ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ
 Лабораторйя высоких энергий

E.O. Okonov

D-862

LIMITS FOR A POSSIBLE MAGNETIC MOMENT OF THE K ${ }^{\circ}$ MESON

呾于Tक, 1962, т42,66, ,.1554-1557.

E.O. Okonov

LIMTTS FOR A POSSIBLE MAGNETIC MOMENT OF THE K K° MESON

Abstract

According to the experimental data obtained at the synchrophasotron of the Laboratory of High Energies ${ }^{\prime 3 /}$, the upper and lower limits of a possible magnetic moment of the K° have been estimated to be $0.04 \mu_{0} \geqslant \mu \geqslant 20 \mu_{0}$, where $\mu_{0}=\frac{h}{2 \pi}\left(\frac{\mathrm{e}}{M_{k}}\right)$.

It has been shown that the values $\mu \geq 20 \mu_{0} \quad$ lead to an anomalously great cross section for the $K^{\circ}\left(\tilde{K}^{\circ}\right)$ meson production.

Experimental data available so far indicate that the K° spin is zero. However, as it was noticed by Eberhardt and Good $/ 1 /$, the problem concerning the K° meson spin cannot be considered as finally solved since more or less arbitrary assumptions of the dynamical nature were used in analyzing the available experimental results*.

Quite a definite conclusion can be made only from the existence of the $K_{1}^{\circ} \rightarrow 2 \pi^{\circ}$ decay $/ 2 /$, it follows anambiguously herefrom that the K° spin is even.

Evidently, the K° meson with the nonzero spin should have also a magnetic moment.
In this connection it is interesting to estimate the limits of the magnitude for a possible K° magnetic moment according to the results obtained from the experiment recently performed at the Joint Institute synchrophasotron $/ 3 /$. Some years ago it was shown by M. Good that if the \boldsymbol{K}° has a magnetic moment, in the passage of the K_{2}^{0} particles through the magnetic field, there will take place the regeneration of the short-livec K_{1}° component followed by the decay into 2π mesons ${ }^{/ 4 /}$.

Indeed, the K_{2}° particle is a mixture of two states of the K° and anti- K° mesons, for which (according to CPT invariance) for a definite orientation of the K_{2}° spin, the magnetic moments must have opposite directions with respect to the spin. In the transverse magnetic field H there arises an energy difference $\Delta E=2 \mathrm{~m} \mu \mathrm{H} \quad$ between these states **, which leads to the phase shift between the K° and \widetilde{K}°. As a result, some of the K_{2}° 's turn into the $K_{1}^{\circ{ }^{\circ} \mathrm{s}}$ and just decay into $2 \pi^{* * *}$.

In this case the behaviour of the K_{1}° and K_{2}° is described by the equations

$$
\begin{aligned}
& \frac{d \psi_{1}}{d t}=i M_{1} \psi_{1}-\frac{\lambda_{1}}{2} \psi_{1}-\frac{m \mu H}{h} \psi_{2} . \\
& \frac{d \psi_{2}}{d t}=i M_{2} \psi_{2}-\frac{\lambda_{2}}{2} \psi_{2}+\frac{m \mu H}{h} \psi_{1}
\end{aligned}
$$

[^0]where M_{1}, λ_{1} and $\boldsymbol{M}_{2} \lambda_{2}$ are the masses and the decay constants of the $\boldsymbol{K}_{1}^{\circ}$ and $\boldsymbol{K}_{2}^{\circ}$ mesons respectively. In solving these equations, we restrict ourselves (just as it was done in ${ }^{/ 5 /}$) to the first term of expansion since the time of the $K_{2}^{\circ} \rightarrow K_{1}^{\circ}$ transition is great if compared with the lifetime of the K_{1}° meson ($\frac{2 m \mu H}{\pi} / \lambda_{1} \ll 1$). If we also neglect the strongly dampling exponent term of the order of $\exp \left(-\lambda_{1} t\right)$ then, for the number of the K_{2}° mesons at t we get
\[

$$
\begin{equation*}
N_{n_{2}}(t)=N_{(i=0)}^{\cdot} \exp \left\{-\frac{\lambda_{2}}{\gamma} t-\frac{y}{n^{2}} \frac{\lambda_{1}(2 \cos H)^{2}}{\left(4\left(M_{1}-M_{2}\right)^{2}+\lambda_{1}^{2}\right.} \quad t\right\} 1 \tag{1}
\end{equation*}
$$

\]

As we see from this expression, the K_{2}° mesons possessing the magnetic moment decay faster in the magnetic field and the second term in the exponent describes the decreasing of the number of the K_{2}° 's due to their transformation into the K_{1}° 's. At the same time the ratio of the number of the K_{I}° decays arising as a result of the 'regeneration') to that of the K_{2}° decays is

$$
\begin{equation*}
\frac{n_{K_{1}}^{0}}{n_{K_{2}^{\circ}}^{\circ}}=\frac{\gamma^{2}}{n^{2}} \quad \frac{\lambda_{1}}{\lambda_{2}}-\frac{(2 m \mu H)^{2}}{\left(4\left(M_{1}-M_{2}\right)^{2}+\lambda_{1}^{2}\right)} \tag{2}
\end{equation*}
$$

During the analysis of the experimental data $/ 3 /$ it should be taken into account that in the experiment we are considering now the K_{2}° mesons before arriving at the chamber travel a distance of more than 100 cm in the magnetic field of the accelerator ($H^{\prime} \approx 10^{4}$ gauss)*. In this case, as it can be easily seen, the K_{2}° mesons having a magnetic moment are getting polarized in the direction of the magnetic field.

Indeed, due to the 'Good effect' the K_{2}° mesons in the states with the magnetic quantum number $m \neq 0$ are gradually transforming into the $\boldsymbol{K}_{1}^{\circ}$ mesons in the magnetic field and decay immediately before entering the chamber. As for the states with $m=0$, they should not be affected by the . magnetic field either in the accelerator magnet, or in the analyzing magnet of the chamber as far as the directions of these magnetic fields coincide.

We also assume that in the \boldsymbol{K}° particle production by protons ($E_{p} \sim 9 \mathrm{BeV}$) on the lead nucleus there is no whatever considerable polarization with respect to the plane formed by the momentum of the incident proton and that of the generated K° meson. This assumption is quite reasonable since this plane is not, in general, that of production due to the nucleon motion in a nucleus.

In the experiments pertaining to the 'strange' particle production on nuclei there was not observed a noticeable 'transverse' polarization of hyperons (See, for instance, $/ 6 /$).

[^1]Under these conditions the account of the 'polarization' effect of the accelerator magnetic field yields the following expression for the relative number of the K_{1}° mesons arising and decays in the magnetic field of the chamber

$$
\begin{equation*}
\frac{n_{K_{1}}}{n_{K_{2}}}=\frac{\sum_{m} \gamma^{2 / n^{2} \lambda_{1}(2 m \mu H)^{2}} \frac{\lambda_{1}+4\left(M_{1}-M_{2}\right)^{2}}{\lambda_{m}} \exp \left(-\frac{y}{n^{2}}-\frac{\lambda_{1}\left(2 m \mu H^{6}\right)^{2}}{\lambda_{1}^{2}+4\left(M_{1}-M_{2}\right)^{2}} \operatorname{l} \lambda_{2} \exp \left(-\gamma / \hbar^{2} \frac{\lambda_{1}\left(2 m \mu H^{6}\right)^{2}}{\lambda_{1}^{2}+4\left(M_{1}-M_{2}\right)^{2}} \quad l / v\right.\right.}{l} \tag{3}
\end{equation*}
$$

Here, besides the well-known notations, ℓ is the length of the K_{2}° range in the magnetic field of the accelerator, v is the velocity of these particles ($v-1.7 .10^{10} \mathrm{~cm} / \mathrm{sec}$ - for the average K_{2}° energy of $\sim 100 \mathrm{MeV}$), and $\mathrm{m}=0, \pm 1, \pm 2$

In this experiment among the $600 K_{2}^{\circ}$ decays detected in the chamber ($H \sim 15000$ gauss) there were observed no $K^{\circ} \rightarrow \pi^{-}+\pi^{+} \quad$ decay.

This result enables us, by using formula (3), to estimate the upper limit of the K° magnetic moment which turned out to be $\quad \mu \leq 0.04 \mu_{0} \quad$ (where $\mu_{0}=\frac{h}{2 \pi}\left(\frac{e}{M_{R}}\right)$ is the
K-meson magneton') ${ }^{\text {® }}$
As is seen from formula (3), for a large magnetic moment of the K° meson, $\frac{n_{K_{2}^{0}}}{n_{0}}$ is getting smaller since the K_{2}° mesons with $m=0 \quad$, in the main, enter the chamber.

So, for $\quad \mu>20 \mu_{0} \quad$ under the experimental conditions, not a single K_{1}^{0} decay can be expected among the 600 decays of the K_{2}°. Evidently, the beam intensity of the K_{2}° particles striking the chamber will be decteased by a factor of 5 due to the 'Good effect'.

By using the results of $/ 10 /$, we estimate the cross section for the K_{2}° production at an angle of $\sim 100^{\circ}$ on the lead nucleus by 9 BeV protons. Assuming that all the accelerated protons interact with the target, we get $\left(\frac{d \sigma}{d \Omega}\right)_{K^{\circ}} \approx(1-2) \mathrm{mb} /$ sterad .

At the same time the corresponding cross section for the K^{+}mesons $/ 11 /$ (recalculated to the lead nucleus and to the corresponding angular Interval) was found to be $\left(\frac{d \sigma}{d \Omega}\right)=(1.5-2) \mathrm{mb} / \mathrm{K}^{+}{ }^{+}$sterad**.

[^2]If the K_{2}° beam had been weakened because of great ${ }^{\mu}$, then $\left(\frac{d \sigma}{d \Omega}\right)_{K_{0}}^{\circ}=(5 \div 10) \mathrm{mb} /$ sterad what already contradicts esssentially the data on the K^{+}-mesons.*
Thus, the assamption about a large magnetic moment seems unlikely not only in view of general considerations, but also because it leads to an anomalously great cross sections for the $\boldsymbol{K}^{\circ}\left(\tilde{K}^{\text {o }}\right)$ meson production.

In conclusion, the author expresses his gratitutde to O.A. Khrustalev for the help in the calculations and for the discussions.

Reterences

1. Ph. Eberhardt, M.Good. Phys.Rev. 120 (1442) 1960.
2. J.Brown, H.Bryant, D.Glaser et al. Phys. Rev. Lett., vol 3, (51) 1959.
3. М. Аникина, Д. Нягу, Э. Оконов, Н. Петров, А. Розанова, В Русаков. Препринт. ОИЯИ Д-785, ЖЭТФ (in print):
4. M.Good. Phys.Rev. 105 (1120) 1957.
5. Э.Оконов, М. Подгорецкии, О. Хрусталев, Препринт ОИЯИ Д-647; ЖЭТФ
6. Ван Ган-чан, Ван Цу-иэен, В. Векслер, И. Врана, Дин-Да-цао, В. Иванов, Ким Хи Ин, Е. Кладницкая, А. Куэнецов, Нгуен Дин Ты, А.Никитин, М. Соловьев, Т. Хофмокль, Чен Ли-янь.ЖЭТФ $39 / 1854 / 1860$.
7. Д. Нягу, Э. Оконов, Н. Петров, А. Розанова, В. Русаков. ЖЭТФ 40 /1618/ 61.
8. Д. Глэзер, Тр. Киевской конференции 1858 r. /стр. 251/.
9. F.Muller, R.Birge, W.Fowler, R.Good, W.Hirsch, R.Matsen, W.Poweil, O.Piccioni, H.White. Phys.Rev.Lett. 4 (418) 1960.
10. Д. Нягу, Э. Оконов, Н. Петров, А. Розанова, В. Русаков. Препринт ОИЯИ Д-794. ЖЭТФ (in print) •
11. В. Беляков, В. Глагалев, Л. Кирилова, Н. Мельникова, М. Сук, К. Толстов. Препринт ОИЯИ Р-434.
```
Received by Publlshing Department
    on July 18, 1981.
```

[^3]
[^0]: * Taking this ciroumstance into account, the authors suggested an experiment for determining the K° apin in which no other assumptions are being used but the rules of quantum mechanios and the angular momentum canservation.
 ** Here m is the spin projection along the direction of the magnetic field (the magnetic quantum number); if the $K^{\circ} \operatorname{spin} 1 \mathrm{~s} 2$, then $m=0, \pm 1, \pm 2$.
 *** In the following, this effect will be referred to as 'Good effect' for the sake of brevity.

[^1]: * The effeot of the additional "olearifying' magnet used in this experiment oan be neglected.

[^2]: * In the calculations the relative fractions of the neutral decays of K_{1}^{0} and K were aupposed to be equal what does not contradict the avalluble experimental data $/ 7,8 \%$. We also assumed that $\left|M_{1}-M_{2}\right|=0.84 \mathrm{~h} \lambda^{19 / .}$
 ** According to the statistical distributions, this estimate supposes that in the experiment described in ${ }^{\prime 11 /}$, more than a half of all the K^{+}emitted at 100° were detected.

[^3]: In fact, thit dobcrepanoy is otill greater since not all the accelerated protons interact with the target.

