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Abstract

-

The highest partial waves are taken into account in the equations for the low-energy pion-pion

scattering obtained by the differential method. It is shown that their influence is small.

The procedure of the introduction of infinite number of partial waves in the low-enerqy equations

is considered and is shown to have no sense,

~



1. - The Formulation of the Differential Method taking as an Fx’ample the Scatte_ring of

Neutral Mesons

Rec;ntly Sarker’!/ and Lovelace’?/ raised the problem of the correspondnece between the equations
' for partial waves of the low-energy pioﬁ-pion scattering obtained by the differential method/ 3,4,5/ and

those obtained by the integral method”®/. in view of the inexactitude of a n_umber of fdrr_nulations in/1.:2/

""" below we shall Investigate in detail the problem of taking into account highest partial waves {n the dif-

” ferential method and also its correspondence with the Chew-Ma_ndelstam method. -

¥ the equations for pion-pion scatteririg were obtained from the combination of the forward and

the backward dispersion relations, and /¥ the information from the first derivatives with respect to
the momentum transfer was also taken into consideration. Therefore, in_/ 3/ one took irito account the

real parts of only S- and' P- waves while in/4/ one took into account d- and f- waves too,

We s}iall study the problem of taking into account an ever-increasing number of partial waves includ-

ing the limiting case of irfinite number of these waves, -

- v

First, we write down formulae which express the lowest partial waves fl- in terms of the values of

' the function f ( ¢) and its derivatives at the points ¢ =4 1, These formulae have a diffex;ent form de-

‘ pending on the number of harmontcs which approximate the function f(c).

“In the lowest approximation, restricting ourselves to the s- and p- waves

f(c)= f + 3¢ II

»v"we have ° ) _ : I
o *“(“2 s .
f o 1) - 11 - , , '
1 o 6 - . ' ( 1.2 )

In the following approximation which takes into account d- and f- waves also

flc)sf + 3cf1 +5/2(3c2_—1)’f2+ 7/2 (5c3 -3¢c) G
Ne get
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" Finally to the limiting case

- f(c)=% (2n+1) fn I: (c)
h=0
there correspond the formulae

ey § Lo
.0 Ta=p (n+1)!

o (!
(e § Ln-0" (™
r n=0 (n+2)!
G-t 3 on8) [ (V4 (o O ) (1:3)

n=0 (n+3)!

af

which express the partial waves of the function f( ¢) in tetms of the infinite set of its derivatives at

the points c=¢+ I.

The expressions ( 1.3) can be formally obtained by means of the repeated integration by parts of
integrals determining partial waves. The convergence of the series of the type (1. 3 ) is defined by
the slngulurft'ies of the function f({ c) in the complex plane of the varidble' ¢. Somewhat further (8§ 3)

we shall consider this problem for the case of the picn-pion scattering. -

Note here that the transition from ( 1.}) to (1.2) and from ( 1.2) té (1.3) does not reduce to
the addition of terms with highest derivatives but also to the change of coefficients in the already avai-

lable terms.

The formulas of the type ( 1.1} -( 1.3 ) will be appllied to the séatteﬂnq amplitude specified by the
spectral representation with respect to the momentum or energy variable for a fixed value of the cosine

of the scattering angle c. For the neutral meson scattering amplitude the representation is of'the(form



A(v,c)= 1/,,fImA§v L) +1/,,f ImA(v'cy) dv+l/7rf__L_A_(V_;.9.J_dv

vi—p - s l+v’+ 1;0, 1+v’sp IEC

.(1.4)

" Here the first integral describes the physical cut from the first reaction whose squared energy is

s=4(v+1), the second one describes the crossing reaction with the squared energy u=~2v( 1 +¢)

and the third integral - the crossing reaction with the squared energy ¢ =— 2y (1~ c), where
c = 2+3v'=c2tv) c. =_2+3v7+c(2+v)) -, (1;5)
+ v’ (l+c) - :

v{(l~c)
From ( 1.5) it is seen that

ci__l(v',~c=_4_-‘l )=+1, c'.$ (vic=+1) =0,

Therefore, in the limiting cases ¢ =+'1 the numerator of one of the crossing integrals corresponds

to the forward (or backward) scattering, while the second one contains an unphysical infinite cosine.

In the Chew-Mandelstam scheme as well as in the Cini-Fubini representatlon/ 8/ the furictions

ImA( v) ;) are approximated by the S- waves in the whole interval — 1 <e< 1, le
up to infinitly large values of the cosines c+ After the 1ntegratlon over ¢ has been made by perform-

ing the aforementioned approximation we obtcln the Chew-Mcndelstcm equation for the neutml model
(comp /A 8 9/ ) '

Ao(v) =V/n [ dv’  Im Ay (") =2/ [ dv’ Im Ag(v”) ta(l——v ). (L6
) ° : l+v +v

Hence it is cleal: once more that in the Chew-Mandelstam and Cini-Fubini methods one uses the

analytical continuation by means of the first term of the Legendre expcmslon into a region where this

series does not exist.

We obtain now an equation for the S- wave by means of the dlfferentlal approximation, By inserting

( 1.4) in the first formula of ( 1.1 ) and approximating Im A (v +;1) by the S- wave, we have

Ao(v)=1/n}°dv'( 1+ 1 )Ima ) +a (1.7)
o p -y l+v’+v




where

a=1/n f dv’ ImA(v,eo)+ Im A(V', - ) . (1.8)
1+v’ 2

Let us show that for the solution of Eq. { 1.7 ) to exist, it is necessary to put a =0. For this purpose
by making in ( 1,7 ) one subtraction, we reduce it to the form { 2.5 )/ 4 . Repeating then the reasoning of
§ 2/ 7/ , we find that Im A (e )'=-O from where the account of the unitarity condition

2
ImA.(v) =y | Aos(v) | v >0 (1.9)
, v+l
it follows that -
Re Ao (00) =0-

In other words Eq. { 1.7') has a solution only for
a=0. - (1.10)

Let us notice now that the quantity a is a high-energy contribution. Indeed, for example, the third
integral in { 1.4 ) corresponds to the part of the line ¢ =1 —~ ¢ =-const from — oo to the point a( ¢ )
with the coordinates ¢=4, v =~2/¢ which goes to infinity for € - 0. The first term of the right hand
side of { 1.8 ), being the limit of this integral for ¢ =1, represents, therefore, a high-energy contribu-
tion. ;The same concerns the second integral in (> 1.4) for c¢=-:1 and the second term in ( 1.8 ) . Thus,
a isa cbnt’ribution from the high-energy region which lies beyond the threshold of any state with finite

mass. It Is clear therefore, that the quantity a can be safely neglected since we omitted all the interme-

diate states starting with the four-meson one.

We pass now to the second approximation described by the formulae ( 1.2 ). By approximating

Im A (v, + 1) by the S- waves and neglecting high-energy contributions of the kind of a ? +:8v,, we
obtain from the first equation ( 1,2).

AW =1n fdvimA N[ v 1 (- v 1. (L)
: o ) vi-v vi+v+l 6(v +v+1) -
It is interesting to investigate the asymptotics (1.11) coincide with that of Eq. { 1.7) for a =0

Re AcW)~_7b __ b= 1Y
n v

since




- Hence it follows that the account of the. d- wave in the real part of the scattering amplitude changes

ohly slightly the logarithmic branch of the neutral model solution { 1.7 )

" We now turn to the limiting case ( 1.3 ). By omitting the power serfes in v  with *high-energy coef-

ficients ‘we obtudn for the s- waves

A(v)=1/n f__dL'__ ImA,(v?) +
° plioy
+1/n fdv’»lm A, vy 2/v e 1/n (.,______v )
‘ n=1 2(;[+v’+u)

" The sum in the crossing integral can be combined into

A, W =Vn [ ,d"’ Im A, (v") =2/nv [ dv’ - Im A, (v”) ﬂn(l-—z_(._,__"_ﬁ), {1.13)
ov’ w ° vitu+

It ts not dffﬁcult to see that Eq. ( 1.13) allows the logarithmic asymptotics ( 1.12 ).

It 1s important to note that Eq. { 1.13 ) differs essentially from the Chew-Mandelstam Eq. ( 1.6 ) which
ppsSesses a logarithmic asymptotics of the form ( 1,12) for b =1/3 .

o~

From the aforeasaid follows the disprovment' of Scrker's/statemer;t/ 1/ . His conclusion that equation of
the type ( 1.7 ) ( 1.}1 ) can be obtained from ( 1.8 ) by expandinq the logarithm is based on an insufficient-

ly accurate study of the numerical coefficients of the corrésbonding series.

o Let us consider the influence of the highest waves in the imaginary part of the scattering amplitude
on the s- wave, With this aim we repeat the arguments by taking into consideration { with the aid of the
formulas ( 1,2 ) with s- and d- waves in the real as well as in the imaginary parts of the scattering amp-
litude., Pefrorming the calculations with omitting the ‘high-energy terms! and the differentidtiox;x formu-
las -

6c+ I = 8c_‘ I ’
dc =1 dec - c=.-1 . (1.14)

We obtain the system of equations for s- and d- waves




Ag (1) =1/x F Im 4 (v") 4,7 +1/,,f dv’  (1+__v¥ ) (Im A, (v))+51m A ,(v*)) +
o ylievy o 1+v'+y 6(v+v+1)

10 7 dv’ 1+v’ »
+
5:—d o e mA) (L15)

4. =1/r f_’ﬂ_A_z_(_V.LiL'__ 1/nf°_d_ﬂ1_+v_’)_ ImA,(v) -

0 viey o V+viey)
- dv’  (Im Ao(v)+5Im A (v’
307 of(1+v'+v)2 o o o Z(V 1) (1.16)

Fromr ( 1.18 ) it follows that the logarithmic asymptotics of the function A2 is determined by a crossing

integral which contains Ao and is of the form

=g

Re A, (v) =~ 1 i Im Ay, (V)=

1
Tty T, (1.17)

Due to this fact the term containing Im A2 in the crossing integral ( 1.17 ) for large v  behaves
as In"3y and does not change the asymptotics ( 1,12 ) of the s-wave. Hence, two important conclusions
follow: . » '
a) When ‘t'ﬁkinq into account highest pgrtial waves the approximations in the real and imaginary parts
of the scattering amplitude should be consistent. So, the approximation which follows (1.11) is an
approximation when together ReA with one takes into account Im A2 too. Eq. ( 1.13) does not therefo-;

re improve the accuracy in comparison with ( 1,11 ).

b) The ldgarithmic asymptotics ( 1,12 ) does not change when takirg into account highest waves in

the real as well as {n the imaginary part of the scattering amplitude,

As it will be clear from below the conclusion ( @) is a special property of the neutral model and is
due to the absence of the p- wave. In the following it will be shown that in the case of the scattering
of charged mesons the coefficient of the logarithmic asymptotic¢s changes, however, this ‘change is insig ~'

nificant.



2. Scattering of Charged Pions

We turn to the real case of the scattering of charged pions. The formulae ( 1.1 ), (1.2) wil be ap-

plied to the functions

2
A°=3A+B+C, Al=p_cCc, 4A°-B+cC,

" 'specified by the representations

A ' A | c
[B](v,c) l/rrf d” Im[B](v c)+1/nf dv” Im[B)(v5c, )+
l+v’4y T+c ) A +
) B “(2.1)
*Un f— B mm (A (ve ).
1 +v'+v._1_,'°_’ c
The cosines of the crossing reactions c+Aand ¢_, are determined {n ( 1.5 ).

The most simple equations for s- and p- waves ( see”3:5/ )} can be obtclned from ( 2.1 ) by means

of the formulge (1.1}, Restricting ourselves in the amplitudes AJ only to s~ and p- waves
A°(v,c)_.A°(v)-A°(V) Al (y,c)...3cA;(v)530A1(v)
' -~ s (2.2)

) Az( v, c)._Az(v) A (V)
with account et the inverse relations

A (v,21) = Ao-42 B(v,:z)a»_ézf—zéﬁx_; C(v,il)wﬁ?iiz_

~we get successively from (2.2) omitting high-energy constants of the type ( 1.8)

A )=A(,~1)=1/g f dy’ Im A (v ) —Im Ax(v?) +
o vVi—v 3.
+1/n f dy’ Im Ax(v’) - al&‘!m
o Itv+ v’ 2
B(v,1)=1/ £ odv’ Im A () +8Im A (v ) + ,
14 ) ”! V""v 2 . (2.3)
+1/ﬂ' }o dy’ - Im AQ(V’) +:3 Im AI(V’) = C (V, _1) \

O.plap4l - 2
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oc

B(v,-1)=C(y 1)=1/n | dv’ ImAy(v’) ~8Im Ay (v’) & )
' . ° vi-w 2 (2.3)
=1/ 29 dv’ ImA(v) =Im A, ¢ v) .
8 l+v'+vy 3

Golng on to the partial waves we obtain the equations

4, () ﬁ-i/".o}oﬁ'—fj"_%?—— dv’+1/m ; 1+f:iv:) Y
where ) =Im A, ) + 0 ()
$(v)=2m A, () +9Im 4 (v)=5lm. A () (2.5)
=-1/3 2T

with an additional threshold condition on the p- wave
- A;(0) =0, {2.6)
following from the crdssing symmetry property

B (s, u, t)=C(stu),

Egs. { 2.4 ) have been studied in detail in/ S/, here, in particular, it has been established the exis-
’ /2/)

tence of the logarithmic branch of solutions with the asymptotic behaviour ( see also
A (v) = _di; d =213; d=0118 d_=0640. 2.7
! lnv 1 2 ’

We go on now to the next approximation which takes into account ‘d- and f- waves in the real part

of the amplitudes.

Calculatinig the derivatives by means of the relations ( 1.16 ) and

dIm Alv,c) o, _OIlmB(vc) 9ImC(vec) =3/21ImA (v
dc dc . dc

we find

oc

' = ¢ | _.  d’V' ImAq,(v)-3Im A;v")
A y =A y - = v/2 B 2 1
(V 1) (v 1) Il(v) / ”f(l.{l’ly) . 2
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) ’ cody’ Im A(v)+3Im A,(1v)
( - -1) = -v/2 2 >
B 1) ==C w-1) Il (V), v/ '”c>f(1+v+u')l2 92
(2.8)
b ] oo , ' »
=B (v,-1)=v/2 dy’. ImAo —Im Ax(v)
LY (v ) V/”of (T+y’51)2. .3 ’
where the following notation is used
1 (V)=3/2% | dy’. v+l Im Al(v’). (2.9)
1 o l+v+y” v’ :
By inserting ( 2.3) and ( 2.8 ) into ( 1.2 ), we obtain
T dy’ Zodyt v ’ ¢
A =1 " Im Alv)+1/ (1+ YE (b)=2/3 1 ()
_ o (v) /n of y -y & ”£1+v'+v) 6(v'+v+1) 0 1
(2.10)
1w [ dv’ Y +6/5 T dv’ (1 v Y (b)+1/151
a,(v) 1/rr.°fv,_# Im A,") +6/5x £(1+v'+v) BT e T e : W
A W=l/nf_ D" ;oA W) 41/ef_dv (14 vt (b +1/81 (v).
2 of vy 2 of1+v'+v 6( v+v+l) 2 1 :

The function f; entering here are determined in ( 2.5 ).

Egs. { 2.10) are analogous to Egs. { 21 }-( 23) from pcper/ 4{. However, there is one essential dif-
ference. The fact is that Egs. { 21 )-(23 ) contain terms of the type
[ __dp (v)
rd A »
[ —— I 4,07, (2.1)
which do not depend on v and do not vanish in the interval of large v's. Eqgs. { 2.1 }( 2.3 ) can not
therefore be satisfied by the logarithmic asymptotics and, consequently, have no  solutions. This remark

does not concern the subtracted Eqs. { 25 ) - 27 )/ £ , which are therefore not equivalent to the non-
subtracted Eqgs. ( 21) - ( 23 ).

The presence of the terms ( 2.11 ) in the Ho, Chang and Zollner equations is explained by the fact
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that these authors have started not from dispersion relations with the fixed cosine ¢ of the type.( 1.4),
_but from dispersion relations with the fixed t, which for t #£0 contain unphysical low-energy contribu-
tions from regions in which the cosine of the scatteting cngie changes In the limits 1g'/ ¢/< e, We in-

vestigate the logarithmic asymptotics of the system ( 2.10 ). :

Assuming ’ A; (V) o .—g—%n—_;_— 5 . S (2.12)
. i .

we get from (.2.10) the system of equations for the coefficients

2 ) 2 :
ndi-di:-f % 9y (2.13)
where

/3 -4  5/3

O = ‘ -2/.15 7710 1/3 . | (2.14)
1/3 2 1/6
This system has «a single non-trivial solution
dO = 2,13, dl =-:0,137, d2 = 0,653: (2‘15)

which recently was found by Lovelcfze/ 2/ :';A remarkable property of this solution is its proximity to
( 2.7 ). From the comparison of numerical coefficients it is seen, that the log_cn‘ithmic asymptotics turn out
to be rather stable with respect. to taking into account of d and f - waves. It is interesting to consider the
influence of the real parts of highest waves on the asymptotics. We study at once the limiting case of ta-

kirg into account all waves by using the formulae ( 1.3 ). In the equations for partial waves written down -

below only terms which contribute to the logarithmic asymptotics ‘are retained

il

00

A =1/ [V dm Ac(p) ) m [ v fo(v) —4(An2-0)1 (v)

o V=V l+v+y’.
. o0 I » et d [ , - )
AI(v)—l/ﬂéf%_lm Ayv) ¥8/2n [ X () +(3-4tn2) I} (v)

(2.16)



N ’ Y+1 fv) +2(20n2-1)1, (v)./ 2,16/
Az(v)=1/ﬂ_°(__v_’_5_v._ Im A,(v)+: /"£1+u+u

To these equations there corresponds the matrix
1/3 -3(4tn2-1) 5/3

o = -1/6  21/4(1-24tn2) 5/12

ik a (2.17)
1/3 3/4(4#n2-1) 1/6

and, respectively, the asymptotic coefficients

dy= 215, dl =-.0,167, d2 = 0,667 . (2.18)

Comparing the numerical coefficients of ( 2.18 ) with those of ( 2.15) and ( 2,7 ) we see that the
logarlthnﬁc asymtotics of the pﬁrtlal wave equations obtained by differential method reduces very ra-
pidly to its limit ( 2,38 ). In considering more agcuratély the real part of the scattering amplitude we see
also that the equations of the differential method do not turﬁ into the corresponding Chew-Mandelstam

. equations.

3. Problem of the Account of Iligh-Energy Partial Waves

Fs
v

We discuss the significance of the results obtained. In constructing the low-energy scheme we have
to deal with two approximations. It is, on the one hand, an elastic approximation in the unitarity condi-
tion. On the other hand, it is a restriction to lowest partial scattering waves. The second approximation
touches upon the real as well as imagirary parts of the scattering amplitude; it may therefore be perfor- .
med in different ways. As has been shown in §1, the approximation in Re A and Im A should be ’self-

- consistent’. The account of Re A 4mcxkes no sence, without iritroducing Im A2. ,

The Chew-Mandelstam equations/ 6/ are an example of the unstable scheme. In these equations appro-
ximations in Re A were not made while Im A is approximated by the s- an-clm'p;-‘. waves, The Chew-Man:
delstam equations do not allow, therefore, to introduce into Im A even d- and i- waves, and, appa-

rently/2l 10/ have no solutions.

It is appropriate to raise the question of the improvement of the equations such as (2.4), (2.10 )
owing to taking into account more and more high partial waves in thé scatteririg amplitude by means. of for-
“mulae such as ( 1.3 ). Here the temptation can arise to take into account an infinite number of partial

waves, or what {s equivalen‘ an infinite number of terms in the sums (1.3) for the real and imaginary
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parts of the scattering amplitudes and to obtain in such a way texact! equations which do not contain

highest pcxrﬂcx'l waves neqlected.
Such an ‘improvement’ , however, has no sence for two different reasons.

The ﬁr’sf reason is that in the region of not too low ener gles where highest \wav’es can turn out to be:

- important, contributions from inelastic processes which were neglected by us play an essentidl role.

" If we assume, however, that for some reason the contributions from inelastic processes are small in
their absolute mqqniiude,‘ or what is equivalent, we consider the model in which the inelastic processes
are forbtdden. Even ini this'case the indicated ‘improvement’ can not-be made because of the presence of
spectral function;s. We explain this fact taking as an example the s- wave, We notice that the first for-
mula of ( 1. 3') may be considered as a result of integration ovef c of the two Tdqur series for the’
function- f(c ) inpoints c¢=+ 1 andc= a1 . In this case the Taylor serles at the poiﬁt C ==l
is integrated in the irterval ( —-1,0 } and the series at the poiit ¢ =1 in the' interval ( 0,} ). Thus, in
otder‘that the sums ( 1.3) rhay exist 1t 1s necessary that the reglon of the convergencezo“f‘ the two Tay-

lor’s series cover entirely the physical interval ( —1,1' ).

This requirement is fulfilled for any v >0 for the function specified by the spectral representation

-.of the kind ( 1.4 ), provided that the nume’rctor.s of Integrals have no singularities with respect to ¢

(l.e. that the‘spectfcl functions are absent), and provided that the polinoms with respect to v .with
high energy coefficients of the type { 1.8 ) are omitted. These two conditions lead to the fact that, for
example, the second integral in ( 1.4‘)' is éxpcnded in the Taylor’s, series only near the point ¢ =+ 1

the slnquldritiéé with respect to ¢ being specified by its numerator.‘_

The situation changes essentially in taking into account spectral functlo’ns. Then the analiticity re-
glon is defined by the L.ehmann ellipsis and, as is easi.ll'y seen, the series (1.3) for the real part of

the amplitude diverges in the reglon v >'2

However, for this conditions too, the finite sum of terms from ( 1.3} can give a good approximation.

Integrating by bdrts N times we obtain for the s< wave the following gxbresslon

+I N-Z n) n (n)
fo=1Y% [dcf(c) =1 3 [( (-1)+(-) £ ~(-1) +
o1 n=0 (n+1)! .
: | - (3.1)
(‘I)N +1 (N) N

+ ff (o) ¢ de «

2 N/,
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Assuming that {n the energy reglon, we are interested highest partial waves starting with fm are

small we may omitin(3.1) @ remaining term for N =m and get expressions of the type ( 1.1, ( 1.2).

Hence, it follows that the scheme which takes into account a small number of lowest partial waves
can give a good approximation in the low-energy recjioh. Taking into account of an infinite number of
terms in the sums( 1.3 ), on the one hand does not improve really the accuracy because of the presence

t of Inelastic processes and, on the other hand, it is impossible mathematically because of the pre- \

sence of spectral functions. In this case the series { 1.3 ) should be considered as asymptotics.

To 111u§trate this thesis we consider one more scheme of the 'succesive_cccount of partial waves.

We shall expand the second integral in ( 1.4 ) near the point ¢ =+ 1 and the third one - near the point
c=-:1 and use these expansions along the hole interval (+ 1, — 1), instead of omittirg high-
energy coefficients. In this case the imaginary parts are approximated by the s- and p- waves ( we im-
ply the scattering of charged mesons . If we shall go on to an infinite number of terms then non- subtrac-
ted equations will not exist since the imaginary parts of crossing integrals have a pole with respect to
c atthepoint c¢=4+lor c=8 ~1 due to the presence of the p- wave..One subtraction leads exact-

ly to the Chew-Mandelstam equations and to all mathematical complicatidns/ 10/ , connected with them.

The difficulty connected with spectral functions can be partially rexﬁoved by taking into account the
elastic two - particle part of spectral functions. So, we arrive at the program of ‘the strip approximation’
of Chew and F rcutschi/ 11/ . However, unlike these authors, we expect that the account of the spectral
functions in the elastic strips changes only slightly the low-énergy approximation. On the contrary, the
behaviour of the scattering amplitude in the high-ener gy region and small momentum transfers may turn

out to be completely determined by the low-energy scattering properties. Such a perspective seems to

be especially probable in the light of the recentvresults of the paper/ 12/ .

The authors are grateful to D.I. Blokhintsev, N.N, Bogolubov, J. Wolf, V.A. Meshcheryakov, Y. Fi-
scher and also to the participants of the Conference on the application of di_s_persion relations { Novo-

sibirsk, Institute of Mathematics of the Siberian Department of the Academy of éé‘iences of USSR, Septem-
ber 1961 ) for the useful discussicns.
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