

1 812

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Лаборатория ядерных проблем Лаборатория теоретической физики

В.П. Джелепов, П.Ф. Ермолов, Е.А. Кушниренко, В.И. Москалев, С.С. Герштейн

Д-812

экспериментальное исследование *p* -мезоатомных процессов в газоовразном водороде жэта, 1962, тч2, 62, с439-449 puel. Phys., 1962, ~34, ~2, p.424-438. В.П. Джелепов, П.Ф. Ермолов, Е.А. Кушниренко, В.И. Москалев, С.С. Герштейн

Д-812

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ μ[−] – МЕЗОАТОМНЫХ ПРОЦЕССОВ В ГАЗООБРАЗНОМ ВОДОРОДЕ

Направлено в ЖЭТФ и Nuclear Physics

объединенный институт ядерных исследования БИБЛИСТЕНА

12 41/2 1g

Аннотация

С помощью диффузионной камеры в магнитном поле экспериментально изучен ряд µ -мезоатомных процессов в водороде. Получены следующие количественные данные: сечение упругого рассеяния рµ -мезоатомов на протонах

 $\sigma_{\rm pp} = (1,7^{+0,4}_{-0,5}) \cdot 10^{-19} {\rm cm}^2$; вероятности перехвата μ -мезона от протона дейтронами и сложными ядрами (С и О), пересчитанные к плотности жидкого водорода, $\lambda_{\rm d} = (0,95^{+0,34}_{-0,21}) \, 10^{10} {\rm cek}^{-1}$ и $\lambda_z = (1,2^{+0,8}_{-0,5}) \cdot 10^{10} {\rm cek}^{-1}$; вероятность образования мезомолекул рр μ в жидком водороде $\lambda_{\rm pp\mu} = (0,6^{+0,8}_{-0,5}) \cdot 10^6 {\rm cek}^{-1}$.

Экспериментальные значения λ_d , $\lambda_{pp\mu}$ и λ_z удовлетворительно согласуются с теоретическими, что подтверждает правильность предполагаемых в теории механизмов процессов. Сечение σ_{pp} оказалось близким к теоретическому значению, рассчитанному без учета сверхтонкой структуры мезоатома р μ , однако, не исключается возможность быстрых переходов в нижнее состояние с полным спином мезоатома F = 0.

Выполненное в настоящей работе определение абсолютной величины λ_d открывает возможность находить абсолютные вероятности целого ряда μ -молекулярных процессов, используя ее как масштаб.

1. Введение

Экспериментальное изучение свойств реакции захвата отрицательных *µ* -мезонов протонами

$$\mu^{-} + p \rightarrow n + \nu \tag{1}$$

может дать важные сведения для теории слабых взаимодействий. В то же время до последнего времени реакция (1) относится к числу практически неисследованных процессов среди явлений, связанных со слабым взаимодействием обычных частиц. Трудность решения этой задачи обусловлена не только малой вероятностью указанной реакции, но и в очень большой мере усложнениями, которые вносят в интерпретацию непосредственно получаемых на опыте результатов различные мезоатомные и мезомолекулярные эффекты, предшествующие ей $^{1-3/}$. Как было показано в теоретических работах $^{1,4/}$, вероятность реакции (1) зависит от спинового состояния сверхтонкой структуры, в котором находится 19 —мезоатом водорода (F = 0 или F = 1), и при плотностях водорода больших 10 ядер/см³, захват μ -мезонов должен идти, в основном, из нижнего состояния мезоатома с F=0 (F - полный спин мезоатома).

Вероятность захвата μ -мезона в водороде существенно зависит также от вероятности образования мезомолекул pp μ (λ)^{/5-7/}, так как спиновое состояние таких мезомолекул оказывается аналогичным смеси состояний F = 1 и F = 0. Особую важность приобретает поэтому экспериментальное определение величины $\lambda_{pp\mu}$ и получение сведений о вероятности переходов p μ из состояния F = 1 в F=0.

μ - мезомолекулярные процессы определяют также катализ ядерных реакций μ -мезонамы в смеси изотопов водорода^{/8-10/}, и хотя основные экспериментальные факты качественно согласуются с теорией, дальнейшие опыты по определению таких величин, как вероятность перехода μ -мезона от протона к дейтрону, вероятность образования мезомолекул рфμ и вероятность ядерной реакции в этой мезомолекуле также представляют интерес. Ввиду актуальности перечисленных проблем на фазотроне ОИЯИ был поставлен ряд опытов по исследованию мезоатомных процессов, протекающих в водороде и дейтерии. В этих опытах использовалась диффузионная камера высокого давления в магнитном поле. В настоящей работе сообщаются результаты, полученные в первой серии опытов, относящихся к изучению рассеяния мезоатомов рµ на протонах, определению вероятностей перехода µ -мезона от протона к дейтрону, образования мезомолекул ррµ и перехвата µ -мезона от протона сложными ядрами.

Сечение рассеяния pμ -мезоатомов водорода на протонах и переход μ -мезона на сложные ядра

Сечение рассеяния мезоатомов $p\mu$ на протонах теоретически было вычислено в работах $^{/2,6'}$. Оно может быть выражено через длины рассеяния a_g и a_u системы $p\mu + p$ в симметричном (a_g) и антисимметричном (a_u) состоянии относительно перестановки пространственных координат протонов. При энергиях є в с.ц.и. мезоатома $p\mu$, значительно больших энергии сверхтонкой структуры мезоатома водорода $\epsilon >> \epsilon_0$ ($\epsilon_0 \approx 0, 2 \, \mathrm{eV}$), сечение рассеяния

$$p\mu + p \rightarrow p\mu + p \tag{2}$$

имеет вид

$$\sigma_{pp} = 4\pi \left(\frac{1}{4} - \frac{a_g}{1 + a_g^2 k^2} + \frac{3}{4} - a_u^2\right), \qquad (3)$$

где $k^2 = \frac{2 M_1 \epsilon}{\hbar^2}$.

Однако, как было показано в теоретической работе⁽⁴⁾, мезоатом р μ за время 2·10⁻⁹ сек, составляющее около 0,001 времени жизни μ - мезона, в результате столкновений с протонами и благодаря механизму "перескока", должен переходить из состояния свехтонкой структуры F=1 в состояние F=0. Результаты измерения деполяризации μ -мезонов в жидком водороде⁽¹¹⁾, по-видимому, не противоречат такому переходу.

Для мезоатомов _{р µ} в состоянии F = 0 при тепловых энергиях ($\epsilon <<\epsilon_0$) это сечение выражается формулой:

$$\sigma_{pp}^{(0)} = 4\pi \left(\frac{a_{g} + 3a_{u}}{4}\right)^{2}.$$
 (4)

Длины рассеяния а и а вычислялись в работах^{2,6/}. При этом для а в обеих

работах получены близкие значения $a_u \approx 5$ (в единицах $a_\mu = \frac{\hbar^2}{m_\mu e^2} = 2,55.10^{-11} \text{ см}$), в то время как в величине а наблюдается большое различие (согласно /6/, a - 1); согласно $\binom{2}{2}$, $a_g \approx -17$). Это различие может быть связано с тем, что мезомоле кула ррµ имеет виртуальный уровень с энергией, близкой к нулю, и в условиях резонанса величина а оказывается весьма чувствительной к принимаемым в этих работах приближениям. Существенно, что в выражении (4) складываются длины рассеяния, имеющие разный знак. В результате величина $\sigma^{(0)}$ может оказаться при $k = 0^{X}$. В этих значительно меньше, чем соответствующее значение σ условиях сравнение экспериментально измеренного значения сечения с расчетным дает путь для оценки правильности соответствующих теоретических приближений и, таким образом, для получения сведений о распределении ри -мезоатомов по спиновым состояниям непосредственно перед распадом мезона или захватом его нуклоном.

<u>Метод</u>. Для экспериментального определения такого сечения может быть использован следующий метод. В силу своей электронейтральности мезоатом $p\mu$, движущийся в водороде примерно с тепловой скоростью, будет проходить заметные расстояния (диффундировать) от точки своего образования до распада μ мезона. Поэтому процесс μ — е -распада на фотографиях в диффузионной камере должен выглядеть так, что начала треков электронов распада несколько смещены по отношению к концам треков останавливающихся μ -мезонов. Величина возникающих таким образом просветов между треками μ -мезонов и электронов зависит от ряда факторов, и в том числе от сечения рассеяния. Как будет видно из дальнейшего, именно исследования распределения зафиксированных на фотоснимках просветов по длинам и позволяют определить это сечение.

Диффузионная камера с ее в десятки раз более низкой плотностью водорода, чем плотность его в пузырьковой камере, создает очень выгодные условия для отчетливого наблюдения и измерения таких просветов. Основной трудностью в подобных опытах является то, что благодаря присутствию в камере ядер углерода и кислоро-

х) Для принятых в работе /12/ значений параметров а =-17,3 и а = 5,25 сечение $\sigma_{pp}^{(0)}$ благодаря "случайному" совпадению $|a_g| \simeq 3a$ получалось аномально малым. Однако в связи с отмеченной неогределенностью в величине а этому обстоятельству нельзя придавать серьезного значения.

да, входящих в состав метилового спирта, на процесс рассеяния (2) накладывается другой процесс - перехват μ -мезонов от протонов к этим ядрам, который будет приводить к некоторому уменьшению величины просветов. Первая часть выполненных нами опытов была посвящена определению сечения рассеяния (2) по $\mu - e$ распадам с просветами и одновременно с этим нахождению вероятности перехвата μ -мезонов на сложные ядра.

Постановка опытов. Диффузионная камера с диаметром рабочей области 380 мм, помещенная в магнитное поле 7200 эрстед, облучалась пучком π^- и $\mu^$ и поглощение п мезонов с импульсом 260 Мэв/с. Торможение µ -мезонов мезонов производилось медным фильтром толщиной 11,5 см и стенкой камеры (8 мм стали). Примесь п -мезонов, останавливающихся в камере, определялась по относительному числу однолучевых звезд, вызванных 🛛 -мезонами при наполнении камеры гелием, или разделением остановок п и µ -мезонов в водороде путем измерения среднего радиуса кривизны на определенной длине трека. Эта примесь в различных опытах составляла 1-5%, Камера наполнялась водородом, N_2 , O_2 , H_2O и др. путем пропускания который был очищен от примесей через ловушки с силикагелем и активированным углем, охлажденным до температуры жидкого азота. Экспозиция производилась при двух значениях давления во− дорода. Анализ одного из образцов использованного нами технического водорода показал. что атомная концентрация примеси дейтерия в нем составляет 0.007%.

Первые два опыта выполнены при давлении 22,7 атм, но при разных концентрациях ядер С и О, оценивавшихся по температуре источника пара или по температуре и критическому пересыщению верхней части чувствительной области. Температура источника пара в первом опыте была +2°С, во втором опыте -15°С. Два последних опыта сделаны при давлении водорода 5,0 атм, с уменьшенной поверхностью испарения источника пара, температура которого была 0°С. Кроме того, в последнем опыте концентрация сложных ядер была увеличена за счет добавления 22 мм Нg воздуха.

<u>Результаты опытов</u>, Основные результаты опытов и условия их выполнения приведены в таблице.

Во всех опытах наблюдались наряду с обычными μ - е - распадами случаи с четкими смещениями начала трека электрона распада от конца трека остановив-

шегося μ -мезона размером от полуширины трека (- 0,25 мм) до 3,5 мм. На рис. 1а представлен пример такого случая, полученный в опыте 1. Длина просвета равна 2 мм. Как величины просветов, так и частота их появления, приведенная в колонке 7, зависят от концентрации сложных ядер и особенно сильно от давления. В условиях водорода с малой примесью дейтерия (технический водород) эти просветы обусловлены диффузией мезоатома $\rho\mu$ за время до распада или перехвата μ -мезона сложным ядром. Переход μ -мезонов на сложные ядра происходит

относительно быстро, о чем свидетельствуют следующие наблюдавшиеся нами эффекты:

 Появление остановок μ -мезонов, не сопровождающихся электронным распадом, и появление звезд с одной или более тяжелыми заряженными частицами (колонка β), обусловленных ядерным захватом μ -мезонов сложным ядром.

2) Испускание электронов Оже. Часто начало трека электрона распада (в случаях с просветами) сопровождается четкой "точкой", т.е. скоплением группы капель размером 0,3-0,6 мм (рис. 16). Частота появления этих точек " зависит от концентрации сложных ядер (колонка 8) и объясняется, по-видимому, короткопробежными электронами Оже, возникающими при каскадном переходе μ -мезона с возбужденных уровней мезоатомов С или О, после перехвата на них μ -мезона с мезоатома р μ .

Для выяснения последнего обстоятельства (малости энергии электронов Оже) был поставлен опыт без магнитного поля в тех же условиях, что и опыт 3. Было идентифицировано 43 µ-е -распада, в 10 из которых начало электрона от распада µ -мезона сопровождалось видимой "точкой". Только в 3-4 случаях из всех 43 µ-е - распадов нельзя было исключить присутствие второго электрона, пробег или многократное рассеяние которого указывало бы на то, что его энергия существенно больше 10 Кэв (пробег в камере более 2 мм). Этот факт означает, что после перехода µ -мезона к ядрам С или О большинство испускаемых при этом электронов Оже имеют энергию меньше 10 Кэв.

Наблюдения этих эффектов поэволяют определить вероятность перехвата µ -мезонов на сложные ядра. Эта задача оказывается достаточно трудной вследствие малости эффекта и сложности идентификации случаев перехвата. Поэтому было использовано несколько способов определения этой вероятности.

В первом опыте вероятность перехвата определялась по формуле:

$$\lambda'_{z} cq = \frac{\lambda_{o} n_{OCT.a}}{n_{\mu e} - n_{OCT.a}} , \qquad (5)$$

где $\frac{\lambda'}{z}$ вероятность перехвата μ -мезона от протона к сложным ядрам в газообразном водороде; с – концентрация сложных ядер (колонка 3); q =1 для опытов 1 и 2 и q = (5,02/22,7) =0,22 для опытов 3 и 4; λ_0 =0,452 · 10⁶ сек⁻¹ – вероятность распада μ -мезона, пост. число остановок μ -мезонов без электронов; $n_{\mu e}$ - число μ -е - распадов; $a = \frac{2\lambda_0}{\lambda^C 34 x_{B+} \lambda^0 34 x_{B}}$; λ^C и λ^0 - вероятности ядерного захвата μ -мезонов углеродом и кислородом, найденные экспериментально в работе /14/. Этот способ определения предполагает, что вероятности перехвата μ -мезона на ядра С и О одинаковы.

В остальных трех опытах величина λ'cq определялась следующими методаz

1) По частоте появления Оже - электронов в начале трека электрона распада в предположении, что видимая "точка" появляется при каждом перехвате µ -мезона на сложное ядро. Для выяснения справедливости этого предположения был поставлен опыт, в котором в водород при давлении 21 атм добавлялось 3% ядер С и О (СО₂). С целью увеличения величины просветов в камеру добавлялось также 5% дейтерия (см.раздел 4). В этом опыте около 95% µ -мезонов, находящихся на орбите dµ -мезоатома, за время до распада будут перехватываться ядрами углерода и кислорода. Из найденных 40 случаев с длинами просветов, большими 1 мм, по крайней мере, в 37 начало трека электрона распада сопровождалось видимой "точкой". Этот факт указывает на то, что не менее, чем в 90% всех случаев переход на сложное ядро сопровождается испусканием электрона Оже.

 По величине \lambda' cq опыта l и соотношению числа звезд с видимыми лучами в опытах 2,3,4.

 3) По величине λ[']_z сq опыта 1 и соотношению концентрации сложных ядер в опытах 2,3,4.

Оказалось, что значения вероятностей перехвата на сложные ядра, полученные различными способами, удовлетворительно согласуются между собой. Это в определенной мере подтверждает правильность сделанных предположений и опенок относительных концентраций сложных ядер. В колонке 9 таблицы приведены найденные значения вероятностей перехвата, причем для опытов 2,3 и 4 даны значения, усредненные по всем методам их определения. Указанные погрешности учитывают как статистические ошибки, так и неопределенности в идентификации событий и в определении концентрации сложных ядер.

Измерения длин просветов производились непосредственно на фотопленке при помощи микроскопа УИМ-22 с 50-кратным увеличением (масштаб съемки при фотографировании 1:15). Измерялись длины проекций 1' на горизонтальную плоскость расстояний от начала трека электрона распада до конца трека мезона с учетом полуширины трека μ -мезона. При этом исключались случаи, в которых длина проекции трека электрона меньше 5 мм, не четко виден сам электрон или точка остановки μ -мезона перекрыта скоплением капель, сеткой, фоновыми треками и др. Также были отброшены случаи, в которых просвет был вызван местной нечувствительной областью вблизи остановки μ -мезона (в этих случаях обычно трек μ -мезона утоньшается к концу пробега и электрон "смотрит" в точку остановки).

Построенные таким образом распределения проекций пересчитывались в распределения по истинным длинам просветов, и в них вводились поправки, учитывающие долю случаев с просветами, не наблюдаемую из-за конечной ширины треков. Для опытов 2 и 3 эти распределения показаны на рис. 2. Из этих распределений исключено несколько фоновых случаев, число которых оценивалось в специальных измерениях. Численные значения средних квадратов длин просветов приведены в колонке 11. Ошибки в этих значениях учитывают неопределенность от включения в распределения небольшого числа сомнительных случаев.

Определение сечения σ_{pp} упругого рассеяния <u>р</u> μ -мезоатомов на водороде. Найденные на опыте величины λ'_z сq .и \bar{r}^2 позволяют определить сечение σ_{pp} . Действительно, если <u>р</u> μ -мезоатомы имеют тепловые энергии, то средний квадрат длины просветов связан с коэффициентом диффузии <u>D</u> <u>р</u> μ -мезоатомов в водороде соотношением

$$\vec{r}^2 = 6 Dr , \qquad (6)$$

где

 $\frac{1}{1} = \lambda_0 + \lambda'_2 cq.$

σ ^σ .10 cm ² (pμ + p → → pμ + p)	12	1,9 ^{+0,4} -0,6	1,7 ^{+0,4} -0,5	0,7 ^{+0,2} -0,3	0,6 _{-0,4}
г ³ в мм ²	11	0,10+0,014	0,22+0,04	$1, 4\pm 0, 3$	1,1 <u>+0</u> ,4
$(\lambda_c + \lambda_z^I cq).$ 10^{-6} -1 ^B cer	10	1,3 ^{+0,4}	0,66 ^{+0,11}	1,2 ^{+0,4}	1,6 ^{+1,0} -0,5
$\begin{bmatrix} \lambda_{z}^{I} c_{q} \\ 0 \end{bmatrix}, \begin{bmatrix} \lambda_{z}^{I} c_{q} \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0$	თ	0,8 ^{+0,4} xxx) 0,8 ^{-0,2}	$0,21^{+0,11}_{-0,07}$	0,7 ^{+0,4} -0,2	$1, 1^{+1}, 0^{-0,5}$
Отношение числа случаев с просвета- ми с Оже-электро- изми к числу слу-	8	> 60%	10/26	21/10	13 /4
просветами шение числа слу- чаев с видимыми и	7	86	15%	50%	40%
Число авеад с ви- имыми пучами от доноеэм- ч атвахае (XX) имадда.и	9	21	Q	ŝ	CL CL
іолное число оста Х) Воное и -мезонов	01 I	718	550	202	98
йифвотоф олон Наспо фотора	1 4	4000	8000	16000	7000
-жогл виледтнелнол или О,О делг хил % в эдододов а У	н т 1	0,2	0,07	0,7	1,3
2 ^Н өйнөлав] мтёа		22,7	22,7	5,02	5,02
N ² OILLTH	1-	,	2	ŝ	د 14

ца

Табии

xx) В числа звезд, указанные в колонке 6, включены однолучевые звезды для опытов 1 и 2 с 17>2 мм для опытов 3 и 4 с 17>7 мм (17-длина проекции следа на горизонтальную плоскость).

xxx) Π ри определении в этом опыте λ_z^\prime сq с применением целого ряда критериев отбора было найдено,

•

что отношение $\frac{n_{OCT}}{n_{\mu}e} = \frac{34}{267}$.

В свою очередь

$$D = \frac{3\pi}{32} \frac{\overline{v}}{\overline{v}_d} , \qquad (7)$$

где \overline{v} - средняя скорость относительного движения р μ и H_2 , N - число протонов в см³, а \overline{Q}_d есть усредненное по максвелловскому распределению значение сечения переноса:

$$\vec{\mathbf{Q}} d = \frac{\int_{-\infty}^{\infty} \mathbf{v}^5 \exp\left(-\frac{\mathbf{m} \mathbf{v}^2}{2\kappa T}\right) \mathbf{Q} d\mathbf{v}}{\left(-\frac{\mathbf{m} \mathbf{v}^2}{2\kappa T}\right)^5}.$$
(8)

Входящая в (8) величина Q равна $Q = 2\pi \int (1 - \cos \theta) \sigma (\theta) \sin \theta \, d\theta$; $\sigma (\theta) \, d\theta$ – дифференциальное сечение рассеяния $p\mu$ -мезоатомов в водороде; $m = \frac{M_1}{M_2 + M_2}$ приведенная масса $p\mu$ и молекулы H_2 ; T – средняя температура газа.

Так как в реальном водороде рассеяние $p\mu$ -мезоатомов происходит не на свободных протонах, а на молекулах Π_2 , то в действительности здесь в качестве величины $\sigma(\theta)$ необходимо использовать дифференциальное сечение рассеяния мезоатомов $p\mu$ на молекулах Π_2 . Указанную величину нетрудно вычислить, если известно сечение рассеяния $p\mu$ на свободных протонах. Расчет может быть произведен методом псевдопотенциала, используемого при расчете рассеяния медленных нейтронов на молекулах.

Вычисления величин $\vec{Q}d$ для рассеяния р μ -мезоатомов, находящихся в состоянии F=0, на молекулах орто- и параводорода для $\vec{v} = 2.7 \cdot 10^5$ см/сек и температуры $T=242^{\circ}$ К (условия нашего опыта) приводят к результату:

$$(\overline{Q}d)_{napa} \approx 0.6 q_{pp}$$
, $(\overline{Q}d)_{opto} \approx 2\sigma_{pp}$, (9)

а для статистической смеси орто- и параводорода (3/4 : 1/4):

$$p d \simeq 1.6 \sigma_{\rm pp} \cdot (10)$$

Используя соотношения (6), (7) и (10), находим выражение для определения сечения:

$$\sigma_{\rm pp} = \frac{1,1\,\rm v}{\overline{r^2}\,\rm N\,(\lambda_0 + \lambda_z'\,\rm cq\,)} \qquad (11)$$

Вычисленные по этой формуле сечения $\sigma_{\rm pp}$ на основе указанных в колонке 9 и 11 значений λ'_z сq и \bar{r}^2 приведены в последнем столбце таблицы.

1. Сравнение сечений σ_{pp} , вычисленных по найденным значениям \vec{r}^2 и λ'_z сq , показывает, что эффект рассеяния мезоатомов Р μ на сложных ядрах мал, так как он не проявляется при изменении концентрации сложных ядер или давления водорода. Наряду с этим можно отметить, что \vec{r}^2 изменяется более резко при изменении плотности водорода, чем это следует из диффузионной формулы (11) (например, в опыте 3 мы должны ожидать на основании (11) увеличения \vec{r}^2 в 5 раз по сравнению с опытом 1, а не в 13 раз, как это получено экспериментально). Вследствие этого для высоких и низких плотностей водорода получается разница в вычисленных сечениях. По-видимому, это различие яельзя объяснить полностью возможными неучтенными экспериментальными погрешностями, Если это различие действительно сущестзует, то оно может быть обусловлено, например, следующими причинами:

а) рµ -мезоатом имеет начальную энергию порядка 1 eV^x, существен но превышающую тепловую (0,02 eV), и сечение рассения растет с уменьшением
 скорости. В этом случае применение диффузионного приближения для рассеяния

рµ -мезоатомов при низких плотностях H₂ (5 атм) может оказаться не совсем оправданным, так как время до распада или перехвата будет сравнимо с временем замедления до тепловой скорости (для энергии рµ leV число столкновений pµ + p до замедления составляет около 6, в то время как для $\sigma_{\rm pp} \approx 1 \cdot 10^{-19}$ см² и v тепл. =2 \cdot 10⁵ см/сек число столкновений до распада или перехвата равно 5).

б) ри -мезоатомы могут находиться в двух состояниях F=0 или F=1,

x) Если переход μ-мезона с высоких орбит на К-орбиту мезоатома происходит в результате столкновений с молекулами H₂, как это было отмечено Вайтманом /15/, то часть энергии связи молекулы H₂ (около 1 eV) будет передаваться pμ -мезоатому.

сечения упругого рассеяния в которых отличаются друг от друга в 5-10 раз. В этом случае соответствующим выбором статистических весов этих состояний можно удовлетворить полученным на опыте значениям r^2 . Эти качественные объяснения возможной разницы в величинах сечений при двух давлениях могут быть проверены лишь при дальнейшем повышении точности получаемых на опыте величин и анализа распределения р μ -мезоатомов по длинам пробегов.

Для сравнения экспериментального абсолютного значения сечения $\sigma_{\rm no}$ теоретическим мы используем величину 1,7•10⁻¹⁹ см, полученную в опыте с высоким давлением водорода и низкой концентрацией сложных ядер (опыт 2), так как применение диффузионной формулы в этом случае более оправдано (число столкновений рµ + р около 40), а эффекты от сложных ядер малы. Это значение достаточно хорошо согласуется с величиной 3.10⁻¹⁹ см², полученной Коэном и др.^{/6/}. Однако величина 3-10 см рассчитана без учета сверхтонкой структуры мезоатома рµ . Если воспользоваться длинами рассеяния а = +5 и а = -11, найденными и g Коэном и др., то сечение в состоянии с F= 0 , рассчитанное по формуле (4), равно $\sigma^{(0)} \sim 1.10^{-20}$ см² и отличается от экспериментального в ~ 20 раз (при pp = +5 и $a_g = -17$, приведенным в работе⁽²⁾, величина $\sigma^{(0)}_{pp} < 10^{-20}$). Для одласования теоретического сечения рассеяния в состоянии мезоатома ри F = 0 с экспериментальным при заданной длине рассеяния а =+5 (в вычислении которой нет заметных расхождений между /2/ /6/), необходимо положить а либо равным +3, либо равным -30. Величина а =+3 предполагает наличие в системе g рри связанного уровня и кажется поэтому маловероятной (хотя и дает малую величину сечения с переходом в нижнее состояние сверхтонкой структуры). Величина а, =-30 не исключается теоретически, но представляется слишком большой.

Таким образом, экспериментальное значение σ не противоречит величине pp сечения, рассчитанной без учета сверхтонкого расшепления. Но это не исключает возможности быстрых переходов F = 1 → F = 0. Более определенные заключения вероятно удастся сделать при дальнейшей теоретической оценке возможных значений длин рассеяния a и а и повышении точности в получаемых на опыте распределениях пробегов рµ -мезоатомов.

 2. Механизм перехвата μ -мезонов от ядер водорода сложными ядрами был рассмотрен одним из авторов (С.Г.) и при этом оказалось, что большая

вероятность перехвата ядрами С и О связана с наличием пересечений мезомолекулярных термов в системе $_{p\mu}Z$ (если заряд ядра $_{Z\geq}$ 3). Указанный механизм объясняет также наблюдаемую на опыте малую величину сечения перехвата μ -мезонов к He^{/16,17/} (поскольку в системе $_{p\mu}$ Ne отмеченное выше пересечение термов отсутствует). Детальное рассмотрение показывает, что μ -мезон перехватывается от протонов в основном на мезоатомные уровни с главным квантовым числом n = 4 для углерода и $_n = 5$ для кислорода. Поэтому последующие каскадные переходы мезоатомов на основное состояние с вероятностью, близкой к 100%, должны сопровождаться вылетом одного или нескольких Оже - электронов с энергией несколько KeV. Частота появления видимых в начале трека электрона "точек", а также их размер, находятся в согласии с предложенным механизмом перехода.

Расчет показывает также, что сечения перехвата μ -мезонов ядрами С и О примерно одинаковы: $\sigma v = 1,3 \cdot 10^{-12} \text{ см}^3/\text{сек для углерода и } \sigma v = 2 \cdot 10^{-12} \text{ см}^3/\text{сек для кислорода, а вероятность перехвата } \mu$ -мезонов ядрами С и О (при плотности жидкого водорода) равна $\lambda_z = 5 \cdot 10^{10} \text{ сеk}^{-1}$. Экспериментальная величина λ_z для жидкого водорода, вычисленная по значению λ'_z сq , найденному в первом опыте из соотношения

$$\lambda_{z} = \lambda'_{z} cq \frac{N_{\mathcal{K}H\mathcal{I}K}}{N_{\Gamma a3}} \frac{1}{C_{1}} , \qquad (12)$$

равна $\lambda_z = (1, 2^{+0,8}_{-0,5}) \cdot 10^{10} \text{ сек}^{-1}$. В соотношении (12) Nжидк.и N газ. - числа протонов в см³ для жидкого и газообразного водорода соответственно; $C_1 = (0,002^{+0,0013}_{-0,0005})$ - концентрация ядер С и О в первом опыте. Если принять во внимание приближенный характер расчета и погрешности опытных данных, то можно считать, что это значение λ_z находится в разумном согласии с теоретическим. Учет результатов недавно выполненных опытов по перехвату μ -мезонов ядрами Ne^{/17/} позволяет, по-видимому, высказать даже более общее заключение, что вероятности перехвата μ -мезонов от водорода легкими ядрами меняются не сильно от ядра к ядру. Действительно в ^{/17/} найдено, что отношение $\lambda_{Ne}/(\lambda_0 + \lambda_{pp\mu}) = (9,5+3) \cdot 10^3$. Отсюда, используя определенную нами величину $\lambda_{pp\mu}$ (см. раздел 4), получаем $\lambda_{Ne} = (1,0^{+1,4}_{-0,6}) \cdot 10^{10} \text{сек}^{-1}$.

4. Определение вероятностей перехода µ -мезона от протона к дейтрону и образования мезомолекул ppµ

При переходе и -мезона от мезоатома водорода к дейтрону в реакции

$$p\mu + d \rightarrow d\mu + p \tag{13}$$

образующийся мезоатом dµ получает вследствие различия приведенных масс рµ и dµ энергию 45 eV. Как известно, в опытах Альвареца и др.¹⁸¹ было обнаружено, что мезоатом dµ с такой энергией имеет пробег в жидком водороде около 1 мм.

Этот факт позволял надеяться, что при давлении газообразного водорода в диффузионной камере около 20 атм пробег мезоатома dµ будет существенно большим и таким образом появляется сравнительно легкий способ определения вероятности перехода (13).

Постановка эксперимента с дейтерием была аналогичной опыту 1 (см.раздел 2). Концентрация дейтерия в водороде была подобрана в специально поставченных опытах и составляла 0,44%. Были приняты меры, чтобы избежать большого

о проходящих через камеру частиц, которые затруднили бы идентификацию событий с переходом на дейтерий. Использованный в опытах газообразный дейтерий был тыстельно очищен от трития, и примесь в нем трития составляла меньше, чем 5•10⁻¹⁴ атомных долей.

На 10000 фотографиях было найдено около 800 случаев, из которых около половины были обычными μ - е -распадами, в остальные имели просветы между концом остановившегося μ -мезона и электроном, достигавшие 10-15 мм. На рис. 3 приведены два примера таких случаев с просветами 7 и 11 мм.

Распределение 341 случая по длинам проекций просветов 1' на горизонтальную плоскость с 1'> 1 мм показано на рис, 4 (за вычетом фона случаев с просветами от диффузии атомов рµ). На этом же рисунке плавной кривой нанесено расчетное распределение проекций длин просветов. Оно получено на сснове распределения истинных длин просветов, змеющего вид:

$$\frac{\mathrm{d}\mathbf{n}}{\mathrm{d}\mathbf{l}} = \mathbf{A} \exp\left\{\mathbf{b}\mathbf{l} - \frac{\lambda}{\mathbf{v}_{\mathbf{b}}\mathbf{b}} \left[\exp\left(\mathbf{b}\mathbf{l}\right)\right], \qquad (14)$$

где $b = \frac{1}{2}N\sigma\eta$, N - число протонов в см³; σ - сечение упругого рассемиял атомов dµ на протонах, дейтронах и сложных ядрах, принимавшееся разным 7-10 $^{-21}$ см $^{2/2/}$; η – доля энергии мезоатома $d\mu$, теряемая при одном столкновении, η =0,45; vo - начальная скорость мезоатома dµ , равная 6,6·10⁶см/сек; λ - сумма вероятностей перехвата μ -мезона с дейтрона на сложные ядра. С н О и вероятности свободного распада μ -мезона, принимавшаяся равной λ = 1,5.10⁶сек⁻¹. При расчете распределения (14) предполагалось, что $d\mu$ -мезоатом теряет свою энергию только при столкновении с протонами, и так как при таком рассеянии возможное отклонение от его первоначального направления не превышает 30° в лабораторной системе, считалось, что он движется по прямой. Кроме того учитывалось, что путь, пройденный $d\mu$ -мезоатомом, определяется не только замедлением, но также временем до распада или перехвата (и -мезона на сложное ядро. Из рис. 4 можно видеть, что наблюдается качественное согласие расчетного и измеренного распределений. При определении вероятности перехода и -мезона от протона к дейтрону в суммарное число таких случаев были внесены наиболее существенные поправки: поправка на неэффективность наблюдения случаев с просветами (+17%), фон ложных событий (-8%) и вклад от области с 1' < 1 мм (+4%). В результате было найдено, что отношение числа µ ¬мезонов, перешедших на дейтерий, к числу не перешедших равно 1,12 ±0,18. Отсюда вероятность перехода $p\mu + 4 \rightarrow d\mu + p$ составляет (1,45⁺ $8^{-51}_{,32}$) 10⁶ сек⁻¹. Деля это значение на концентрацию дейтерия и умножая на соотношение плотностей жидкого и газообразного водорода, получаем следующее значение для вероятности перехода и -мезона от протона к дейтрону в жидком водороде:

$$\lambda_{\rm d} = (0.95^{+0.34}_{-0.21}) \cdot 10^{10} \, {\rm cek}^{-1}$$

Полученное экспериментальное значение λ_d хорошо согласуется с величиной 1,14·10¹⁰ сек⁻¹, рассчитанной по методу уточненного адиабатического приближения Беляевым и др.^{/18/}, а также Коэном и др.^{/6/}.

Знание абсолютного значения λ_d , играюшего большую роль, например, в явлениях катализа, особенно ценно еще и тем, что оно открывает путь для определения другой важной для мезомолекулярной физики величины, а именно, вероятности образования мезомолекул ррд в жидком водороде. Действительно, в нескольких работах ${}^{/8}$, ${}^{17/}$ определялся выход реакции $d\mu + p \rightarrow \Pi_e^3 + \mu$ в зависимости от концентрации дейтерия и находилось следующее отношение

 $\lambda_{\rm d}/(\lambda_0 + \lambda_{\rm pp\mu})$. Наиболее достоверные данные для этого отношения были недавно получены Шиффом/17/. Он нашел, что

$$\frac{\lambda_{0}}{\lambda_{0}} + \frac{\lambda_{1}}{\lambda_{pp\mu}} = (8,9 + 6,2) + 10^{3}.$$

124/2 3

Гіодставляя сюда величину найденного нами значения λd , получаем абсолютную вероятность образования мезомолекул ррµ в жидком водороде

$$\lambda_{pp\mu} = (0,6^{+0,8}) 10^{6} \text{ cer.}$$

Это значение согласуется в пределах ошибок с рассчитанным Зельдовичем и Герштейном $^{/5/}$ значением $^{x/}$ 1,3.10⁶ сек $^{-1}$ и существенно меньше величин 6,5.10⁶ сек $^{-1}$ и 9.10⁶ сек $^{-1}$, вычисленных Коэном и др. $^{/6/}$ и Ву и др. $^{/7/}$.

Далее на основе результатов работы $^{/17/}$, приняв для найденного нами экспериментального значения $\lambda_{pp\mu}$ ее величину по верхней ошибке, можно сделать оценку верхнего значения абсолютной величины вероятности образования мезомолекул pdµ в жидком водороде. Если допустить, что вероятности перехода µ-месола от протона и дейтрона к неону одинаковы, то получаем $\lambda_{pd\mu} < 0.6 \cdot 10^6 \, {\rm cek}^{-1}$. Следует указать, что это значение не противоречит оценке, следующей из опытов Ашмора и др. $^{/9/}$ $\lambda_{pd\mu} > 0.2 \cdot 10^6 \, {\rm cek}^{-1}$, но сильно расходится с оценкой $\lambda_{pd\mu} > 10^7 \, {\rm cek}^{-1}$, полученной при исследовании катализа ядерных реакций в жидкодейтериевов камере $^{/10/}$.

5. Заключение

В работе экспериментально определены некоторые количественные характеристики ряда мезоатомных процессов в водороде. Хотя полученная величина сечения рассеяния рµ -мезоатома на протонах $\sigma_{\rm pp}$ близка к ожидаемому теоретическому значению сечения, рассчитанному без учета сверхтонкой структуры, вопрос

х) В работе $^{/5/}$ получено значение λ =1,5·10⁶ сек для числа ядер водорода в см³, равного N =4,2·10²²; величина λ =1,3·10⁶ сек относится к N =3,5·10²², которое соответствует рабочим соловиям жидководородной камеры. о вероятности переходов $F = 1 \rightarrow F = 0$ остается открытым. Более определенные заключения по этому поводу возможно удастся сделать на основе дальнейшего изучения распределений $p\mu$ -мезоатомов по длинам пробегов и теоретического уточнения длин рассеяния a_g и a_u . Найденные значения λ_d , $\lambda_{pp\mu}$ и λ_z достаточно хорошо согласуются с расчетными и подтверждают правильность предложенных в теории механизмов процессов. Однако повышение точности экспериментальных значений этих величин и в особенности вероятности образования мезомолекул $pp\mu$ в жидком водороде является необходимым в связи с проблемой захвата μ -мезонов протонами.

Наметившееся противоречие в оценках величины $\lambda_{pd\mu}$, полученных из экспериментов, выполненных с водородом при малой примеси дейтерия и с жидким дейтерием с малой примесью водорода⁽¹⁰⁾, могло бы указывать на возможность нового механизма катализа и поэтому опыты по непосредственному определению $\lambda_{pd\mu}$ в настоящее время особенно интересны.

Авторы пользуются случаем выразить глубокую благодарность Я.Б.Зельдовичу за ценные дискуссии, коллективу отдела синхроциклотрона и в особенности Т.Н. Томилиной и Е.И.Розанову за обеспечение хорошей работы ускорителя в импульсном режиме, Е.М.Кучинскому, Н.П. Василистову, А.В.Бржестовской и Е.А.Курчевской за выполнение работ по очистке дейтерия от трития, лаборанткам Л.Краснослободцевой, Т.Сажневой и Ю.Сайкиной за помощь в просмотре фотографий и измерениях.

a)

б)

- Рис. 1. Фотографии µ е распадов в водороде (опыты 1,2). Смещения между началом трека электрона распада и концом остановившегося µ -мезона обусловлены диффузией рµ мезоатома.
 - а) в начале трека электрона распада нет видимой "точки";
 - б) в начале трека электрона распада наблюдается видимая
 "точка" (электрон Оже).

- а) давление H₂ 22,7 _{атм} (опыт 2) б) давление H₂ 5,0 атм (опыт 3).

a)

.

6)

Рис. 3. Фотографии μ - е - распадов в водороде с примесью дейтерия. Смещения между началом трека электрона распада и конном остановившегося μ -мезона обусловлены процессом рµ + d → dµ + p и последующим пробегом dµ -мезоатома.

а) в начале трека электрона распада нет видимой "точки";

б) в начале трека электрона распада наблюдается видимая "точка" (электрон Оже).

Рис. 4. Распределение по проекциям длин просветов числа случаев $d\mu$ – мезоатомов, образовавшихся в процессе $p\mu + d \rightarrow d\mu + p$ ($P_{H_2} = 22.7$ атм, $C_D = 0.44\%$). Плавная кривая – расчетное распределение (см.текст).

Литература

- 1. Я.Б. Зельдович, С.С.Герштейн. ЖЭТФ, <u>35</u>, 821 (1958).
- 2. Я.Б.Зельдович, С.С.Герштейн (обзор) УФН, 71, 581 (1960).
- ⁴ Primakoff, Revs.Mod.Phys., 31, 802 (1959); S.Weinberg, Phys.Rev.Lett., 4, 575 (1960);
 L.Wolfenstein, V.L.Telegdi, Proceedings of the 1960 Annual Intern. Conference on High Energy Physics at Bochester, p. 529, p. 713.
- 4. С.С.Герштейн. ЖЭТФ, <u>34</u>, 463 (1958).
- 5. Я.Б.Зельдович, С.С.Герштейн. ЖЭТФ, <u>35</u>, 649 (1958).
- 6. S.Cohen, D.L.Yudd, R.J.Riddel. Phys. Bev., 119, 397 (1960).
- 7. Ta-Yon Wu, R.L.Rosenberg and I.Sandstrom.Nucl. Phys., 16, 432 (1960).
- 8. L.W.Alvarez et al., Phys.Rev., 105,1127 (1957); M.Cresti, K.Gottstein, A.H.Bosenfeld and H.K.Ticho. Report UCRL 3782, p.8, 1958 (unpublished).
- 9. A. Ashmore, R. Nordhagen, K. Strauch and B. M. Townes. Proceedings Phys. Soc. (London) 71, 161 (1958).

10. J.G.Fetkovich, T.H.Fields, G.B.Yodth, M.Derrick. Phys. Rev. Lett., 4, 570 (1960).

- н А.Е.Игнатенко, Л.Б.Егоров, Б.Халуна, Д.Чултэм. ЖЭТФ, <u>35</u>, 894 (1958).
- 12. С.С.Герштейн, ЖЭТФ, <u>36</u>, 1309 (1959).
- Ю.А.Будагов, С.Виктор, В.П.Джелепов, П.Ф.Ермолов, В.И.Москалев. Материалы конференции по камерам Вильсона, диффузионным и пузырьковым камерам, Дубна, 1958. ЖЭТФ, <u>38</u>, 734 (1960).
- 14. J.C.Sens. Phys. Rev., 113,679 (1959).
- 15. A.F.Weightman. Thesis, Prinston 1949; Phys.Rev., 77, 521 (1950).
- 16. О.А.Займидорога, М.М.Кулюкин, Б.Понтекорво, Р.М. Суляев, А.И. Филиппов, В.И.Цулков-Ситников, Ю.А.Щорбаков. Препринт ОИЯП, Д-678, Дубна (1961)
- 17. M.Shiff, preprint EFINS-61-33, Report 351, June, 1961.
- 13 В.Б.Беляев, С.С.Герштейн, Б.Н.Захарьев, С.П.Ломнев. ЖЭТФ, <u>37</u>, 1652 (1959).

Рукопись поступила в издательский отдел 23 октября 1961 года.