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In the last time many author/ 1•6/ used the confonnal mapping approach in various problems con

nected with analytical properties of the scattering ampMude. An interesting application was done by 

Lovelace/1/ who calculated the spectral function by extrapolating the ex~rimental data for IT + N .. IT + N 

at 5.17 GeV. In the present note we will make some remarks on the convergence of this procedure. 

The following properties of the confonnal mapping approach ccm be pointed out: 

1) Any function /(IV) which is real for - 1 < IV < + 1 and analytical in the unit circle of the 

IV -complex plane has automatically the analytic properties required for the amplitude, with the sinqula

rities in the correct position. The jump ocross the cut is obtained directly by calculating I( IV) on 

the unit circle and taking the imaginary part. 

2) The Taylor expansion in w( z) converges in every point of the cut z -plane ( in which the amp

litude is kno,wn to be analytical). 

3) The confonnal mapping which carries the whole cut z -plane into the unit circle leads to the 

fastest convergence if compared to all other mappings which carry only a certain part of the cut z -plane 

into the unit circle (see Appendix of/2/). 

From points 2 and 3 it follows that the comfonnal mapping technique is a powerful tool for analy

tical continuation of the amplitude from -1 s.. z ~ cos (J ~ 1 to any point of the cut plane. However 

when studying the IV -expansion on the cut { boundary of the unit circle) there arise problems of con-

vergence. 

One can, in principle, overcome them - and by the same enhance the convergence in every point -

by mapping ·conformally into the unit circle the cut z -plane together with some additional region of 

the nonphysical Riemann sheets. But, at high energies, one encounters two difficulties: 

. Since the position of the resonance poles is not known, there exists the danger that some of them 

could be taken into the interior of the unit circle reducing by this the convergence of the expansion in 

all directions (see the dotted circle of Fig, 1.). Secondly, the great number of btanchinq points of the 

spectral function at high energies considerably complicates the practicle construction of the conformal 

transfonnation (the cut transforms into the complicated curve of Fig. 1 ). At 5.17 GeV there are fifteen 

branching points 1 y!nq in the strip 4 ~ t ~ 16, at: 

10 • 4.043 11- 4.33 12 - 4.$4 13 - $.19 14-$.42 

t 5"' 6.03 16. 6.47 17 - 7.13 ta - 8.60 ~ - 8.68 . 

110"' 9.27 111- 10.$9 t12 ... 10.86 113 - 12.95 114 - 13.35 
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In the following we will study the convergence on the cut without appealing to the properties of 

the amplitude on the nonphysical Riemann sheets, but using the fact that the spectral function has no 

singularities worse than _!_ . 0ne can feel the analogy with the well-known Chew method/7/ 
yr;::T 

of obtaining the coupling cons tant by extrapolation to the pole: in his method an essential point was 

the fact that he had some aprlorl information as to the power of the pole denominator. 

For sake of simplicity, we shall treat the case with cuts (- ""• -a) and (a, oo ) and require 

w ( z "' 0 ) "" 0, i.e. 

w ( z ) = Vi+Z - .;-;;-=-z 
..;-ii+Z + v a - z 

hut the results remain unchanged also in the general case. The dispersion relation in the w -plane Is 

A 1 , u ( w') 
1 ( w) = - f K ( w, w) ·--- _ d w' 

17 c w'- w 

,2 1 2 
where K (w ', w) "" ~, + w , C is the unit circle and a(w') is the limit value of A 

1 + w' ~ 1-ww' 1 
on C, which Is supposed to vanish at w = ! i ( corresponding to t = ± oc ). As K ( w' w ) has 

no pole inside C and K ( w, w) = 1, for lwl < 1, we have directly A = 1/ rr f ~ dw ' • 
C w'-w 

On C, we define 
N II 

a - 1 I 
elf Tt • en 

incp 
e 

2rr .,J. 

where en Is 2i -times the Fourier coefficient 
-m'~' 

f n= 1/ 2rr f u(cp) e dcp . 
0 

As 
n 

AI ( w).., f en w , using the Schwartz lemma one can easily show that for physical values of w 
0 

N 
11/rr f u(w') - u ell (w') 

C w' - w 

"" 
d w' I=II en w"i ~~ ~ &,/ 

N+1 

00 

~ .. 't 
N .V 

( z = 1 is the physical point at which the expansion converges most slowly). 

N 
c "'"!.. w( z-l l 
t»-1 z-1 1 - w (z...1) 

This is·equivalent with the trivial fact that the 'effective spectral function' gives a good approxima

tion for A 1 ( w ) in the physical region of the original reaction. However, if we want to use the obtained 

information for the low-energy region of the crossing reaction, as u does no more appear under the 

integral over t , we need the convergence of I en w" directly on the boundary w .. e i,P 

In other words, we need the convergence of the Fourier expansion 

\ 
I 
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I 8 
n 

where In= *en for n > 0 and ~ = -I-n . This formula follows from the fact that only the antisy:n

:netrical part of a Is important in ( 1 ) because 

2 
= tg ¢ 1 + w 

d9- w J( e1'ifi- w J 

which Is an odd function. Furthemore, the spectral function Is defined as 

A singularity of the· spectral function having the form 1 , turns into 
Va-z 

which is Fourier- expandable with the exception of the case a = a, 

4/ z + ic ) - A 1 ( z - ic ) 
2.1 

which produces a pole. This pole leads to the divergence of the series on the boundary, but it can be 

removed by shifting the w (z) -cut to another point a' < a , or- better- by expanding ~ 4 1 

rather than A J*· The higher singularities are positive powers of the root and do not cause any difficulti

es ( we are indebted to Prof. Ter-Martirosyan for this remark ). Thus, we may conclude that the~ 

sion of ..[8 :::;:-A 1 into w(z) can be used for calculating the spectral function, which is now repre-

sented by a convergent Fourier series (divided by ..;---;;:::; ). If we have an analogous situation for 
+oo In¢ 

the left-hand cut, then u (:z:) = __!11)__ l: . en e , where now c =+ c 
~n=·oo ·n n 

2 
Returning to the paper of C. Lovelace we would like to remark that the function 8-In, has not the 

correct behaviour in the interval 0 < t < 4 where all derivatives of A
1 

must be positive**. Secondly, 

we note that the possible zeros of A1 might reduce considerably the convergence radius of the expansion 

fn A 1 = ~ a n'1 n which is used in/11, even if the experimental fit is good. However both difficulties 

can easily be avoided by another fitting of the experimental data, which fulfills the above mentioned 
requirements. 

* The ana losy with the Chew appro a c h aeema lo be deeper than It waR expected 

** We tho.nk P ro t. I, Ya. Pomeranohuk who polnled out th l.s tact to us. 
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