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DETERMINATION OF THE COORDINATES
OF THE MINIMA OF FUNCTIONALS
BY THE LINEARIZATION METHOD







At present any expressions dependent on the parameters are minimized almost exclusively by the

aradient method ( by the method of steepest descent)’/l’z/.

A natural consequence of the universal character of this method is, first of all, an unsatisfactory rate
of convergence, the number of steps necessary for reaching the minimum quickly increasing with the mul-
tiplicity of the free parameters which are varied. The same shortcoming is inherent to other general methods,
for instance, to the relaxation one/l/.

Meanwhile, the cverwhelming majority of the expressions one has to minimize in practice are rather
commonplace by their structure. Therefore, it appears reasonable to single out two-three basic types and
to work out the corresponding specialized methods of searching for minima which are more effective than
the gradient method. Such specialized methods may be useful by themselves or in the combination with 0.
certain encouraging cybernatic procedure, as, for instance, the gradient methods used in the method of

/3/

ravines .

This paper suggests as some of the specialized methods of locations of minima, the method applicable

to the functionals dependent upon the unknown parameters a=1{ 8y e s am¥ exclusively through

the functional argument y(a x) ,1i.e.,

oM oM dy (a.x) g« o)
d 8, Syla,x) d a,
( by the variational derivative 8 M we mean the ke of the Frechet derivative Mi(y, )=
dy(x)
=[2HM fax)
oy
For instance, M = [f[y(a x)] dx . The variable x may be descrete* and continuous,

one-dimensional and many-dimensional. The functional M is assumed to be twice continuously differen-
tiable with respect to its functional arqument throughout all the regions where it may be needed in the

future.

Formally, the method suggested consists in replacing the exact equations of extremum by a certain

system of linear equations, that is why it was called linearization method.

As for the advantages of the method, it should be mentioned that the number of steps necessary for

the location of one minimum is not almost growing with the number of the parameters & .

* Here and further it 1s Implied that if the funotions! is set on a descrete set of points xé_ , f =1, ... n,

then the variational derivatives are replaced by the partial ones, and the integration -by the summation, for inatanoce:
_aM = ___a_M a! (87 _xf).The number of points Y , must not be less than that of the parameters a

aakf=1 8y(a,x§) aak



The linearization method has been applied in a number of cuses/4’5’6/. The minimum has been found

after 510 iterations, the number of parameters varying from 2 up to 186.

The functional M may have muny minima o] different tvpes . However, far from all of them correspond
necessarily to the solution of the original problem. To reject false solutions it is necessary to investigate
the stability of the positions of the minima with respect to the shifts of the outer (not entering the functio-
nal arqument y(a, x) )} parameters. {.et us emphasize that such an investigation does not reduce to the
study of the shape of the pits found. In the linearization method the type of the minimum can be determinea

without any additional calculation, since there is a close correspondence between the type of a mini-

mum and the character of the searching process in its vicinity.

Sec. 1. Step Formula

In the linearization method the functional ¥ {y} is approximated by the quadratic functional

2
Miyi-y g M

5@ By Ly (a,2)- y (% 2) ][ y(a,x) —y(a®x)] dzdx+f§)%x)[y(a,x) —y(a®x)]ldx + const,

(1.

while the dependence y(a) - by the linear dependence*

m
)’(a):y(ac’,x);% Y Ay, (1.2)
= aak

The functional neighbourhood of the initial approximation where approximation ( L1 ) holds is supposed

to be great enough that the minimum ) belongs to this neighbourhood **. As for ( 1.2 }, no such

assumption is made.

* 1t applied to the least squarg{ss/method the expediency of approximation ( 1.2 ) has been
’

pointed out in different books, e.g.,

** By the functional neighbourhood of the minimum of M we mean the region in which

2
f[(z)_‘iy_ . [(X) dz dx>( for an arbitrary non-zero function f
8¥(z) & y(x)



For estimating the direction and the distance to the minimum M we get a following system of

linear equations

m
M 5 Aa [ 9y M Ay drdx=0 . (1.3)
1=1 8a! 8y (z) 8y (x) J ay

As will be seen in the following, approximations ( 1.1 } and (1.2) lead to the rejection of not only
the terms of the second and higher order with respect to Aa . but of some terms of the first order.

Therefore, such a procédure should be somewhat elucidated.

Find the vector Aa= {Aal, ven Aem} , which in an 'infinitesimal vicinity of the minimum of A
would touch the minimum with its free end. Expanding the derivatives d ¥ _in powers of the vector Aa
aak
M
IM(a+Aa) - dM(a) + 3 M(a) Aay - ... (1.4)
c?ak ) 8ak i=1 aa, aak
and using the extremum condition
dM(a +Aa) =9, (1.5)
3 ay
we get, after neglecting the higher powers of Aa,- , a system of linear equations
m 2
Ma) .5 A, 9 M) _o, k=1,..,m, (1.6)
d a, I=1 ! 8a! 8ak
or, calculating explicitly the second derivatives
m
B M + 3 A alf ay(z) 62\!1 3)’()() dz dx +
dq, t=1 da, Sylz) oy( x) da,

1.7

m
+% Aa, [ _OM Py dx =0 .
=1 ! Sylx) da; da,






m ..
AOM - i3 A, G- o0, (1.11)
i=1

from here we find the step in the space of the parameters

- A 1Y
Aa =- G _ 1.
a, kEI 1k _g;k_ (1.12)

and the functional step

I m -1 :
Ay(z) =-x 5 9@ ¢ M (1.13)

Sec. 2. A Simple Example

2
Let y(A) be an analytical function of the parameter A =a, + ia2 and Miyi=]y | . Then the
minima of M are equal to zero and correspond to the roots of the equation y “4)=0 . By substituting
M=y |2 into(1.9),(1.12) and assuming A =1 , we obtain
(n+1)  (n)

G=2y/l (7)), aa=a "_4 ==y, (2.1)

Evidently, we are led to the Newton method for finding the complex roots of the equation* y(4)=0,

It should be noted that the linearization method is, generally speaking, not equivalent to the Newton
method. In particular, if we are going to seek for the solution of the extremum equations using the Newton

method we do not get system (1.3), but (1.7) whose shortcomings were already discussed

Sec. 3. Some Properties of the Step Formula and the Choice of X,

The functional step A y(z) is invariant with Tespect to any (non linear inclusive) substitution of

the parameters

* As far as formula ( 2.1 ) is concerned, one can turn to pnper/g/

. Note, that in case of nonanalytical

functions Y(A) the matrix G is no longer diagonal and formulas ( 2.1 ) become more complicated.






( 1.10 ) may become so great that AM will change its sign. The maximum step (’z- in each parume-

ter a; for which the non-linear part of the increment ¥ cannot affect the sign of AM | depends
upon the magnitude and the structure of the matrices G and @ . For a considerable number of the
parameters & it is much more complicated to calculate the matrix @  than to make some extra steps,
then it is more advantageous to find the optimal step by a trial and error method. The magnitudes of ?1,
are changing more slowly than A, and may be revised rarer. Therefore, it is more convenient to

look for the best (?i , and after that to calculate A by the formula

A= 1 . (3.1)
max {1, _Sﬂ_i
i

Further, the quantities Bi will be assumed chosen in the following way. The original ?l- are
taken somewhat overestimated so that the nonlinear part of the increment y(g t f,') -y(a;)
would be, on the average, equal to the linear part. If, as a result of the step K; , the value of the
functional M  has increased, all 9,- are made two times smaller and the step is repeated. If,
as a result of the two preceding steps, the functional was decreasing, during the preparation for the

next step, those f,- for which A a; > ; . are doubled.

If near the minimum

o (3.5)
L Q) <<V G; Gy

forall 1,k ,then X =1 ,the iteration process becomes close to the Newton one, and the convergen-
ce in the end of the process will be fast.* In this case the corrections of the coordinates of the minimum
will go practically according to the one-dimensional Newton formula {( 2.1 ), where the most nonlinear of
the perameters  &; will play the role of the parameter A . The case of the violation of condition

( 3.5) will be discussed  in the next Section .

Let us mention two main reasons which favour the fulfillment of condition ( 3.5 ) in practice. First,
the functions _Q—Y_(f_)_ are usually well approximated by a linear combination of the derivatives 9y

- ajoay s M &j
and in integrating with the derivatives yield (near the minimum) zero owing to the extre-

B y(x)
mum equations 9M .o .Second, the function _OM = near the minimum is often appraaching ze-
da, 8y(x)
i

* Concerning the convergence of the approximate Newton {nterations uee/a/. Chapter XVIII, Sec.2.



ro because the shsclute minimum of the functional M is close to the minimum for the given family of

the functions y(a.x) . Tla lgiter circunistance takes place, e.g., for the least squares method when

2
M=§; [y(a,xf)—tgl Wg

1t shouid be noted that o Loth alorementioned cases condition { 3.5) has a tendency to be tulfilled
the better, the larger the number of the parameters  a  and the richer the family of y(a& x) . This, in
particular, accounts for the fact that in the linearization method the number of steps necessary for reach-

ing the minimur. does not practically increase with increasing the number of the parameters &

Sec. 4. The Stability of the Minima

Let the functional  p¢ , besides the parameters a which are in the minimization, depends also on

certain parameters t o= (tl’ ey by ) We restrict ourselves to the case when the parameters ¢
do not enter the functional arguirnt y{a, x) at all
A
Ay @x) g (4.1)
Jt
[

and the functional &  depends upon them only explicitly M= M {y(ax)l.
We shall take inerest in the dependence of the minimum of M  positionon the displacements of the

parameters ¢

Physical ezamples of surn o stoblem are quite nunierous.

The parameters ¢ may be ~xperimenta! magnitudes which are known with a limited accuracy. What
will be the displacement of minimum M ifthe parameters are moved their standard errors aside? As another
example we mention different corrections and higher terms of expansion in series which as small quantu-

es were neglected and put to zero when the expression for the functional M  was written. Are the results

sensitive to these corrections?
Take the linear term in the evpansion of M (in the neighbourhood of the minimum) in a Taylor
series in the increments of the parameters — @p and t

@

m
MM+ IMags M o 1.2)
min+p. atu ' tu;(:l aak ak (
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means that no change of ¢ can shift the minimum along the mentioned directions. For instance, in
case { 4.5), the minimum may move only on the surface set by the equation aj = a-;. . Note, that the
statements just made essentially rely upon limitation ( 4.1 ).

A set of the minima which the functional has depends on how its functional argument {s parametrized.
Let the functional M  have a certain spectrum of the minima Mzgi)n =M1 Y(i)(x) } .
if the family ¥ (a, X) is parametrized so that the functional argument may take the same value Y(i) (x)
for some different values of the parameters & , then Y as the function of a-s will have a num-
ber of identical copies of this minimum with the precisely coinciding depths, and the corresponding
(i)

spectral value Mmin will be multiple,

Introduce a new parametrization by = by (ag: .0 ag,) of the same family. Evidently, any minimum
M () } of the functional M{ y(a, x)} in which the Jacobian O(bp...y by) s different from
d(ay...,
zero must be,as well, present ( a copy at least) in the spectrum of p{ y((g;lx);,s?ﬁ)e the changes in the

spectrum of the minima may be related only with the zeros of the Jacobians

_9(b) gng 9(a)
d(a) a(b)
In changing the parameters t  the undegenherated minimum is moving in the m - dimensional
reqgion, and Jacobians —g—((—b)) ) _.g_%%;_ may vanish only in the sub-region of fewer dimensions. There-
a

fote, the undegenerated minimum cannot be created or annihilated by the substitution of the parameters,
although the number of its copies may change. It follows herefrom that if there exists such a parametriza-

0
tion of the family ¥ (& x) for which M has the enly non-degenerated minimum M( ) , then

0 ¥

the spectrum of the minima M { ¥ (a,x) }  begins with M | ,andall M ., > M .
min min min

are degenerated.

When the functional M is only an auxilliary magnitude and only those values of the parameters a
for which it is minimal are of immediate interest, the degenerated minima correspond to the false solu-

tions of the problem. Indeed, the degenerated minimum can be easily created artificially for any value é"k

of any parameter  ay without changing essentially the functional M  itself, but having changed
only formally the way of the parametrization of its functional argument ¥ (&,x) . Let us substitute,
2 3 -
e.qg., the parameters b for a by thze formula bg+bg = (ag—~ay) sign :M .
dy - 2y 9 IM 5 ’k
Now =(2b+3%") =0, >0, at  bp=0 , and the tunctional ¥ has the
7, da, " a0

m-multiple degenerated minimum at the point ag=ag we have chosen . By making similar procedure in
an inverse order, by a formal substitution of the parameters a, itis possible for the functional N
to get rid of any degenerated minimum found ( at the same time new degenerated minima may appear in other

places }.
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shown that the relative accuracy of the k-th diagonal element of the matrix G_j is not less
than Rk times worse than the relative accuracy of the same element of the matrix G - . Let, e.q.,
the matrix =~ G is known with 9 significant figures. Then, if at least one of Rk exceeds lO+8,
then in the matrix G'I not a single figure can te quaranteed correct no matter how G-I was cal-

culated.

p and Rk have a simple geometric sense. If the functions JZ Y (%) are considered to be
a -
vectors in the space with the metric tensor _,_(Z,M‘,m‘ ( cf. Sec. 3k), then p 1 is equal to
8y(z) 8y(x)
the square of the volume of the parallelepiped with the unit ribs constructed on these vectors, and

T _ 9 '
RkI: 5”72‘,4' ., where ¢ iz the angle which the vector —(—;—@) makes with the plane in which

ak
the remaining vectors are lying.

A typical reason for the unstability is an incorrect cheice of the fumily of the functions ¥ (a, x)
which is a functional argument. This case can be easily identified as long as the addition of each new
parameter  &; decreases the minimum M slightly but increases p sharply. The stability is
re-established if for  y(a, x) one takes the family which is mere to the point when the nature of the

problem is concerned.

k-1
Let., e.q., ¥(a, x} is chosen in the form y = % agx and the low values of

should be expected if | v(x) has the shape of a curve drawn in Fia. 1.
Clearly, to describe such a curve by a polynomial is difficult, and the coefficients ay, will

be determined from the condition M = min rather bad. In this case it is much better to put, for

instance, y = (bQ +b4 x+ ... )(1+b1x +1.’>3x2 +...)

It may happen that the family  y (a, x) is chosen in accordance with the nature of the problem, but
p 1is, nevertheless, great. This means that the parametrization of the family y (a, X) Isno success,
and some nonlinear substitution of the parameters® with large R is required. In such q substitution
one should tend for each of the functions _%LX), to have the maximum at the point where the remain-
ing functions are small. ok

In the worst case, if the parameters ay, introduced are just the quantities, for the sake of which

the minimization is made, one has to give up determining the parameters with large R by fixing

some of these parameters.

————

* Flirstly, the linear substitution does not avoid the loss in accuracy, second, to know {ts coeffic]e

ents exactly enough it is necessary, at first, to find the minimum.












ot the weights Wf it is possible to change to a certain extent the magnitude of the correlation factors.

In this particular cuse, when the number of parameters coincides with that of points on which the
functional is defined, the application of the linearization method tc the minimization of functional
(6.1) with A = 1 is the same as the application of the Newton method just to system ( 6.10 ). However,
due to the choice of X , the linearization method provides for the convergence in a wider class of
the cases and has a more convenient control system. In case of cumbersome systems ( 6.10 ), the mini-
mum M may turn out to be relatively unstable with respect to the variation of the quantities t§ from
zero, what leads to technical difficulties. Evidently, the unstability of such a kind is by no means con-
nected with the nature of the problem and is rather formal. Therefore, the unstability can be always avoi-

ded by a certain non-linear transforration of system* ( 6.10 ).

In the degenerated minima of the functional M = ? y2 we do not become equal to zero, so that
such minima are not the solutions of system ( 6,10 ). If real solutions are looked for,then some degenera-
ted minima may point out that near them there may be present « pair of complex solutions with a small

imaginary part. If the complex solutions of system ( 6,10 ) are sought, then the degenerated minima may

be found only at the points when the functions [k are not analytical with respect to one or several

parameters ap - Indeed, if at a certain point Ofr o and the functions [k are analytical with
a

respect to ay then | [kl is necessarily decreaging in one of the directions, and the searching

for the minimum will not stop at this point ,
The authors express their gratitude to N.P. Klepikov, J.A. Smorodinski, E.P. Zhydkov, N.N.Govorun,
Yu.M. Kazarinoy, R.M, Dzhabarh Zade and G.P. Ososkov for valuable remarks.

*See the footnote on page 14.






