаимодействия нейтронов с эффективной энергией 8,3-Бэв с ядрами углерода, алюминия, меди, олова и свинца были измерены на синхрофазотроне ОИЯИ методом выбывания частиц из пучка.

Измерения производились в условиях "хорошей" и "плохой" геометрии^{/1/}, изменением расстояния между образцами мишеней и детектором. Для ядер углерода и свинца сечения были также измерены при промежуточных значениях угла θ (см. рис.1). Для уменьшения влияния флюктуаций в аппаратуре измерения производились попеременно с мишенью и без мишени. Автоматическое устройство позволяло производить смену положений "с мишенью" и "без мишени" каждые 10-12 циклов работы ускорителя. Мишени из углерода, меди и свинца имели толщины соответственно 20,33 $\frac{\Gamma}{CM^2}$, 53,47 $\frac{\Gamma}{CM^2}$ и 60,50 $\frac{\Gamma}{CM^2}$. Результаты опытов приведены в таблице **1**. Сравнение величин сечений при эффективной энергии 8,3 Бэв с соответствующими сечениями при других энергиях^{/2,3/} (см. табл. **1**) показывает, что сечения неупругого взаимодействия нейтронов с ядрами в широком интервале энергий постоянны. В то же время для полных сечений взаимодействия с увеличением энергии наблюдается некоторое падение величины сечения, обусловленное уменьшением сечения дифракционного рассеяния.

Теоретическое рассмотрение результатов эксперимента будет дано в другой работе.

Авторы выражают благодарность академику В.И.Векслеру за интерес к работе, И.В. Чувило за содействие и полезные обсуждения. Мы благодарим также Л.П.Зиновьева и весь персонал отдела синхрофазотрона, обеспечивших устойчивую работу ускорителя в течение всего эксперимента.

θ°	PB	Sn	Си	Ae	С
0,111	2257±156				
Q, 16 4	2581 ± 126				307±13
0,228	2556±100	1805±57	1217±48	600 ± 23	345 ±15
0,34	2 142 ± 50				
Q5	<i>1919 ±</i> 46				
0,57	1757±4 3				280±8
10					238 ± 4
2,0	1766 ± 125				218 ± 8
30	1636±81		626±29		
50	1713 ± 66	1218 ± 50		380 ± 13	

Паблица <u>і</u> Сечения взаимодействия нейтронов с ядрами в зависимости от угла (ств)

Тоблица]] Зависимость от энергии полных и неупругих сечений взаимодействия нейтронов с ядрами (3 тв)

Энергия (Веч)	ρß		Sn		Cu		Al		С	
	60	ď.	ප්	6.	3.	3,	5.	3,	20	37
1,4	1727:45	3209±55	1158±63	2202 ±6 2	6 74 <i>±</i> 34	/388± 39	414 ± 23	703±18	201=13	378 ± 10
4,5	166 0±90	2320±130			638 ± 24	1088±22			218 = 8	354 ± 11
8,3	1713±66	25 5 6±100	1218± 50	1805±57	626±29	1217±48	380 ± 13	600±23	218 ± 8	345 ± 15

Литература

Л.Ождяни, В.С. Пантуев, М.Н. Хачатурян, И.В. Чувило. Препринт ОИЯИ Д-788.
Т.Coor, D.A.Hill, W.F.Hornyak, L.W.Smith, G.Snow. Phys. Rev. 98, 1369 (1955).

3. J.H.Atkinson, W.N.Hess, V.Perez-Mendez and R.W.Wallace. Phys. Rev. Lett. 2, 168 (1959).

4. P.H.Barrett. Phys. Rev. 114, 1374 (1959).

Рукопись поступила в издательский отдел 2 января 1962 года.