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Abstract 

The highest partial waves are taken into account in the equations for the low-energy pion-pion 

scattering obtained by the differential method. It is shown that their influence is small. 

The procedure of the introduction of infinite number of partial waves in the low-energy equations 

is considered and is shown to have no sense. 

·' 



1. · The Formulation of the Differential Method taking as an Fxample the Scattering of 

Neutral Mesoris 

Rec~ntly Sarkelll and Lovelace/2/ raised the problem ~f the correspondnece between the equations 

. . . 1 h' d/3 4 51 · for partial waves of the low-energy pion-pion scattering obtained by the differentia met o ' ' and 

those obtained by the integral method/51. rn view of the inexactitude of a number of formulations in/1,2/ 
·, 

below we shall investigate in detail the problem of taking into account highest partial waves in the dif­

ferential method and also its correspondence with the Chew-Mandelstam method. · 

I/31 the ec:zuaUons for pion~pion scattering were o-btained from the combination of the forward and 

the backward dispersion relations, and in/4/ the information from the first derivatives with respect to 

the momentum transfer was also taken into consideration. Therefore, in/3/ one took irito account the 

real parts of only S- and P- waves while in/4/ one took into account d- and f- waves too. 

We shall study the problem of taking into account an ever-increasing number of partial waves includ-

ing the limiting case of infinite- number of these waves. •· 

First, we write down formulae which express the lowest partial waves /. in terms of the value·s of 
I 

the function f( c) and its derivatives at the points c =·± 1 • :These formulae have a different form de-

pending on the number of harmonics which approximate the function f(c). 

In the lowest approximation, restricting ourselves to the s- and p- waves 

we have· 

f = t(J) + f(-1) 
0 2 

f = 1(1) - f(-1) 
1 6 

In the following approximation which takes into account d- and f- waves also 

Ne get 
f(c)sfo+3cf +5/2(Jc2-1)f + 712 (Sc3-3c) f 

1 . 2 3 

f 
0 

/(llt 1(-11 
2 

1'(1) ~f'(-1) 

6 

( 1.1 ) 

( 1.2) 
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' 

•' 

4 

I • 1(1) • 1(·1) _ 1'(1) + 1'(·1) 
1 5 30 

12 • I'W - N:lJ_ 
30 

I _ 1(1) - 1(-1) 
3- ?0" 

+ I'( l) + 1'(·1) 
?0 

Finally to the limiting case 

there correspond the formulae 

00 

. f(c)•I (2n + 1) 
, .. 0 

I P (c) 
n n 

00 I") II I") I .. ~ I. (·1)+(-J (1) 
· 0 n=O (n + 1) 1 

1z = -~ i: 
n .. o 

(n) 11 (n) 
f f-11- f·l I f1l 

(n + 2)! 

00 

1
2 

= -~ }'. n(n+5 J [ 1("~·1) + (-J" /") (1) ] 
, n=O (n+3)! 

.• 

(1.3) 

whiCh express the partial waves of the function f (c) in terms of the infinite set of its derivatives at 

the points c .. ·± 1. 

The expressions ( 1.3) can be formally obtained by means of the repeated integration by parts of 

integrals determining partial waves. The convergence of the series of the type ( 1; 3 ) is defined by 

the singularities of the function I (c) in the complex plane of the variable· c. Somewhat further ( § 3) 

we shall consider this problem for the case of the pidn-pion scattering. · 

Note here that the transition from ( 1.~ ) to ( 1.2) and from ( 1.2) to ( 1.3) does not reduce to 

the addition of terms with highest derivatives but also to the change of coefficients in the already avai­

lable terms; 

The formulas of the type ( 1. ~ ) - ( 1.3 ) will be applied to the scattering amplitude specified by the 

spectral representation with respect to the momentum or energy variable for a fixed value of the cosine 

of the scattering angle c. For the neutral meson scattering amplitude the representation is oftheform 
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00 "" "" A (v, c) =1/lr f lm 1 (v ',c) 
o v -·v 

+1/11 f lmA(v','*) 
o 1+v'+ 1+c 

dv'+1/1Tf lmA(v',·c-1 dv' 
o l+v'+v .1.±.£_ 

2 2 

(1.4} 

Here the first integral describes the physical cut from the first reaction whose squared energy is 

s = 4 ( v + :1 }, the second one describes the crossing reaction with the squared energy U=-2v ( 1 +·c} 

and the third integral - the crossing reaction with the squared energy t = - 2 v ( 1 - c ), where 

c = 2+3v'-·c(2+v') 
+ v'(l+ c) 

From ( 1.5 ) it is seen that 

c = ---'2=-'-+-'-'3'-'v::...'--'+'-"'-c-'-(-"'2-'-+-"-v-'t...) _ 
v'(l.:.. c) 

c:r (v~c=±,l )=oo, 

(1.5} 

Therefore, in the limiting cases c =·±;1 the numerator of one of the crossing integrals corresponds 

to the forward (or backward) scattering, while the secot.d one contains an unphysical infinite cosine. 

In the Chew-Mandelstam scheme as well as in the Cini-Fubini representation/8/ the functions 

lm A ( v; C±) are approximated by the S- waves in the whole interval - 1 ~ c ~ 1, i.e. 
up to infinitly large values of the cosines c After the integration over c has been made by perform-+ , . 
ing the aforementioned approximation we obf;fn the Chew-Mandelstam equation for the neutral model 
(comp/8,9/) 

00 00 

Ao(v) =1/lr f cjv' lmA0 (v')-,2/rrvfdv'lmAo(v'}fn(1- v ), (1.6) 
ov-v o 1+v+·v' 

Hence it is clear once more that in the Chew-Mandelstam and Cini-Fubini methods one uses the 

analytiCal continuation by means of the first term of the Legendre expansion into a region where this 

series does not exist. 

We obtain now an equation for the S- wave by means of the differential approximation. By inserting 

( 1.4) in the first formula of ( 1,} ) and approximating lm A ( 'J±;1) by the S- wave, we have 

N 

Ao(v) = 1/rr f dv'( __ 1_ + 
0 

1 ) lm A
0
(v') +a 

1 + v' + v 
(1.7) 

.. 
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where 

a-=1/IT f dv' 

1~' 
lmA(v~oo)+ lm A(v>oo) 

2 
(1.8) 

Let us show that for the solution of Eq. ( 1. 7 ) to exist, it is necessary to put a "' 0. For this purpose 

by making in ( 1.7) one subtraction, we reduce it to the form ( 2.5 )17/, Repeating then the reasoning of 

§ 2171, we find that lw A (oo )"'·0 from where the account of the unitarity condition 

it follows that 

2 
lm Ao (v) "'y::E I Ao(ll) I 

11+1 

Re Ao (oo) :: 0 . 

In other words Eq. ( 1. 7 ) has a solution only for 

a :: 0 • 

II ~ 0 (1.9) 

(1.10) 

Let us notice now that the quantity a is a high-energy contribution. Indeed, for example, the third 

integral in ( 1.4) corresponds to the part of the line c ,.1 - £ "'·const from- oo to the point a ( £ ) 

with the coordinates t ,.4, 11: -2/! which goes to infinity for ! .... 0. The first term of the right hand 

side of ( 1.8 ), being the }imit of this integral for c"' 1, represents, therefore, a high-energy contribu­

tion. The same concerns the second integral in ( 1.4) for c , __ ,1 and the second term in ( 1.8) . Thus, 

a is a contribution from the high-energy region which lies beyond the threshold of any state with finite 

mass. It is clear therefore, that the quantity a can be safely neglected since we omitted all the interme­

diate states starting with the four-meson on~. 

We pass now to the second approximation described by the formulae ( 1.2 ), By approximating 

lm A (11, ±,1 ) by the S- waves and neglecting high-energy contributions .of the kind of a '+ .{311, we 

obtain from the first equation ( 1.2 ). 

· A 0 (II)"' 1/IT j d11'lm A0 (II') [ 1 + 1 ( 1- v ) ]. (1.11) 
o v'-v v'+v+1 6(v'+ll+1) 

It is interesting to investigate the asymptotics ( 1.11 ) coincide with that of Eq. { l. 7 ) for a "' 0 

since 

Re Ao (v) "' IT b 
~ 

JJ _E_ _! 
allfnll 

b: '12 

1 

fn 2 v 
.. 



7 

· Hence it follows that the account of the. d- wave in the real part of the scattering amplitude changes 

only slightly the logarithmic branch of the neutral model solution ( l. 7 ), • 

We now turn to the limiting case ( 1.3 ), By omitting the power series in v with 'high-energy coef­

ficients 'we obtain for the s~ waves 

00 

f\,(v) =lltr J dv' 
o v' _,v 

00 

+:1/tr J dv'lm A
0 

(v') 2/v I 1/n ( 
n=l 

The sum in the crossing integral can be combined into 

ll 

2(l+Ji'+v) 

It is not difficult to see that Eq. ( 1.13) allows the logarithmic asymptotics ( 1.}2 ). 

. It is important to note that Eq, ( 1.13 ) differs essentially from the Chew-Mandelstam Eq. ( 1.6 ) which 

possesses a logarithmiC asymptotics of the form ( 1.~2) for b =.113 • .. 
From the aforeasaid follows the disprovment of Sarker's-·stateme~t/1 1. His conclusion that equation of 

the type ( l. 7 ) ( 1.11 ) can be obtained from ( 1.6 ) by expanding the logarithm is based on an insuffiCient­

ly accurate study of the numerical coefficients of the corresponding series • 

. Let us consider the influence of the highest waves in the imaginary part of the scattering amplitude 

on the s- wave. With this aim we repeat the arguments by taking into consideration ( with the aid of the 

formulas ( 1.2 ) with s- and d- waves in the real as well as iri the imaginary parts of the scattering amp-

litude. Pefrorming the calculations with omitting the 'high-energy 

las 

a c 

ac 
I = 
e=l 

a c 

ac 
I =-~ 
e=. -1 v' 

we obtain the system of equations for s- and d- waves 

terms' and the differentiation formu-

( 1.14) 
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"" "" A 0 (v) .. -l/wi lmAo(v')dv'+1/wf dv' (1+ 
0 v,' _, v 0' 1 + :v, + v 

_v __ ) ( lm A
0 

(v')+Slm A
2

( v')) + 
6( v'+v+1) 

+~joo ~'_ 
3~r l+ll'+v 

1 + 11 ' lm A ( v ') 
---,~ 2 

II 

"" "" A (II) =1/w I 
2 

Ia AzC11') dv'· -1/17' I 
v'-•v 

dv'0+11') 
II '(l + V '+II) 0 0 

00 

( 1.15) 

lm A
2

(11') -

.!:____ I d Jl' 2 ( lm A o ( 11 ') + Slm A
2 

( 11 ') ) ~· 
!(), (1 ... ,' ...... \ - (1.16) 

0 

Frorr ( 1.18) it follows that the logarithmic asymptotics of the function A2 is determined by a crossing 

integral which contains A and is of the form 
0 ' 

,, 

Re A2 ( v) "'-~ ; lm A2 (II)"'~ 
t n~11 

(1.17) 

Due to this fact the term containing Im A2 in the crossing integral ( l. }7 ) for large 11 behaves 

as ln-311 and does not change the asymptotics ( 1.12) of the s-wave. Hence, two important conclusions 

follow: 

a) When taking into account highest partial waves the approximations in the real and imaginary parts 

of the scattering amplitude should be consistent. So, the approximation which follows (1.11) is an 

approximation when together ReA, with one takes irito account Im A2 to.o. Eq. ( 1.113) does not therefo-, 

re improve the accuracy in comparison with ( l.U ), 

b) The logarithmic asymptotics ( 1.112) does not change when taking irito account highest waves in 

the real as well as in the imaginary part of the scattering amplitude. 

As it. will be clear from below the conclusion ( a ) is a special property of the neutral model and is 

due to the absence of the p- wave. In the following it will be shown that in the case of the scattering 

of charged mesons the coeffiCient of the logarithmic asymptotics changes, however, this 'change is insiq -· 

nificant. 
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2. Scattering of Charged Pions 

We turn to the real case of the scattering of charged pions. The formulae ( 1.1 ), ( 1.2) will be ap­
plied to the functions 

A 0 -=·3A + B + C, 

specified by the representations 

2 
A "'B+ C, 

A 

[ B ] (v, c) =1/tr f 
c 

A C 
lm[B ](v'c) +1/tr f dv' lm[BJ(v~c+) + 

c 1+J.I'+J.I 1 +c . A · 
2 

B 
+1/tr f dv' lm [ A ] ( v~ c _) , 

1 +v'+v 1-c C ---r-. 

The cosines of the crossing reactions c .and c are determined in ( 1.5 ). + _, 

(2.1) 

The most simple equations fo~ s- and p- waves ( see/3,51) can be obtained from ( 2.1 ) by means 

of the formulae ( l.l! ). Restricting ourselves iri the amplitudes A1 only to. s- and o- waves 

A
0
(v c) "'A 0(v)~A (v) AI(v,c)s3cAI(v)E!3cA (v) '-o -o I I 

•• (2.2) 
A

2
( v,c)=:·A~(v) e A

2
(v) 

with account of the iriverse relations 

A ( v, ± 1) = Ao- A2 
3 .c (v,_:!: 1)=· A,+ 3A r 

2 

we get successively from ( 2.2 ) omitting high-energy constants of the tyPe ( 1.8 ) 

00 

A(v,1)"'A(Y,-1)==1/w f ~v' 

"" + 1/17 J · dv' 
0 1 +v+ v' 

00 • d ' 
B ( 11, 1) =1/tr f __ v_ , 

o v -v 

0 v -v 

2 

lm A2(v')+3/m A 1(v') 
2 

+ 

+ 

~ C (v, -1) 

(2.3) 



10 

B (II, -1) =C (v, 1) =l/7T T dv' lmA2(v') -Blm Ar(v') + 
o v'-v 2 

=l/7T [oo ~- lm Ao( v') -lm A 2 ( 11') 
· l+v'+ll 3 

Going on to the particil waves we obtain the equations 
00 00 

A ( 11 ) = 1/" f lm A i ( v ') 
I . , . 

o II -'II 
d11'+l/~r [·· l+lltv', 

fi (J) 

where f i (v) = Im:·A i _(II) + e i ¢ ( v) 

¢(v)=2Im A (v) +9lm A (v)-Slm A (v) 
0 1 2 

eo=-113 e =-1118 
1 

e =1/6 
2 

with an additional threshold condition on the p- wave 

A1 (0)=01 

following from the crossing symmetry property 

B ( s, !1• t) -= · C ( s, t, u) • 

d11' (2.4) 

(2.5) 

(2.6) 

( 2.3) 

Eqs. ( 2.4 ) have been studied in detail in/51. There, in particular, it has been established the exis­

tence of the logarithmic branch of solutions with the asymptotic behaviour ( see als/
2
1) 

A. (II) .. ~; d
0 

= 2,13; d =·0,118; 
I en II 1 

d =· 0,640. 
2 

(2.7) 

We go on now to the next approximation which takes into account d- and f- waves in the real part 

of the amplitudes. 

Calculating the derivatives by means of the relations ( 1. }6 ) and 

we find 

a lm A ( 11, c ) - o a lm B (v, c), 
ac ! ac 

aim C(v,c) =3/2 lm A
1

(11) 
ac 

J I oo , 

A ( 11, 1) = A ( 11, -1) = 1
1 

( 11) -v/211' f dv . 
o (l+ll'+v)2 

lm A 2 ( 11') -a lm A r(v') 
2 
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00 t , d , 
B \11, 1) =-C ~~~. -1) =-1 (II) -v/2rr f (l 11 ') 2 1 . o +V+II ' 

c' (11,1) =-·n' (11, -1)=11/2rr r _d_ll~ 
o 0+11'+~ 

where the following notation is used 
00 

I (II) =3/2rr f dv' 
1 o 1+-v+ll' 

11' + 1 
, 

II 

By inserting ( 2.3 ) and ( 2.8 ) into ( 1.2 ), we obtain 

lm A2( II')+ 31m A 1( II') 
2 . 

lm A o - I m A 2( 11 ') 

3 

Im A 
1 

( 11 '). (2.9) 

Ao (II) =l/7T 
00 

d11' 
f , lm AJ111 + 1/rr j dll' ( 1 + 11 

.;(1 +IIi- II) 6 (II'+ II + 1 ) o II -•II 

00 00 

(2.8) 

(2.10) 

A (ll)=l/7Tf dll' . Im A (11')+1/~rf~_:_(1+ II )f (v')+l/SI (v). 
2 o 11'-•11 2 o l+11'+v 6( ·v'+ll+1) 2 1 

The function fi entering here are determined in ( 2.5 ). 

Eqs. ( 2.10 ) are analogous to Eqs. ( 21 )-( 23 ) from pape/4( However, there is one essential dif­

ference. :The fact is that Eqs. ( 21 )-(23 ) contain terms of the type 

00 

f 
0 (2.11) 

which do not depend on 11 and do not vanish in the interval of large 111s. Eqs. ( 2.l )-( 2.3) can not 

therefore be satisfied by the logarithmic asymptotics and, consequently, have no solutions. :This remark 

does not concern the subtracted Eqs. ( 25 ) -( 27l41, which are therefore not equivalent to the non­

subtracted Eqs. ( 21) - ( 23 ). 

The presence of the terms ( 2.H ) iri the Ho, Chang and Zollner equations is explained by the fact 
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that these authors have started not from dispersion relations with the fixed cosine c of the type ( 1.4 ), 

but from dispersion relations with the fixed t, which for t lO contain unphysical low-energy contribu­

tions from regions in which the cosine of the scattering angle changes in the limits 1""/ c/<" oo, :We in­

vestigate the logarithmic asymptotics of the system ( 2.10 ). : 

Assuming 
TT 

Ai(v).., c.fnv 
! ' 

we get from ( 2.10 ) the system of e·quations for the co.effidents 

where 

CJik 

. 2 
rrd

1
-d

1
..,.'£ 

k 

2 

CJfk d k ' 

l
1/3 -4 5/3 

-2/15 '1/10 1/3 

1/3" 2 1!6 

This system has a single non-trivial solution 

·d
0

=·2,13, d =-' 0,137' t d =· 0,653. 
2 . 

(2.i2) 

(2.13) 

(2.14) 

(2.15) 

which recently was found by Lovelac/21:· A remarkable property of this solution is its proximity to 

( 2. 7 ). From the comparison of numerical coefficients it is seen, that the log-arithmic asymptotics turn out 

to be rather stable with respect to taking into account of d and f- waves. It is interesting to consider the 

influence of the real parts 6£ highest wuves on the asymptotics. We study at once the limiting case of ta-. 

king into account all waves by using the formulae ( 1.3 ), In the equations for partial waves written down 

below only terms which contribute to the logarithmiC asymptotics ·are retained 

00 00 

A
0
(v) .. l/1T f ,dv' lm Ao(v')+l/lrf dv' ,f0 (v')-,4(2rn2-1)1 (v) 

0 
v ·-'v 6 l+v+v . t 

00 00 

A
1

(v) .. lf,f ,dv' lm A1 (v')+3/2~rf dv', 
o v ·- v o.l+v+v 

t
1

(v')+(3-4fn2) 11 (v) 

(2.16) 
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00 00 

lm A ( 11 ')+1/w f dv' llv') +2(2en2-1) 11 (v). I 2.16/ 
2 o l+v+v' 

To these equations there corresponds the matrix 

1/3 -3(4fn2-1} 5!3 ) 

·1/6 21!4(1-24fn2) 5!i2 . 
21 

1!3 3/4 ( 4£n2 -1) 1/6 

and, respectively, the asymptotic coefficients 

d =:-0,167, 
1 

d "" 0,667. 
2. 

(2.17) 

(2.18) 

Comparing the numerical coeffiCients of ( 2.18) with those of ( 2.15) and ( 2.7) we see that the 

logarithmic cisymtotics of th~ partial wave equations obtained by differential method reduces very ra­

pidly to its limit ( 2.1!8 ). In considering more accurately the real part of the scattering amplitude we see 

also that the equations of the di!ferential method do not turn into the corresponding Chew-Mandelstam 

equations. 

3. Problerr of the Account of IIigh-Energy Partial \l'aves 

We discuss the significance of the results obtained. In constructing the low-energy scheme we have 

to deal with two approximations. It is, on the one hand, an elastic approximation in the unitarity condi­

tion. On the other hand, it is a restriction to lowest partial scattering waves. :The second approximation 

touches upon the real as well as imaginary parts of the scattering amplitude; it may therefore be perfor­

med in different ways. As has been shown in § 1, the approximation in Re A i:md Im A should be 'self­

consistent'. The account of Re A4makes no sence, without introducing Im A
2

. 

The Chew-Mandelstam equatioqs/6/ are an example of the unstable scheme. In these equations appro­

ximat_ions in ReA were not made while Im A is approximated by the s- and. p- waves. 'fhe Chew-Man; 

delstam equations do not allow, ~herefore, to introduce into Im A even d- and f- waves, and, appa­

rently/2/lO/ have no solutions. 

It is appropriate to raise the question of the improvement of the equations such as ( 2.4 ), ( 2.1!0 ), 

owing to taking into account more and more high partial waves in the scattering amplitude by means.of for­

. mulae such as ( 1.3 ). Here the temptation can arise to take into account an infinite number of partial 

waves, or what is equivalen:, an infinite number of terms in the sums ( 1.3) for the real and imaginary 
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parts of the scattering amplitudes and to obtain in such a way 'exact' equations which do not contain 

highest partial waves neglected. 

Such an 'improvement' , however, has no sence for two different reasons. 

The first reason is that in the region of not too low energies where highest waves can turn out to be· 
\ 

important, contributions from inelastic processes which were neglected by us play an essential role. 

~f we assume, however, that for some reason the contributions fro~ inelastic processes are small in 

their absolute magnitude, or what is equivalent, we consider the model in which the inelastic processes 

are forbidden. Even in this:case the indicated 'improvement' can not be made because of the presence of 

spectral function~. We explain this fact taking as an example the s- wave. We notice that the first for­

mula of ( 1. 3 ) may be considered as a result of integration over c of the two Taylor series for the 

function f( c) in points c =+ 1 and c = -1 • In this case the Taylor series at the point c =·-1 

is integrated in the interval ( -110 ) and the series at the point c =·1 in the. interval ( 01 1 ). Thus, in 

order that the sums ( 1.3 ) may exist it is necessary that the region of the convergence Of the two Tay­

lor's series cover entirely the physical interval ( -1
1 

l ). 

This requirement is fulfilled for any 11 >·a for the function specified by the spectral representation 

of the kind ( 1.4 ), provided that the numerators 'of integrals have no singularities with respect to c -· 
(i.e. that the·spectral functions are absent), and provided that the polinoms with respect to 11 .with 

high energy coefficients of the type ( 1.8 ) are omitted. These two conditions lead to the fact that, for 

example, the second integral in ( 1.4) is expanded in the Taylor's, series only near the point c =+ 1 

the singulqrities with respect to c being specified by its numerator. 

The situation changes essentially in taking into account spectral functions. Then the analitlCity re­

gion is defined by the Lehmann ellipsis and, as is easily seen, the series ( 1.3 ) for the real part of 

the amplitude diverges in the region 11 > '2. 

However, for this conditions too, the finite sum of terms from ( 1.3 ) can give a good approximation. 

Integrating by parts N times we obtain for the s- wave the following expression 

+1 N 1 " (n) n (n) 
1
0 

"' ih f d c f (c) = % I f ( ·1) + (-) f ( -1) 
·1 n=O (n+1)! 

t 
( --1) N 

2 N! 

+1 (N) N 
f f (c) c de ' 
·1 

+ 

(3.i) 
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Assuming that in the.energy region, we are interested highest particil waves starting with fm are 

small we may omitin(3.1) a remaining term for N ,.m and get expressions of the type ( 1.1 ), ( 1.2 ). 

Hence, it follows that the scheme which takes into account a small number of lowest partial wm·es 

can give a good approximation in the low-energy region. Taking into account of an infinite number of 

terms in the sums ( 1.3 ), on the one hand does not improve really the accuracy because of the presence 

of inelastic processes and, on the other hand, it is impossible mathematically because of the pre­

sence of spectral functions. In this case the series ( 1.3 ) should be considered as asymptotics. 

To illustrate this thesis we consider one more scheme of the succesive account of partial waves. 

We shall expand the second integral in ( 1.4 ) near the point c "' + 1 and the third one - near the point 

c ,._,1 and use these expansions along the hole interval ( + 1, - 1) , instead of omitting high-

energy coefficients. In this case the imaginary parts are approximated by the s- and p- waves ( we im­

ply the scattering of charged mesons j. If we shall go on to an infinite number of terms then non- subtrac­

ted equations will not exist since the imaginary parts of crossing integrals have a pole with respect to 

c at the point c "'+1 or c "'·f3- 1 due to the presence of the p- wave .. One subtraction leads exact­

ly to the Chew-Mandelstam equations and to all mathematical complication/101, connected with them. 

The difficulty connected with spectral functions can be partially removed by taking into account the 

elastic two - particle part of sp~ctral functions. So, we arrive at the program of 'the strip approximation' 

of Chew and Frautsch/111. However, unlike these authors, we expect that the account of the spectral 

functions in the elastic strips changes only slightly the low-energy approximation. On the contrary, the 

behaviour of the scattering amplitude in the high-energy region and small momentum transfers may turn 

out to be completely determined by the low-energy scattering properties. Such a perspective seems to 

be especially probable in the light of the recent results of the pape/121. 

The authors are grateful to D.I. Blokhintsev, N.N. Bogolubov, J. Wolf, V.A. Meshcheryakov, Y. Fi­

scher and also to the partiCipants of the Conference on the application of dispersion relations ( Novo­

sibirsk, Institute of Mathematics of the Siberian Department of the Academy of S~fences of USSR, Septem­

ber 1961 ) for the useful discussions. 
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