

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ.

Лаборатория ядерных проблем

Д.В. Нягу; Э.О. Оконов, Н.И. Петров, А.М. Розанова, В.А. Русаков

Д - 794

ОБРАЗОВАНИЕ ГИПЕРОНОВ В СВИНЦЕ К2 - МЕЗОНАМИ СО СРЕДНЕЙ ЭНЕРГИЕЙ~100 МЭВ

Д.В. Нягу, Э.О. Оконов, Н.И. Петров, А.М. Розанова, В.А. Русаков

Д - 794

ОБРАЗОВАНИЕ _ОГИПЕРОНОВ В СВИНЦЕ К₂ -мезонами Со средней энергией~100 мэв

<u>___</u>

Образование гиперонов Ко2 -мезонами наблюдалось несколькими экспериментальными группами, однако данных об эффективных сечениях этого процесса в настоящее время не имеется .

Реакция рождения гиперонов Ко -мезонами изучалась с помощью камеры Вильсона в магнитном поле в пучке Ко -мезонов от синхрофазотрона ОИЯИ. Мишенью служила свинцовая пластинка толщиной 5,8 г/см².

Условия опыта были благоприятны в основном для регистрации распадов А°-гиперонов, т.к. вследствие сравнительно малой энергии рожденных частиц подавляющая часть заряженных гиперонов не выходила из свинцовой пластинки из-за ионизационного торможения 2/.

При экспозиции камеры со свинцовой пластинкой было зарегистрировано 440 V° -событий. Из них визуальным путем было отобрано 39 событий, у которых один из следов по плотности почернения и по кривизне идентифицировался как протон (рис. 1).

Угловое распределение Л° -гиперонов, испущенных из пластинки, по-видимому, является изотропным, т.к. количества / -частиц испущенных "вперед" и "назад" (в лабораторной системе координат) по отношению к направлению движения K_{2}^{0} -мезонов практически одинаковы ($\frac{N_{2}}{N_{2}} = \frac{13}{15}$). С целью окончательной идентификации проводился кинематический анализ отобранных событий. Для 35 полностью обмеренных распадов было определено отклонение величины

 $\Delta = E_+ E_- - p_+ \cdot p_- \cos y$

от ее расчетного значения C = 17,38.10⁴ (Мэв)² для распада $\Lambda^{\circ} \rightarrow p + \pi^{-}$, а также экспериментальная ошибка δΔ; (Е_, Е_, μ_ обозначеют соответственно измеренные полные энергии и импульсы, а у -угол разлета рас падных частиц).

1/ В работе Панофского и др. /1/ методом выбывания из пучка измерено полное сечение взаимодействия Ко -мезонов на меди при средней энергии 130 Мэв σ_{полное} =/1120+250) мб.

2/ Условия и постановка опыта подробно описаны в работе /2/.

3/ Среди них, как показал кинематический анализ, 11 гиперонов вылетели из стенок камеры и в дальнейшем исключались из рассмотрения. 4/ Эта величина является инвариантом и равна $C = (M_{Ao}^2 - M_{\pi}^2)/2$.

Как видно из таблицы 1, отобранные события удовлетворяют кинематике Λ° -распада. Среднее значение массы распадающихся частиц, вычис-. ленное для выделенных распадов, составляет /1116 <u>+</u> 8/М эв и хорошо согласуется с наиболее точным значением массы Λ° -гиперона: $M_{\Lambda}/1115,45\pm0,12$ / Мэв^{/3/}. Средняя энергия зарегистрированных Λ° -гиперонов оказалась равной 40 Мэв, а максимальная - 80 Мэв.

Таким образом, проведенный анализ показал, что в условиях нашего опыта отбор Λ° -распадов проводился достаточно надежно. Поскольку вероятность имитации Λ° -распадов другими возможными реакциями, например, реакцией образования в газе камеры отрицательных π -мезонов нейтронами из пучка очень мала^{5/}, то все 39 выделенных событий следует отнести к распаду Λ° -частицы по схеме $\Lambda^{\circ} + p + \pi^{-}$. Для определения истинного числа Λ° -гиперонов были введены поправки на "нейтральный " распад $\Lambda^{\circ} + n + \pi^{\circ}$, на распады Λ° -частиц внутри мишени и вне освещенной области камеры и на эффективность регистрации

Λ°-гиперонов, зависящую /как показали измерения/ от положения плоскости распада относительно направления фотографирования.

После введения всех поправок, исправленное число Λ° -гиперонов, вылетевших из пластинки, составляет 133±23. Приведенная ошибка включает как статистический разброс, так и ошибки введения поправок.

Полный поток падающих K_2° -мезонов определялся из числа зарегистрированных K_2° -распадов в хорошо просматриваемой области камеры в предположении, что K_2° -мезоны имеют энергию $E_{\kappa_0} = 100$ Мэв, близкую к значению средней энергии, определенной ранее ^{/2/}. С учетом поправки на эффективность регистрации и на распад $K_2^{\circ} + 3\pi^{\circ} = 100$ Мэв, основная причина большой неопределенности потока связана с неточностью определения среднего времени жизни K_2° -мезонов / $r_{\kappa_0}^{\circ} = \mathbf{s}, \mathbf{1}_{-1,1}^{+1,6}$. $10^{-8} \text{сск}^{/4/}$.

5/ В газе камеры было зарегистрировано всего 5 случаев рождения л -мезонов в составе многолучевых звезд.

6/По нашим данным относительная вероятность этого распада составляет ~20%.

4

91 4 7 Найденные значения истинного числа Λ° -гиперонов и потока K_2° -мезонов через пластинку дают для сечения образования Λ° -гиперонов на Рв следующую оценку:

 $\sigma = /200 + 70 / MG.$

Однако эта оценка может оказаться заниженной вследствие того, что при определении поправок могут быть не полностью учтены распады, вероятность регистрации которых очень мала /например, распады тех гиперонов, импульс которых составляет небольшой угол с пластинкой/.

Принимая во внимание, что зарегистрированные Λ° -гипероны могут образоваться как в результате непосредственного взаимодействия K°_{2} мезонов с ядрами свинца, так и в результате распада Σ° -гиперонов, рожденных также в непосредственном взаимодействии, это сечение следует отнести к процессу образования Λ° и Σ° -гиперонов.

С целью получения сведения о механизме рождения гиперонов изучалась природа заряженных частиц, вылетающих из пластинки совместно с

 Λ°-гиперонами. В 6 случаях /из 28/ совместно с Λ°-гипероном вылетает либо π⁺ -мезон, либо электронно-позитронная пара. В других 9 случаях, вылет Λ°-гиперона сопровождается испусканием протона, причем в этих случаях не появляется никакой корреляции в углах разлета

Λ° и протона, тогда как в случае поглощения - К[°]₂ -мезона двумя нуклонами естественно ожидать, что должны преобладать углы разлета, близкие к 180°. Приведенные данные свидетельствуют о том, что в наших условиях процесс поглощения К[°]₂ -мезонов двумя нуклонами /как и в случае поглощения на лету К[°]-мезонов ^{/5 /}/ не является преобладающим.

Среди V° -событий, у которых один из следов выходит из пластинки, по кинематике и измерениям ионизации был идентифицирован один случай распада Σ→ π+ п . Хотя эффективность регистрации такого распада мала /она составляет ~15%/, наблюдение только одного заряженного гиперона говорит об их малом выходе по сравнению с Λ° -частицами. В то же время щри взаимодействии К⁻-мезонов с дейтроном выходы нейтральных и заряженных гиперонов сравнимы по величине ^{/6/}. Малый выход заряженных гиперонов обуславливается, по-видимому, их сильным поглощением внутри ядра. При анализе V° -событий, которые могли быть распадами K_1° -мезонов, вылетевших из пластинки, было обнаружено одно событие, удовлетворяющее в пределах одной стандартной ошибки кинематике распада $K_1^{\circ} + \pi^+ + \pi^-$, что дает для отношения сечений регенерации $K_2^{\circ} + K_1^{\circ}$ и рождения гиперонов в свинце значение намного меньше единицы / ~ 5.10⁻²/. В связи с этим следует упомянуть, что согласно расчетам Бисваса^{/7/}, это отношение для K_2° - р взаимодействия при энергии 100 М эв имеет значения от 0,2 до 5 для четырех возможных амплитуд K^- - р -рассеяния, найденных Далитцем и Туаном^{/8/}.

В заключение отметим, что для Λ° - распадов были определены отношения чисел распадных протонов, летящих вперед и назад в системе центра масс Λ° -частицы, а также отношения чисел тех же частиц, испущенных вверх и вниз относительно плоскости рождения Λ° -гиперона. Результаты приведены в таблице 2. Надо сказать, что в данном случае не следует ожидать сильной поляризации Λ° -частиц при рождении, так как взаимодействие, по-видимому, происходит в основном в S -состоянии. Кроме того, возможные асимметрии могут быть смазаны из-за движения ядерных нуклонов.

Авторы выражают благодарность коллективу эксплуатационных отделов синхрофазотрона, обеспечившему постановку этой работы. Авторы благодарны Б.М. Понтекорво за постоянный интерес, В.П. Джелепову и В.И. Векслеру за содействие в выполнении работы, М.И. Подгорецкому за обсуждение некоторых методических вопросов; М. Аникиной и группе лаборантов за участие в измерениях.

Таблица І.

ж) Значение <u>А-с</u>	0 + I	I * 2	2+ 3	3
Число л° -событий	21	6	I	0
ж) В условиях опыта $\frac{\delta}{\Lambda}$	∆ → ~ 79	8		

Таблица 2

x)

Коэффициент асимметрии $a = \frac{3\Sigma \cos\theta_i}{N} + \sqrt{\frac{3-a}{N}}$

Асимметрия	Число гипе- ронов	Мищень	a	Δa
Вперед-назад	28	Рв	-0,22	<u>+</u> 0,34
	II	Стекло	-0,39	<u>+</u> 0,50
	39	Рв+стекло	-0,27	<u>+</u> 0,29
	28	Рв	-0,II	<u>+</u> 0,34
Вверх-вниз	II	Стекло	-0,42	<u>+</u> 0,51
	39	Рв+стекло	-0,19	<u>+</u> 0,28
Вправо-влево	39	Рв+стекло	+0,24	<u>+</u> 0,27

¥)

7

Рис. 1.

Литература

- 1. W.K.H.Panofsky, V.L.Fitch, R.M.Motley, W.G.Chesnut. Phys. Rev., 109, 1353 (1958).
- 2. Д.В. Нягу, Э.О. Оконов, Н.И. Петров, А.Н. Розанова, В.А. Русаков ЖЭТФ <u>40</u>, 1618, 1961.
- 3. A.H.Rosenfeld, F.T.Solmitz, R.D.Tripp. Phys.Rev.Lett. 2, 110 (1959).
- F.S.Crawford, M.Cresti, R.L.Douglas, H.L.Cood, G.R.Kalbfleisch, M.L.Stevenson Phys. Rev. Lett. 2, 361 (1959).
- Y.Eisenberg, W.Koch, E.Lohrmann, M.Nikolic, M.Schneeberg, H.Winfeler, Nuovo Cimento IX (5), 745 (1958); XI (3), 351 (1959).
- 6. O.Dahl, N.Horwitz, D.Miller, J.Murray, M.Watson, Proc. of the 1960 Annual International Conference on High Energy Physics at Rochester, p. 414
- 7. Nripendra N.Biswas Phys. Rev. 118, 866 (1960).
- 8. R.H.Dalitz, S.F.Tuan, Phys. Rev. Lett. 2, 425 (1959).

Рукопись поступила в издательский отдел 7 сентября 1961г.