

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Лаборатория ядерных проблем

К.С. Мариш

1

Д-793

CMI HANDERS STREET

ФЕНОМЕНОЛОГИЧЕСКОЕ РАССМОТРЕНИЕ ПРОЦЕССОВ ОБРАЗОВАНИЯ п - МЕЗОНОВ п - МЕЗОНАМИ

Дубна 1961

К.С. Мариш

Д-793

ФЕНОМЕНОЛОГИЧЕСКОЕ РАССМОТРЕНИЕ ПРОЦЕССОВ ОБРАЗОВАНИЯ *п* - МЕЗОНОВ *п* - МЕЗОНАМИ

Направлено в Nuclear Physics

Научно-техническая библиотека ОИЯИ

Введение

Процессы рассеяния п⁻⁻-мезонов на нуклонах и процессы рождения п-мезонов при взаимодействиях п -мезонов с нуклонами рассматривались рядом авторов с помощью различных моделей.

Так, Ферми^{2/2} пытался. объяснить процессы эбразования мезонов на основе статистической модели. Беленький и др.^{3/3} усовершенствовали статистическую теорию Ферми, введя в рассмотрение резонансное взаимодействие π -мезона с нуклоном в состоянии с $T_{\pi N} = J = 3/2$. Линдембаум и Штернхеймер^{4,5/} для объяснения данных об упругом и неупругом взаимодействии π -мезонов с нуклонами, до энергии падающего π -мезо на 1,5 Бэв предложили изобарную модель нуклона. Они предполагали, что возбужденный нуклон существует реально в состоянии с $T_{\pi N} = |J = 3/2$. Согласно этой модели, должно отсутствовать образование π -мезонов в состоянии с изотопическим спином $T_{\pi N} = \frac{1}{2}$. Экспериментальные результаты^{6/} говорят о том, что эта модель не находится в хорошем согласии с опытом. Поэтому, чтобы установить, почему возникает такое расхождение, необходимо учесть также взаимодействие π -мезона с нуклоном в конечном состоянии с изотопическим спином $T_{\pi N} = \frac{1}{2}$.

Некоторые авторы $^{/7,8,9,10,11'}$ приходят к выводу, что в процессах, обусловленных сильным взаимодействием, играет роль π - π -взаимодействие. Фрезер и Фулько $^{/12'}$ и Чу $^{/13'}$ указали, что включение двухмезонного р-резонанса, а также резонанса в системе из трех π -мезонов с полным изотопическим спином $T_{\pi\pi} = 0$, позволяет объяснить электромагнитную структуру нуклона. Эксперимент $^{/14'}$ дает указание на существование такого резонанса.

> 1. Амплитуды реакций $\pi_{I} \stackrel{N_{I}}{\rightarrow} \pi_{I}^{*} \pi^{*} N_{I}^{*}$ в изотопическом пространстве

Феноменологическое описание процессов образования *п*-мезонов при взаимодействии п-мезонов с нуклонами в пространстве изотопического спина сводится к введению четырех независимых амплитуд. Вероятность любого из процессов образования π -мезонов можно выразить в явном виде через четыре независимые амплитуды. Обозначим амплитуду процесса образования π -мезона при столкновении π -мезона с нуклоном N_I через $M(\pi_I N_I \rightarrow \pi_I^* \pi^* N_I)$, где индексом /x/ обозначены вторичные частицы.

Амплитуды процессов в представлении, когда в конечном состоянии вводится подсистема из двух П-мезонов, выражаются следующим образом:

$$M (\pi^{+}p \rightarrow p\pi^{+}\pi^{\circ}) = \sqrt{\frac{1}{2}} (\sqrt{1/5} B_{32} + B_{3})$$
$$M (\pi^{+}p \rightarrow p\pi^{\circ}\pi^{\dagger}) = \sqrt{\frac{1}{2}} (\sqrt{1/5} B_{32} - B_{31})$$
$$M (\pi^{+}p \rightarrow n\pi^{+}\pi^{\dagger}) = -\sqrt{\frac{4}{5}} B_{32}$$

$$\begin{split} & \mathsf{M} \left(\pi^{-} \mathsf{p} \to \mathsf{p} \ \pi^{\circ} \ \pi^{-} \right) = \sqrt{\frac{1}{2}} \left(\sqrt{\frac{1}{5}} \ \mathsf{B}_{\mathfrak{s}_{2}} + \frac{1}{3} \ \mathsf{B}_{\mathfrak{s}_{1}} + \frac{2}{3} \ \mathsf{B}_{\mathfrak{s}_{1}} \right) \\ & \mathsf{M} \left(\pi^{-} \mathsf{p} \to \mathsf{n} \ \pi^{-} \ \pi^{\circ} \right) = -\sqrt{\frac{1}{2}} \left(\sqrt{\frac{1}{5}} \ \mathsf{B}_{\mathfrak{s}_{2}} - \frac{1}{3} \ \mathsf{B}_{\mathfrak{s}_{1}} - \frac{2}{3} \ \mathsf{B}_{\mathfrak{s}_{1}} \right) \\ & \mathsf{M} \left(\ \pi^{-} \mathsf{p} \to \mathsf{n} \ \pi^{+} \ \pi^{-} \right) = -\sqrt{\frac{1}{3}} \left(\sqrt{\frac{1}{5}} \ \mathsf{B}_{\mathfrak{s}_{2}} + \ \mathsf{B}_{\mathfrak{s}_{1}} - \mathsf{B}_{\mathfrak{s}_{1}} - \sqrt{2} \ \mathsf{B}_{\mathfrak{s}_{1}} \right) \\ & \mathsf{M} \left(\ \pi^{-} \mathsf{p} \to \mathsf{n} \ \pi^{-} \pi^{+} \right) = -\sqrt{\frac{1}{3}} \left(\sqrt{\frac{1}{5}} \ \mathsf{B}_{\mathfrak{s}_{2}} - \ \mathsf{B}_{\mathfrak{s}_{1}} + \mathsf{B}_{\mathfrak{s}_{1}} + \sqrt{2} \ \mathsf{B}_{\mathfrak{s}_{1}} \right) \\ & \mathsf{M} \left(\ \pi^{-} \mathsf{p} \to \mathsf{n} \ \pi^{\circ} \pi^{\circ} \right) = -\sqrt{\frac{2}{3}} \left(\sqrt{\frac{2}{5}} \ \mathsf{B}_{\mathfrak{s}_{2}} + \ \mathsf{B}_{\mathfrak{s}_{1}} \right) \end{split}$$

$$\begin{split} & \mathsf{M} \left(\ \pi^{\mathsf{o}} \mathsf{p} \to \mathsf{n} \ \pi^{\mathsf{o}} \pi^{\mathsf{o}} \right) = - \left(\sqrt{1/5} \ \mathsf{B}_{32} + 1/3 \ \mathsf{B}_{31} - 1/3 \ \mathsf{B}_{11} \right) \\ & \mathsf{M} \left(\ \pi^{\mathsf{o}} \mathsf{p} \to \mathsf{n} \ \pi^{\mathsf{o}} \pi^{\mathsf{o}} \right) = - \left(\sqrt{1/5} \ \mathsf{B}_{32} - 1/3 \ \mathsf{B}_{31} + 1/3 \ \mathsf{B}_{11} \right) \\ & \mathsf{M} \left(\ \pi^{\mathsf{o}} \mathsf{p} \to \mathsf{p} \ \pi^{\mathsf{o}} \pi^{\mathsf{o}} \right) = 1/3 \left(\sqrt{2/5} \ \mathsf{B}_{32} + \sqrt{2} \ \mathsf{B}_{31} + \sqrt{2} \ \mathsf{B}_{11} + \mathsf{B}_{10} \right) \\ & \mathsf{M} \left(\ \pi^{\mathsf{o}} \mathsf{p} \to \mathsf{p} \pi^{\mathsf{o}} \pi^{\mathsf{o}} \right) = 1/3 \left(\sqrt{2/5} \ \mathsf{B}_{32} - \sqrt{2} \ \mathsf{B}_{31} - \sqrt{2} \ \mathsf{B}_{11} + \mathsf{B}_{10} \right) \\ & \mathsf{M} \left(\ \pi^{\mathsf{o}} \mathsf{p} \to \mathsf{p} \pi^{\mathsf{o}} \pi^{\mathsf{o}} \right) = 1/3 \left(\sqrt{2/5} \ \mathsf{B}_{32} - \mathsf{B}_{10} \right) . \end{split}$$

Здесь B_{ij} обозначает четыре амплитуды реакции в изотопическом пространстве. Первый индекс относится к изотопическому спину системы π -мезон-нуклон, соответственно, $T_{\pi N} = \frac{1}{2}$, = 3/2 в начальном состоянии, второй индекс - к конечному состоянию с $T_{\pi m}$ = 0,1,2 подсистемы двух π -мезонов.

В другом представлении, когда в конечном состоянии вводится подсистема из *т* -мезона и нуклона, амплитуды различных процессов выражаются следующим образом:

$$\begin{split} \mathsf{M}(\pi^{+} \mathbf{p} \to \mathbf{p} \pi^{+} \pi^{p}) &= \sqrt{3/5} \ \mathsf{A}_{33} \\ \mathsf{M}(\pi^{+} \mathbf{p} \to \mathbf{p} \pi^{p} \pi^{+}) &= -\sqrt{1/3} \left(2\sqrt{5} \ \mathsf{A}_{33} - \mathsf{A}_{31} \right) \\ \mathsf{M}(\pi^{+} \mathbf{p} \to \mathbf{n} \pi^{+} \pi^{+}) &= -\sqrt{1/3} \left(\sqrt{2/5} \ \mathsf{A}_{33} + \sqrt{2} \ \mathsf{A}_{31} \right) \end{split}$$

$$\begin{split} & \mathsf{M}(\pi^- \mathsf{p} \to \mathsf{p} \pi^{p} \pi^{-}) = 1/3 \sqrt{1/3} \, (4\sqrt{5} \, \mathsf{A}_{3\,3} + \mathsf{A}_{3\,t} + \sqrt{2} \, \mathsf{A}_{t\,\frac{1}{3}} \, 2 \, \mathsf{A}_{1\,t} \, \,) \\ & \mathsf{M}(\pi^- \mathsf{p} \to \mathsf{p} \, \pi^- \pi^{\mathsf{p}}) = -1/3 \, \sqrt{1/3} \, (\sqrt{1/5} \, \, \mathsf{A}_{3\,3} \, 2\mathsf{A}_{3\,t} + \sqrt{2} \, \mathsf{A}_{1\,3} + 2\mathsf{A}_{1\,t} \,) \\ & \mathsf{M}(\pi^- \mathsf{p} \to \mathsf{n} \, \pi^- \, \pi^+) = 1/3 \, \sqrt{1/3} \, (\sqrt{8/5} \, \, \mathsf{A}_{3\,3} \, \sqrt{2} \, \, \mathsf{A}_{3\,t} + \mathsf{A}_{1\,3} \, - \sqrt{2} \, \, \mathsf{A}_{1\,t} \,) \\ & \mathsf{M}(\pi^- \mathsf{p} \to \mathsf{n} \, \pi^- \, \pi^+) = -\sqrt{1/3} \, (\sqrt{2/5} \, \, \mathsf{A}_{3\,3} - \mathsf{A}_{1\,3}) \\ & \mathsf{M}(\pi^- \mathsf{p} \to \mathsf{n} \, \pi^0 \, \pi^0) = -1/3 \, \sqrt{1/3} \, (\sqrt{2/5} \, \, \mathsf{A}_{3\,3} + \sqrt{2} \, \, \mathsf{A}_{3\,t} + 2\mathsf{A}_{t\,3} - \sqrt{2} \, \, \mathsf{A}_{t\,t} \,) \end{split}$$

/2/

$$\begin{split} &\mathsf{M} \left(\pi^{\circ} \, \mathsf{p} \, \rightarrow \, \mathsf{n} \, \pi^{\circ} \, \pi^{\pm} \right) = -1/3 \, \sqrt{1/3} \, \left(4\sqrt{2/5} \, \mathsf{A}_{\mathfrak{z}\mathfrak{z}}^{+} \sqrt{2} \, \mathsf{A}_{\mathfrak{z}\mathfrak{z}}^{-} \, \mathsf{A}_{\mathfrak{z}\mathfrak{z}}^{-} \sqrt{2} \, \mathsf{A}_{\mathfrak{z}\mathfrak{z}} \right) \\ &\mathsf{M} \left(\pi^{\circ} \, \mathsf{p} \, \rightarrow \, \mathsf{n} \, \pi^{+} \, \pi^{\circ} \right) = 1/3 \, \sqrt{1/3} \, \left(\sqrt{2/5} \, \mathsf{A}_{\mathfrak{z}\mathfrak{z}}^{-} - 2\sqrt{2} \, \mathsf{A}_{\mathfrak{z}\mathfrak{z}}^{-} \, \Lambda_{\mathfrak{z}\mathfrak{z}}^{-} \sqrt{2} \, \mathsf{A}_{\mathfrak{z}\mathfrak{z}} \right) \\ &\mathsf{M} \left(\pi^{\circ} \, \mathsf{p} \, \rightarrow \, \mathsf{p} \, \pi^{+} \, \pi^{-} \right) = \sqrt{1/3} \, \left(\sqrt{4/5} \, \mathsf{A}_{\mathfrak{z}\mathfrak{z}}^{+} \, \sqrt{\frac{1}{2}} \, \mathsf{A}_{\mathfrak{z}\mathfrak{z}}^{-} \right) \\ &\mathsf{M} \left(\pi^{\circ} \, \mathsf{p} \, \rightarrow \, \mathsf{p} \, \pi^{-} \, \pi^{+} \right) = -1/3 \, \sqrt{1/3} \, \left(\sqrt{4/5} \, \mathsf{A}_{\mathfrak{z}\mathfrak{z}}^{-} - 2\mathsf{A}_{\mathfrak{z}\mathfrak{z}}^{-} - \sqrt{\frac{1}{2}} \, \mathsf{A}_{\mathfrak{z}\mathfrak{z}}^{+} 2 \, \mathsf{A}_{\mathfrak{z}\mathfrak{z}}^{+} \right) \\ &\mathsf{M} \left(\pi^{\circ} \, \mathsf{p} \, \rightarrow \, \mathsf{p} \, \pi^{\circ} \, \pi^{\circ} \right) = 1/3 \, \sqrt{1/3} \, \left(\sqrt{4/5} \, \mathsf{A}_{\mathfrak{z}\mathfrak{z}}^{+} 2 \, \mathsf{A}_{\mathfrak{z}\mathfrak{z}}^{-} \sqrt{2} \, \mathsf{A}_{\mathfrak{z}\mathfrak{z}}^{+} \, \mathsf{A}_{\mathfrak{z}\mathfrak{z}}^{+} \right). \end{split}$$

Здесь A_{ik} -амплитуда реакции в изотопическом пространстве. Первый индекс относится к изотопическому спину системы / π - N / - в начальном состоянии $T_{nN}=\frac{1}{2},\frac{3}{2}$, а второй индекс - к конечному состоянию подсистемы (π - N) с изотопическим спином $T_{\pi N}=\frac{1}{2},\frac{3}{2}$.

Дифференциальные сечения данных процессов выражаются в *п*п представлении через амплитуды следующим образом:

$$d\sigma = \sum C_{ij} C^*_{mn} B_{ij} B^*_{mn}$$

$$i, m = 1, s$$

$$j, n = 0, 1, 2_1$$

а в представлении $(\pi - N)$, в виде:

$$d\sigma = \sum C_{ik} C_{hi}^* A_{ik} A_{hi}^*$$

/4/

/ 3/

2. Дифференциальные сечения и угловая зависимость

реакции $\pi_1 N_1 \rightarrow \pi_1^* \pi^* N_1^*$

Ниже приводятся угловые зависимости сечения образования на *п* -мезонами на протонах /15,16/

Начальная волновая функция системы ($\pi - N$) записывается в виде:

$$\psi_{\text{Hay.}} = \ell^{ikx} \phi(S_x) \chi(T, T_x), \qquad /5/$$

где ^ℓ плоская волна, которая характеризует пучок *п* -мезонов, падающих на неполяризованную мишень нуклонов, $\psi(s_j)$ -спиновое состояние мишени, и $\chi(T, T_j)$ -изотопическое состояние системы *п* -мезон-нуклон, T полный изотопический спин системы, а T_x - его проекция на ось *z* в изотопическом пространстве.

Если ограничиться учетом S - P-иD -состояний *т* -мезона в конечном состоянии, то мы получим следующие возможные переходы /табл. 1/. Амплитуды C₁₁ и C^{*}₁₁ имеют смысл элементов S -матрицы. Из таблицы 1 видно, что амплитуды B₃₂ и B₁₀ содержат S -и D -состояния двух *т* -мезонов, а - B₃₁ и B₄ - P -состояние. В самом

общем случае В₃₂ и В₁₀ содержат четные волны двух *т*-мезонов, а В₃₁ и В₁₁ нечетные.

Волновая функция из трех частиц с учетом орбитального момента нуклона относительно двух п -мезонов и его спина записывается в виде:

дe:

 $\psi_{\substack{\text{KOHEY.}}} = V_I^M Z_I^{T_z} = \sum \sum \sum \sum (\text{ls } m, m | \text{ls } \mu m) (\mu \mid_{\pi} m \mid_{\pi} | \mu \mid_{\pi} MI) x$ $m_I + m_s = m; \quad m_Z^{s} + m_Z^{z} = m_x$

/6/

где

$$V_{I}^{M} = \Sigma \Sigma (\operatorname{lsm}_{I} \operatorname{m}_{\bullet} | \operatorname{ls} \mu \operatorname{m}) (\mu |_{\pi} \operatorname{m}_{\pi} | \mu |_{\pi}^{M} \operatorname{I}) \chi_{m}^{m} \gamma_{I}^{m} \gamma_{I}^{m} \gamma_{I}^{m} \eta_{I}^{m} \eta_{$$

 $m + m_{z} = M; \qquad m_{z} + r = T_{z}$ $(m_{1} m_{2} m_{1}^{z} m_{2}^{z} | m_{1} m_{2} n m^{z}) (n p m^{z} r | n p T T_{z}) \chi_{m}^{m_{0}} \gamma_{1}^{m_{1}} r_{m_{1}}^{m_{2}} m_{2}^{r} \gamma_{p}^{r},$

волновая часть системы частиц,

таблица і.

И зотопические амплитуды		887 / F & H Y & CHARLES FOR BOLL		ana ang pang pang pang pang pang pang pa		B.,		1997 - 1977 - 1999 - 1997 - 2995 - 2997 - 2997 - 2005 - 2007 - 2005 - 20	- La ches, an an sur sur	an ag ini di di i i i i		
Орбитальные	нач.	,S1/2	P_{y_2}	Ĩ.) 72	Days	-	F 5/2				
состояния	конеч.	$(S_{r_2}P)_{r_2}$	$(S_{\frac{1}{2}}s)_{\frac{1}{2}}$	$(S_{1/2}J)_{3/2}$	$(D_{3^{\prime_2}}5)$	$(S_{1/2} P)_{3}$	(S'1/2 J	$\int_{\frac{5}{2}} (D_{\frac{5}{2}} s)_{\frac{5}{2}}$	í	10 - 10 - 10 - 10 - 10 - 10		
Амплитуды пере	ехода	C_{ii}	C_{i2}	C_{i3}	C_{14}	C_{15}	C_{ib}	C_{i7}			• •	
Изотопически амплиту ды	9					B31						
Орбитальные	нач.	S _{1/2}				P 72		D3/2	<u>]</u> 52	Fz	-	ana di 180 - Anna - Anti-Maria
состояния	конеч.	$(P_{y_2}s)_{y_2}$	(P, P)	$(P_{3/2}, P)_{1/2}$	$(P_{1/2}P)_{3/2}$	$(P_{3/2}, P)_{3/2}$	$(P_{1_2} d)$	(P, 5)	$(P_{12}d)_{3/2}$	$(P_{3/2}, P)_{5/2}$		
Амплитуды пер	рехода	C_{21}	C_{22}	C_{23}	C_{24}	· C25	- C25	C27	C28	C29		
Изотопические амплитуды						Bio						
Орбитальные	нач.	S1/2	P_{γ_2}	Ī) 1/2	D3/2		F5/2				
состояния	конеч.	$(S_{\gamma_2} P)_{\gamma_2}$	$(S_{y_2} s)_{y_2}$	$(S_{1/2}J)_{\frac{1}{2}}$	$(D_{3/2}s)_{3/2}$	(S12 P) 3/2	(S12 d)5	1/2 (D5/2 S) 5/2		· 1.		
Амплитуды пере	ехода	C_{μ}^{\star}	C_{i2}^{\star}	\mathcal{C}_{3}^{\star}	$C_{\iota_{\tau}}^{\star}$	C_{15}^{*}	C16	C_{i7}^{\star}				
Изотопические амплитуды		-			-	B_{tt}					л	
Орбитальные состояния	нач.	S_{y_2}		D _{1/2} .		P3/2		Dzz	D.552	Figz		
	конеч.	$(P_{y_2}, P)_{y_2}$	(P1/2 P)/2	(P32 P)12	$\left(\begin{array}{c} P_{1/2} \\ P_{1/2} \\ P_{1/2} \end{array}\right)_{3/2}$	$(P_{3/2}P)_{3/2}$	$(P_{j_2}d)$	$(P_{3/2} S)_{3/2}$	(P1 J) ===	$(P_{3/2}, P)_{5/2}$		· · · ·
Амплитуды пер	ехода	C_{21}^{*}	C22	C_{23}^{\star}	C24	C25	, C_26	C**	C_{zs}^{\star}	C_{zg}^{\star}	1	

$$\gamma_{l}^{m_{l}} = \gamma_{l}^{m_{l}}(\theta_{N}, \phi_{N}); \quad \gamma_{l_{T}}^{m_{T}} = \gamma_{l_{T}}^{m_{T}}(\theta_{\pi}, \phi_{\pi})$$

являются шаровыми функциями от аргументов (θ_N, ϕ_N) и (θ_π, ϕ_π) , углы (θ_N, ϕ_N) -характеризуют направление вылета нуклона в системе центра масс сталкивающихся π -мезона и нуклона, (θ_π, ϕ_π) -направление вылета π -мезона в системе центра масс.

$$Z_{T}^{T} = \Sigma \quad \sum \quad (m_{1}m_{2}m_{1}^{T}m_{2}^{T}|m_{1}m_{2}n|m^{T}) (n p m^{T}r|n p T T_{T})r_{m_{1}}^{m_{1}^{T}}r_{m_{2}}^{m_{2}^{T}}W_{T}^{T}$$
$$m_{1}^{T} + m_{2}^{T} = m$$
$$m_{2} + r = T_{*}$$

определяет изотопическое состояние системы трех частиц. При этом г т и г т характеризуют изотопические спины п -мезонов, а W изотопический спин нуклона.

Среднее значение спин-тензора нулевого ранга $< T_0^0 >$ связано с дифференциальным сечением испускания нуклона в направлении (θ_N, ϕ_N) и π -мезона в направлении (θ_π, ϕ_π) в их системе центра масс соотношением:

$$T_{s}^{s} = \frac{k}{s} - \frac{d\sigma'(\theta_{N}, \phi_{N}; \theta_{\pi}, \phi_{\pi}; P_{N})}{d\Omega(\theta_{N}, \phi_{N}) d\Omega(\theta_{\pi}, \phi_{N}) dP_{N}},$$
 (77)

где k = 1/λ , p_N - импульс нуклона в системе центра масс взаимодействующих π -мезона и нуклона, ρ -фазовый объем трех частиц.

Дифференциальные сечения процессов образования *т* -мезонов при взаимодействии *п*±-мезонов с протонами после усреднения по аргументам *ф*и *ф*, имеют следующий вид:

где коэффициенты разложения a_i , b_i , d_i , g_i и h_i являются функциями от импульса протона в системе центра масс сталкивающихся π[±] -мезонов с протонами и выражаются в виде линейных комбинаций амплитуд перехода С_i и C^{*}_i.

3. Нахождение изотопических амплитуд В_{іј} и А_{ік} из опыта

Из выражений /1/ и /3/ видно, что процессы II и III , IY и Y так же как YI и YII различаются знаком перед интерференционными членами B_{ij} . Измерение интерференционных членов поможет установить различие между этими процессами /17/.

При перестановке *т* -мезонов в конечном состоянии процессы II и III , IY и Y , YI и YII переходят один в другой. Для установления различия между вероятностями этих процессов необходимо регистрировать две частицы: один *т* -мезон и нуклон или два *т* -мезона. Согласно, первым *т* -мезоном называется тот, проекция импульса которого на направление нуклона в с.ц.м. сталкивающихся частиц имеет наибольшее алгебраическое значение.

Определение модулей амплитуд B_{ij} или A_{ik} и фаз между ними не требует установления спиновых и угловых зависимостей, для этого достаточно измерения полных сечений соответствующих процессов. Если регистрируется только нуклон, то различие между процессами II и III, IY У и YI и YII установить нельзя. Это видно из выражений /8/. При регистрации только нуклона надо усреднить эти выражения по всем углам θ_{π} , что приводит к исчезновению всех членов с нечетными степенями сов θ_{π} . Такое измерение дает суммарные вероятности парных процессов II и III, IY и Y, YI и YII образования мезонов под данным углом θ_{N} . Полные сечения этих парных процессов равны:

$$\sigma_{\pi^{+}\pi^{0}p}^{\pi^{+}p} = \int \frac{d\sigma}{d\Omega} (\pi^{+}p + \pi^{0}\pi^{+}p) d\Omega + \int \frac{d\sigma}{d\Omega} (\pi^{+}p + \pi^{+}\pi^{0}p) d\Omega$$

$$\sigma_{\pi^{-}\pi^{0}p}^{\pi^{-}p} = \int \frac{d\sigma}{d\Omega} (\pi^{-}p + \pi^{0}\pi^{-}p) d\Omega + \int \frac{d\sigma}{d\Omega} (\pi^{-}p + \pi^{-}\pi^{0}p) d\Omega$$

$$\sigma_{\pi^{+}\pi^{-}n}^{\pi^{-}p} = \int \frac{d\sigma}{d\Omega} (\pi^{-}p + \pi^{-}\pi^{+}n) d\Omega + \int \frac{d\sigma}{d\Omega} (\pi^{-}p + \pi^{+}n^{-}n) d\Omega$$

$$/9/$$

Из выражений /8/ видно, что для установления различия между указанными процессами надо измерить в отдельности: процесс, когда первым *п* -мезоном является *п*⁺-мезон; процесс, когда первым *п* -мезоном является *п*[°] -мезон.

Аналогично для второй пары процессов необходимо измерить в отдельности процесс, когда первым π -мезоном является π^- -мезон, и процесс, когда первым π -мезоном является π^+ -мезон.

Наконец, для третьей пары нужно измерить процесс, когда первым *п* -мезоном является *п* -мезон и процесс, когда первым *п* -мезоном является *п*^о -мезон.

Мерой различия вероятностей процессов IIи Ш_ IY _N Y ΥI и YII являются, соответственно, коэффициенты b; d; и g; при нечетных степенях сов $heta_{\pi}$.Разность дифференциальных сечений парных процессов, взятая в области углов $0 < heta_N < \pi/2$ и $0 < heta_\pi < \pi/2$, характеризует меру этого различия. Если обозначим ее через $\Lambda\sigma(\pi^+p \rightarrow \pi^\circ)$, $\Lambda\sigma(\pi^-p \rightarrow \pi^\circ)$ $\Delta \sigma(\pi \bar{p} \rightarrow \pi^+)$, то соответствующие разностные сечения процессов И и III , IY и Y , YI и YII , могут быть записаны в следующем II виде: π/2π/2

$$\begin{split} \Delta\sigma(\pi^+ \mathbf{p} \to \pi^o) &= \int \limits_{o \ o} \left[\mathrm{d}\sigma^{\pi^- \mathbf{p}}_{\pi^o \pi^+ \mathbf{p}} \left(\theta_{\pi}, \theta_{N} \right) - \mathrm{d}\sigma^{\pi^- \mathbf{p}}_{\pi^+ \pi^0 \mathbf{p}} \left(\theta_{\pi}, \theta_{N} \right) \right] \mathrm{d}\Omega(\theta_{\pi}) \, \mathrm{d}\Omega(\theta_{\pi}) \\ \Lambda\sigma(\pi^- \mathbf{p} \to \pi^o) &= \int \limits_{o \ o} \int \limits_{o \ \sigma} \left[\mathrm{d}\sigma^{\pi^- \mathbf{p}}_{\pi^- \pi^0 \mathbf{p}} \left(\theta_{\pi}, \theta_{N} \right) - \mathrm{d}\sigma^{\pi^- \mathbf{p}}_{\pi^0 \pi^- \mathbf{p}} \left(\theta_{\pi}, \theta_{N} \right) \right] \mathrm{d}\Omega(\theta_{\pi}) \, \mathrm{d}\Omega(\theta_{N}) \\ \Lambda\sigma(\pi^- \mathbf{p} \to \pi^+) &= \int \limits_{o \ o} \int \limits_{o \ \sigma} \left[\mathrm{d}\sigma^{\pi^- \mathbf{p}}_{\pi^+ \pi^- \mathbf{n}} \left(\theta_{\pi}, \theta_{N} \right) - \mathrm{d}\sigma^{\pi^- \mathbf{p}}_{\pi^- \pi^+ \mathbf{n}} \left(\theta_{\pi}, \theta_{N} \right) \right] \mathrm{d}\Omega(\theta_{\pi}) \, \mathrm{d}\Omega(\theta_{N}) \, . \end{split}$$

Не все указанные в /1/ и /2/ процессы можно наблюдать в действительности. Так, нельзя осуществить непосредственно процесс π^{o} - р.

Из соотношений /3/ и /4/ следует, что имеются четыре амплитуды и

шесть фаз между ними. Для однозначного определения их необходимы 10 независимых эксперимеңтальных величин. Но эксперимент дает 5 полных сечений и три интерференционных члена $\Lambda \sigma$, то есть всего 8 величин. Для точного определения изотопических амплитуд и фаз между ними в $(\pi-\pi)$ и $(\pi-N)$ представлении надо привлечь какие- либо две величины из π° -р соударений, например, сечения $\sigma_{\pi^{\circ}p}^{\pi^{\circ}p}$ и $\Lambda \sigma(\pi^{\circ}p \to \pi^{+}\pi^{-})$. Вместо измерения полного сечения $\sigma_{\pi^{\circ}p}^{\pi^{\circ}p}$ можно воспользоваться соотношением:

$$\frac{2\sigma^{\pi^{+}p}}{\pi^{+}\pi^{+}n} - \frac{\sigma^{\pi^{+}p}}{\pi^{+}\pi^{0}p} - \frac{\sigma^{\pi^{-}p}}{\pi^{0}\pi^{-}p} + \frac{2\sigma^{\pi^{-}p}}{\pi^{-}\pi^{+}n} - 4\sigma^{\pi^{-}p} = \frac{\sigma^{\pi^{0}p}}{\pi^{0}\pi^{+}n} + 2(2\sigma^{\pi^{0}p} - \sigma^{\pi^{0}p}) - \frac{\sigma^{\pi^{0}p}}{\pi^{-}\pi^{+}p}$$

которое получается на основе гипотезы изотопической инвариантности.

Амплитуды ^В іј и фазы между ними можно точно определить, если использовать следующие соотношения:

$$\sigma_{\pi^{+}\pi^{0}p}^{\pi^{+}p} = 1/s |B_{32}|^{2} + |B_{32}|^{2}$$

$$\sigma_{\pi^{+}\pi^{+}n}^{\pi^{+}p} = 4/s |B_{32}|^{2}$$

$$\sigma_{\pi^{+}\pi^{+}n}^{\pi^{+}p} = 1/s |B_{32}|^{2} + 1/9 |B_{31}| + 9/4 |B_{11}| + 4/9 |B_{31}|^{2} |B_{11}| \cos \phi_{31,11}$$

$$(11/)$$

$$\sigma_{\pi^{-}p}^{\pi^{-}p} = 1/s |B_{32}|^{2} + |B_{32}|^{2} + |B_{11}|^{2} + 2|B_{10}|^{2} - \sqrt{s/s}|B_{32}||B_{10}| \cos \phi_{32,10} - 2|B_{31}||B_{11}| \cos \phi_{31,11}|]$$

$$\sigma_{\pi^{+}\pi^{-}p}^{\pi^{-}p} = 2/9 [2/9 |B_{32}|^{2} + |B_{10}|^{2} + \sqrt{s/s}|B_{32}||B_{10}| \cos \phi_{32,10}|]$$

$$\sigma_{\pi^{+}\pi^{-}p}^{\pi^{0}p} = 2/9 [2/8 |B_{32}|^{2} + 2|B_{31}|^{2} + 1/2 |B_{11}|^{2} + |B_{10}|^{2} + \sqrt{s/s}|B_{32}||B_{10}| \cos \phi_{32,10}|]$$

$$(11/)$$

$$\sigma_{\pi^{+}\pi^{-}p}^{\pi^{-}p} = 2/9 [2/8 |B_{32}|^{2} + |B_{31}|^{2} + 1/2 |B_{11}|^{2} + |B_{10}|^{2} + \sqrt{s/s}|B_{32}||B_{10}| \cos \phi_{32,10}|]$$

$$(11/)$$

$$\begin{split} &\Lambda\sigma(\pi^+ \mathbf{p} \to \pi^\circ) = \sqrt{4/s} |\mathbf{B}_{32}| |\mathbf{B}_{31}| \cos \phi_{32,31} \\ &\Lambda\sigma(\pi^- \mathbf{p} \to \pi^\circ) = 2/s \left(\sqrt{1/s} |\mathbf{B}_{32}| |\mathbf{B}_{31}| \cos \phi_{32,31} + 2 |\mathbf{B}_{32}| |\mathbf{B}_{11}| \cos \phi_{32,11} \right) \\ &\Lambda\sigma(\pi^- \mathbf{p} \to \pi^+) = 2/s \left[\sqrt{4/s} |\mathbf{B}_{32}| |\mathbf{B}_{31}| \cos \phi_{32,31} - \sqrt{4/s} |\mathbf{B}_{32}| |\mathbf{B}_{12}| \cos \phi_{32,11} - 2\sqrt{2} |\mathbf{B}_{31}| |\mathbf{B}_{10}| \cos \phi_{31,10} + 2\sqrt{2} |\mathbf{B}_{11}| |\mathbf{B}_{10}| \cos \phi_{11,10} \right] \\ &\Lambda\sigma(\pi^\circ \mathbf{p} \to \pi^+ \pi^-) = 2/s \left[\sqrt{16/s} |\mathbf{B}_{32}| |\mathbf{B}_{31}| \cos \phi_{32,31} + 2\sqrt{s} |\mathbf{B}_{32}| |\mathbf{B}_{11}| \cos \phi_{32,11} + 2\sqrt{2} |\mathbf{B}_{31}| |\mathbf{B}_{10}| \cos \phi_{31,10} + \sqrt{2} |\mathbf{B}_{11}| |\mathbf{B}_{10}| \cos \phi_{11,10} \right] \end{split}$$

Амплитуды Bij и интерференционные члены выражаются через экспериментальные величины следующим образом:

$$\begin{split} &|\mathbf{B}_{32}|^2 = s/4 \sigma_{\pi^+\pi^+n}^{+n} \\ &|\mathbf{B}_{31}|^2 = \sigma_{\pi^+\pi^+n}^{+n} = \frac{1}{\pi^+\pi^+n} \\ &|\mathbf{B}_{31}|^2 = \sigma_{\pi^+\pi^+n}^{+n} = \frac{1}{\pi^+\pi^+n} + \frac{1}{\pi^+\pi^+n} \\ &|\mathbf{B}_{12}|^2 = -\sigma_{\pi^+\pi^+n}^{+n} = \frac{1}{\pi^+\pi^+n} + \frac{1}{$$

$$A_{33} = \sqrt{5/6} (\sqrt{1/5} B_{32} + B_{31}) \qquad A_{13} = \sqrt{2/3} (\sqrt{2} B_{11} + B_{10}) \\ A_{31} = \sqrt{1/6} (\sqrt{5} B_{32} - B_{31}) \qquad A_{11} = \sqrt{1/3} (\sqrt{2} B_{11} - B_{10}).$$
 (14/

Выражения для A_{ik} через экспериментальные величины имеют вид:

$$\begin{aligned} |A_{jj}|^{2} &= 1/6 \left[6\sigma_{\pi^{+}p}^{\pi^{+}p} + 3\sigma_{\pi^{+}p}^{\pi^{+}p} - 5\Delta\sigma(\pi^{+}p \to \pi^{\circ}) \right] \\ |A_{jj}|^{2} &= 1/6 \left[6\sigma_{\pi^{+}p}^{\pi^{+}p} + \sigma_{\pi^{+}\pi^{-}p}^{\pi^{+}p} - 5\Delta\sigma(\pi^{+}p \to \pi^{\circ}) \right] \\ |A_{jj}|^{2} &= 1/3 \left[-2\sigma_{\pi^{+}p}^{\pi^{+}p} + \sigma_{\pi^{+}\pi^{-}p}^{\pi^{-}p} + 3\sigma_{\pi^{+}\pi^{-}p}^{\pi^{\circ}p} + 3[\Delta\sigma(\pi^{\circ}p \to \pi^{+}) + \Delta\sigma(\pi^{-}p \to \pi^{+}) - 2/3\Delta\sigma(\pi_{1}^{+}p \to \pi^{\circ}) \right] \right] \\ &- 1/2 \left[A_{jj} \right]^{2} = 1/3 \left[-2\sigma_{\pi^{+}p}^{\pi^{+}p} + \sigma_{\pi^{+}\pi^{-}p}^{\pi^{-}p} + 3\sigma_{\pi^{+}\pi^{-}p}^{\pi^{\circ}p} + 3[\Delta\sigma(\pi^{\circ}p \to \pi^{+}) + \Delta\sigma(\pi^{-}p \to \pi^{+}) - 2/3\Delta\sigma(\pi_{1}^{+}p \to \pi^{\circ}) \right] \right] \\ &- 1/2 \left[A_{jj} \right]^{2} = 1/3 \left[-2\sigma_{\pi^{+}p}^{\pi^{+}p} + \sigma_{\pi^{+}\pi^{-}p}^{\pi^{-}p} + 3\sigma_{\pi^{+}\pi^{-}p}^{\pi^{\circ}p} + 3(\Delta\sigma(\pi^{-}p \to \pi^{+}) + \Delta\sigma(\pi^{-}p \to \pi^{+}) - 2/3\Delta\sigma(\pi_{1}^{+}p \to \pi^{\circ}) \right] \right] \\ &- 1/2 \left[A_{jj} \right]^{2} = 1/3 \left[-2\sigma_{\pi^{+}p}^{\pi^{+}p} + \sigma_{\pi^{+}\pi^{-}p}^{\pi^{-}p} + 3\sigma_{\pi^{+}\pi^{-}p}^{\pi^{-}p} + 3(\Delta\sigma(\pi^{-}p \to \pi^{+}) + \Delta\sigma(\pi^{-}p \to \pi^{+}) - 2/3\Delta\sigma(\pi_{1}^{+}p \to \pi^{\circ}) \right] \right] \\ &- 1/2 \left[A_{jj} \right]^{2} = 1/3 \left[-2\sigma_{\pi^{+}p}^{\pi^{+}p} + \sigma_{\pi^{+}\pi^{-}p}^{\pi^{-}p} + 3\sigma_{\pi^{+}\pi^{-}p}^{\pi^{-}p} + 3(\Delta\sigma(\pi^{-}p \to \pi^{+}) + \Delta\sigma(\pi^{-}p \to \pi^{+}) - 2/3\Delta\sigma(\pi_{1}^{+}p \to \pi^{\circ}) \right] \right] \\ &- 1/3 \left[A_{jj} \right]^{2} = 1/3 \left[A_{jj} \right]^{2} \left[A_{jj} \right]^{2} = 1/3 \left[A_{jj} \right]^{2} \left[A_{j$$

$$\begin{split} |A_{11}|^2 &= t/6 \left[-3 \sigma_{\pi^+ \pi^+ n}^{\pi^+ p} + 9 \sigma_{\pi^- \pi^0 p}^{\pi^- p} + 3 \sigma_{\pi^+ \pi^- n}^{\pi^- p} + 9 \sigma_{\pi^0 \pi^0 n}^{\pi^- p} - 6 \sigma_{\pi^+ \pi^- p}^{\pi^0 p} + \\ &+ 6 \left[\Lambda_0 (\pi^0 p \to \pi^+ \pi^-) + \Lambda_0 (\pi^- p \to \pi^+) - 2/3 \Lambda_0 (\pi^+ p \to \pi^0) \right] \\ |A_{33}||A_{31}| \cos \Omega_{33,13} &= \sqrt{5}/6 \left[3/2 \sigma_{\pi^+ \pi^+ n}^{\pi^+ p} - \sigma_{\pi^+ \pi^0 p}^{\pi^+ p} + 2\Lambda_0 (\pi^+ p \to \pi^0) \right] \\ |A_{33}||A_{13}| \cos \Omega_{33,13} &= t/t_{2}\sqrt{5/2} \left[-2 \sigma_{\pi^+ p}^{\pi^+ p} - 3 \sigma_{\pi^+ \pi^- n}^{\pi^- p} + 6 \sigma_{\pi^+ \pi^- p}^{\pi^- p} + 6 \Lambda_0 (\pi^0 p \to \pi^+ \pi^-) - 3 \Lambda_0 (\pi^- p \to \pi^-) - \\ &- 2 \Lambda_0 (\pi^+ p \to \pi^0) \right] \\ |A_{33}||A_{11}| \cos \Omega_{33,13}^{\pi^- \sqrt{5}/24} \left[6 \sigma_{\pi^+ \pi^+ n}^{\pi^+ p} - 13 \sigma_{\pi^+ \pi^0 p}^{\pi^+ p} - 9 \sigma_{\pi^- \pi^0 p}^{\pi^- p} + 3 \sigma_{\pi^- \pi^0 n}^{\pi^- p} - 36 \sigma_{\pi^- p}^{\pi^- p} + \\ &+ 9/\sqrt{5} \Lambda_0 (\pi^- p \to \pi^0) - 2 (3/2\sqrt{5} - t) \Lambda_0 (\pi^+ p \to \pi^0) - 6 \Lambda_0 (\pi^0 p \to \pi^+ \pi^-) + 3 \Lambda_0 (\pi^- p \to \pi^+) \right] \\ |A_{31}||A_{13}| \cos \Omega_{31,13}^{\pi^- 1} = t/12\sqrt{2} \left[-12 \sigma_{\pi^+ \pi^+ n}^{\pi^+ p} + 20 \sigma_{\pi^- \pi^0 p}^{\pi^+ p} + 13 \sigma_{\pi^- \pi^0 p}^{\pi^- p} - 15 \sigma_{\pi^- \pi^+ n}^{\pi^- p} + 3 \Lambda_0 (\pi^- p \to \pi^+) \right] \\ |A_{31}||A_{13}| \cos \Omega_{31,13}^{\pi^- 1} = t/2\sqrt{2} (3/\sqrt{5} - t) \Lambda_0 (\pi^+ p \to \pi^0) - 6 \Lambda_0 (\pi^0 p \to \pi^+ \pi^-) - 3 \Lambda_0 (\pi^- p \to \pi^+) \right] \\ |A_{31}||A_{13}| \cos \Omega_{31,13}^{\pi^- 1} = t/2\sqrt{2} \left[-12 \sigma_{\pi^+ \pi^+ n}^{\pi^+ p} - 9 \sigma_{\pi^- \pi^0 p}^{\pi^- p} + 15 \sigma_{\pi^- \pi^+ n}^{\pi^- p} - 3 \sigma_0 (\pi^- p \to \pi^+) \right] \\ |A_{31}||A_{13}| \cos \Omega_{31,14}^{\pi^- 1} = t/2\sqrt{2} \left[-12 \sigma_{\pi^+ \pi^+ n}^{\pi^+ p} - 9 \sigma_{\pi^- \pi^0 p}^{\pi^- p} + 15 \sigma_{\pi^- \pi^+ n}^{\pi^- p} - 3 \Lambda_0 (\pi^- p \to \pi^+) \right] \\ |A_{31}||A_{13}| \cos \Omega_{31,14}^{\pi^- 1} = t/2\sqrt{2} \left[4 \sigma_{\pi^+ \pi^+ p}^{\pi^- p} - 9 \sigma_{\pi^- \pi^0 p}^{\pi^- p} + 15 \sigma_{\pi^- \pi^- n}^{\pi^- p} - 3 \Lambda_0 (\pi^- p \to \pi^+) \right] \\ |A_{31}||A_{12}| \cos \Omega_{31,14}^{\pi^- 1} = 1/2\sqrt{2} \left[-3 \sigma_{\pi^+ \pi^+ n}^{\pi^- p} - 9 \sigma_{\pi^- \pi^0 p}^{\pi^- p} - 3 \sigma_{\pi^- \pi^- n}^{\pi^- p} - 3 \Lambda_0 (\pi^- p \to \pi^+) \right] \\ |A_{13}||A_{14}| \cos \Omega_{43,11}^{\pi^- 1} = \sqrt{2} \left[3 \sigma_{\pi^+ \pi^+ n}^{\pi^- p} - 9 \sigma_{\pi^- \pi^0 p}^{\pi^- p} + 9 \sigma_{\pi^- \pi^0 p}^{\pi^- p} - 3 \sigma_{\pi^- \pi^- p}^{\pi^- p} + 3 \sigma_{\pi^- \pi^- p}^{\pi^- p} \right] \\ |A_{13}||A_{14}| \cos \Omega_{43,11}^{\pi^- 1} = \sqrt{2} \left[3 \sigma_{\pi^+ \pi^+ n}^{\pi^- 1} + 3 \sigma_{\pi^$$

Амплитуды B_{32} и B_{31} , относительные фазы B_{32}^{\bullet} B_{31} и B_{32}^{\bullet} B_{11}^{\bullet} а также амплитуды A_{33} и A_{31}^{\bullet} и их относительная фаза, как видно из /13/ и /15/, могут быть определены экспериментально. Остальные амплитуды и интерференционные члены являются функциями от ненаблюдаемых величин $\sigma^{\pi^{\circ}p}$ и $\Lambda\sigma(\pi^{\circ}p \to \pi^{+}\pi^{-}) \cdot$

На рис. 1 приведена зависимость между величинами

$$h = \frac{|A_{33}|}{|A_{33}|} \qquad H \qquad K = \frac{|B_{33}|}{|B_{33}|}$$

Эту зависимость можно записать в виде:

$$h^{2} = \frac{K^{2} + 5 + 2\sqrt{5} K \cos \phi_{32,31}}{5K^{2} + 1 - 2\sqrt{5} K \cos \phi_{32,31}}$$

где $\phi_{\mathbf{32,33}}$ является параметром. Область значений ограничена снизу двумя ветвями кривой:

$$h^{2} = \frac{K^{2} + 5 - 2\sqrt{5} K}{5K^{2} + 1 + 2\sqrt{5} K},$$

которая имеет горизонтальные асимптоты $h^2 = 5(K \rightarrow 0)$ и $h^2 = 1/5(K \rightarrow \infty)$ и вертикальную асимтоту $K = \sqrt{5} (h^2 \rightarrow 0)$

Сверху область ограничена также двумя ветвями кривой

$$h^{2} = \frac{K^{2} + 5 + 2\sqrt{5} K}{5K^{2} + 1 - 2\sqrt{5} K}$$

которая имеет две горизонтальные асимтоты $h^2 = 5(K \rightarrow 0)_H = h^2 = 1/5(K \rightarrow \infty)$ и вертикальную асимтоту $K = 1/\sqrt{5}(h \rightarrow \infty)$.

4. Приближенные оценки величин Ви

Из предыдущего рассмотрения следует, что не все амплитуды В_{іј} и их аргументы можно отределить непосредственно из экспериментальных данных. Поэтому, варьируя недоступные параметры, мы можем установить только возможную область значений этих амплитуд. Можно, правда, исходить из каких-то достаточно правдоподобных предположений, однако полученные таким образом оценки нельзя рассматривать как окончательные.

Из выражения /13/ видно, что квадрат модуля амплитуд В_{ij} , интерференционные члены между амплитудами с четными изотопическими спинами Т_{пп} и между амплитудами с нечетными изотопическими спинами выражаются только через полные сечения. Если пренебречь в /11/ одним интерференционным членом, то получим систему из 5 уравнений с 5 неизвестными. Решение эток системы зависит только от полных сечений.

Рассмотрим две оценки, предположив, что \vec{B}_{ij} , или B₃₂ - B₁₀ малы по сравнению с остальными величинами. Для этих двух случаев имеем:

$$\begin{split} \hat{B}_{3i} \hat{B}_{ii} &= 0 \qquad |B_{ii}|^{2} = \frac{1}{4} \left(-2\sigma \frac{\pi^{+}p}{\pi^{+}\pi^{+}n} - \sigma \frac{\pi^{+}p}{\pi^{0}\pi^{+}p} + 9\sigma \frac{\pi^{-}p}{\pi^{0}\pi^{+}p} \right) \\ &+ 9\sigma \frac{\pi^{-}p}{\pi^{0}\pi^{-}p} + 9\sigma \frac{\pi^{-}p}{\pi^{0}\pi^{-}p} \\ &+ 9\sigma \frac{\pi^{-}p}{\pi^{0}\pi^{+}p} - 3\sigma \frac{\pi^{-}p}{\pi^{0}\pi^{+}p} + 6\sigma \frac{\pi^{-}p}{\pi^{-}\pi^{+}n} + 6\sigma \frac{\pi^{-}p}{\pi^{0}\pi^{0}n} \right) \\ &+ |B_{32}||B_{i0}|\cos\phi_{32,i0} = \sqrt{5/8} + \frac{1}{4} \left(-2\sigma \frac{\pi^{+}p}{\pi^{+}\pi^{+}n} + \sigma \frac{\pi^{+}p}{\pi^{0}\pi^{+}p} + 3\sigma \frac{\pi^{-}p}{\pi^{0}\pi^{-}p} - \sigma \frac{\pi^{-}p}{\pi^{+}\pi^{-}n} + 12\sigma \frac{\pi^{-}p}{\pi^{0}\pi^{0}n} \right) \\ &+ B_{32}|B_{i0}|^{2} = \frac{1}{2} \left(-\sigma \frac{\pi^{+}p}{\pi^{+}\pi^{+}n} + 9\sigma \frac{\pi^{-}p}{\pi^{0}\pi^{0}n} - 6\sigma \frac{\pi^{-}p}{\pi^{0}\pi^{0}n} - \sigma \frac{\pi^{-}p}{\pi^{+}\pi^{-}n} + 12\sigma \frac{\pi^{-}p}{\pi^{0}\pi^{0}n} \right) \\ &+ B_{32}|B_{i0}|^{2} = \frac{1}{2} \left(-\sigma \frac{\pi^{+}p}{\pi^{+}\pi^{+}n} + 3\sigma \frac{\pi^{-}p}{\pi^{0}\pi^{0}n} + 3\sigma \frac{\pi^{-}p}{\pi^{0}\pi^{0}n} - 6\sigma \frac{\pi^{-}p}{\pi^{0}\pi^{0}n} - \sigma \frac{\pi^{-}p}{\pi^{+}\pi^{-}n} + 12\sigma \frac{\pi^{-}p}{\pi^{0}\pi^{0}n} \right) \\ &+ B_{3i}|B_{1i}|\cos\phi_{3i,11}|^{2} = \frac{1}{4} \left(-2\sigma \frac{\pi^{+}p}{\pi^{+}\pi^{+}n} + \sigma \frac{\pi^{+}p}{\pi^{+}\pi^{0}n} + \sigma \frac{\pi^{-}p}{\pi^{0}n^{0}n} - 6\sigma \frac{\pi^{-}p}{\pi^{-}n} + 12\sigma \frac{\pi^{-}p}{\pi^{0}n^{0}n} \right) \\ &+ B_{3i}|B_{1i}|\cos\phi_{3i,11}|^{2} = \frac{1}{4} \left(-2\sigma \frac{\pi^{+}p}{\pi^{+}\pi^{+}n} + \sigma \frac{\pi^{+}p}{\pi^{+}\pi^{0}n^{0}n^{0}n} - 6\sigma \frac{\pi^{-}p}{\pi^{-}n^{0}n^{0}n} - 6\sigma \frac{\pi^{-}p}{\pi^{+}\pi^{-}n} + 12\sigma \frac{\pi^{-}p}{\pi^{0}n^{0}n^{0}n} \right) \\ &+ B_{3i}|B_{1i}|\cos\phi_{3i,11}|^{2} = \frac{1}{4} \left(-2\sigma \frac{\pi^{+}p}{\pi^{+}\pi^{+}n^{0}n^{0}n^{0}n^{0}n^{0} - 6\sigma \frac{\pi^{-}p}{\pi^{-}n^{0}n^{0}n^{0}n^{0}n^{0}} - 6\sigma \frac{\pi^{-}p}{\pi^{+}\pi^{-}n^{0}n^{0}n^{0}n^{0}n^{0}} \right) \\ &+ B_{3i}|B_{1i}|\cos\phi_{3i,11}|^{2} = \frac{1}{4} \left(-2\sigma \frac{\pi^{+}p}{\pi^{+}\pi^{+}n^{0}n^{0}n^{0}n^{0}n^{0}n^{0}n^{0} - 6\sigma \frac{\pi^{-}p}{\pi^{+}\pi^{-}n^{0}n^{0}n^{0}n^{0}n^{0}} - 6\sigma \frac{\pi^{-}p}{\pi^{+}\pi^{-}n^{0}n^{0}n^{0}n^{0}n^{0}} \right) \\ &+ B_{3i}|B_{3i}|B_{1i$$

 $\pi^{\circ}\pi^{\circ}n$

И

п -мезона 500 Мэв имеется достаточное количество При энергии экспериментальных сведений о сечениях различных каналов реакции, для того, чтобы сделать оценки изотопических амплитуд. В работе /6/ были измерены полные сечения реакции $\sigma_{\pi^+\pi^+}^{\pi^+p}$ и $\sigma_{\pi^+\pi^0p}^{\pi^+p}$. Из работ /1,19,20,30/ можно приблизительно оценить полные сечения процессов σ_{-+}^{--p} , σ И $\pi^{\circ}\pi^{-}p$ $\sigma^{\pi - p}$ при этих же энергиях. При оценке предполагалось, что вкладом π^oπ^o n других неупругих процессов при этой энергии можно пренебречь, $u - \frac{\sigma + p}{2} = 2,9$. $\sigma \pi p$ Численные значения амплитуд и интерференционных членов при энергии па-

п -мезона 500 Мэв приведены в таблице 2. дающего

	· ·	
Сделанное допушение	\vec{B}_{31} $\vec{B}_{1\overline{I}}$ 0	\vec{B}_{32} $\vec{B}_{10} = 0$
Значение амплитуд	мб	м бʻ
B ₃₂ ²	1,41	1,41
$ B_{31} ^2$	1,41	-1,41
B ₁₀ ²	9,5	7,5
$ B_{11} ^2$	3,5	5,4
$ \mathbf{B}' \mathbf{B} \cos\phi$	- 1,9	0 ¹
$ B_{31} B_{11} \cos\phi_{31,11}$	0	-1,5

2 Таблица

Из таблицы 2 следует, что при этой энергии все амплитуды B_{ij} не равны нулю. Амплитуды B_{32} и B_{31} являются приблизительно одинаковыми, это указывает на то, что s- и p- состояния двух π -мезонов дают одинаковый вклад при переходе из начального состояния с изотопическим спином $T_{\pi N} = 3/2$. Из сравнения амплитуд $|B_{32}|$, $|B_{31}|$ и $|B_{1d}|$, $|B_{11}|$ следует, что вероятность перехода из начального состояния с изотопическим спином $T_{\pi N} = 1/2$ при этой энергии больше, чем вероятность перехода из состояния с $T_{\pi N} = 3/2$.

Между сечениями образования одного *п* -мезона при взаимодействии *п*⁺, *п*⁻ и *п*⁰ мезонов с протонами имеются простые соотношения, которые могут быть полезны при интерпретации экспериментальных данных:

$$\sigma_{\pi^{+}} = \sigma_{\pi^{+}\pi^{+}n}^{\pi^{+}p} + \sigma_{\pi^{0}\pi^{+}p}^{\pi^{+}p} = |B_{g_{2}}|^{2} + |B_{g_{1}}|^{2}$$

$$\sigma_{\pi^{-}} = \sigma_{\pi^{-}p}^{\pi^{-}p} + \sigma_{\pi^{-}n}^{\pi^{-}p} + \sigma_{\pi^{0}n}^{\pi^{-}p} = \frac{1}{s_{1}} s_{1}^{2} + |B_{g_{1}}|^{2} + |B_{$$

дри этом σ_{π^+} , σ_{π^-} и σ_{π^0} связаны между собой соотношением

$$\sigma_{\mu} \sigma = \frac{1}{2} \left(\sigma_{\mu} + \sigma_{\mu} - \right).$$
 (19/

Соотношения, позволяющие определить вероятности переходов из начального состояния с $T_{\pi N} = 1/2$ и $T_{\pi N} = 3/2$ для процессов образования одного мезона, имеют вид:

$$\sigma_{3/2} = \sigma_{\pi+1} \qquad \sigma_{3/2} = \gamma_1 \left(3\sigma_{\pi-} - \sigma_{\pi+1} \right) \qquad /20/$$

Эти соотношения совпадают с теми, которые получаются для процессов рассеяния *п* -мезона на нуклоне.

Из экслериментальных результатов /6,19,20,22,24,23,25,26/ при нескольких энергиях можно сделать оценки полных сечений σ_{π^+} , σ_{π^-} , σ_{π^0} , и σ_{μ} , которые помещены в таблице 3:

Таблица 3

Eπ	σ_{π^+}	σ_	σ _o	σ _{1/}	σ_{+}^{+}	$\frac{\sigma_{3/2}}{\sigma_{1/2}}$
500	2,85	9,6	6,7	13	0,3	0,22
990	11	21,2	16,1	26,3	0,51	0,42
1100	15,3	15,3	15,3	15,3	1	1

При составлении таблицы 3 были использованы значения полных сечений образования заряженных частиц, а не сумма сечений процессов $\pi^+ p \rightarrow \pi^+ \pi^+ n$ $\pi^+ p \rightarrow \pi^+ \pi^0 p$ и, соответственно, $\pi^- p \rightarrow \pi^+ \pi^- n$, π⁻р → π⁻π⁰р . Вклад других процессов образования заряженных частиц в полное сечение, кроме вклада от образования одного заряженного π -мезона, составляет при энергии около 1,5 Бэв приблизительно 3 мб, а при 500 Мэв пренебрежимо мал. Приведенные значения указывают на то, что вероятность перехода до энергии около 1 Бэв из начального состояния Т_{пN} = 1/2 больше по сравнению с вероятностью перехода из Т_{пN} = 3/2. Этот факт говорит о том, что взаимодействие двух п -мезонов в состоянии с $T_{\pi\pi} = 0$ больше, чем в состоянии с $T_{\pi\pi} = 2$. Величина полного сечения σ_{0} указывает, что вероятность процесса (п^о-р) не мала.

5. Значения амплитуд В_{ії} около порога образования мезонов

Рассматривая экспериментальные результаты до полной энергии двух п -мезонов в их с.ц.м., равной 400 Мэв, можно придти к выводу, что до этой энергии вклад *п-п*-взаимодействия с Т_{пп} = 1 приблизительно равен нулю, что было непосредственно показано в работе /27 /. Это сильно упрощает интерпретацию остальных экспериментальных результатов. В этой области энергии соотношения /11/ упрощаются и поэтому для определения

В ;; -амплитуд достаточно знать З сечения. Система уравнений /11/ становится в этом случае даже переопределенной. Амплитуды и интерференционные члены в данном случае равны:

 $|B_{g_2}|^2 = 5\sigma^{\pi^+ p} = s/4\sigma^{\pi^+ p} = 5\sigma^{\pi^- p}$ $\pi^+\pi^+ n \pi^+\pi^0 p \pi^0\pi^- p$

/21/

$$|B_{10}|^{2} = \frac{1}{2} \left(-2\sigma \frac{\pi}{\pi} \frac{p}{p} + 3\sigma \frac{\pi}{\pi} \frac{p}{n} + 3\sigma \frac{\pi}{n} \frac{p}{n} \right)$$

$$|B_{32}||B_{10}| \cos \phi_{32,1} = \sqrt{5/8} \left(-\sigma \frac{\pi}{n} \frac{p}{n^{2}\pi} - \frac{3/2}{\pi} \frac{\sigma \pi}{n} \frac{p}{n^{2}\pi^{2}n} + 3\sigma \frac{\pi}{n^{2}n} \frac{p}{n} \right).$$

$$(21/2)$$

Как видно из /21/, для определения $|B_{32}|$, $|B_{10}|$ и фазы $\phi_{32,10}$ необходимо знать полные сечения $\sigma^{\pi^- p}$, $\sigma^{\pi^- p}$ и одно из полных сечений $\sigma^{\pi^- p}_{\pi^0 \pi^- p}$, $\sigma^{\pi^+ p}_{\pi^+ \pi^+ n}$, $\sigma^{\pi^+ p}_{\pi^+ \pi^0 p}$; остальные амплитуды и фазы оказываются равным и нулю.

Между сечениями $\sigma_{\pi^{o}\pi^{-}p}^{\pi^{-}p}$, $\sigma_{\pi^{+}\pi^{+}n}^{\pi^{+}p}$ и $\sigma_{\pi^{+}\pi^{o}p}^{\pi^{+}p}$ при этом условии имеется соотношение:

$$\sigma_{\pi}^{\pi} \bar{\rho}_{p} = \sigma_{\pi}^{\pi} \bar{\rho}_{n} = \frac{v_{4}}{\pi} \sigma_{\pi}^{\pi} \sigma_{p}^{\pi}, \qquad /22 /$$

В работах ^{/28,29/} было измерено полное сечение $\sigma_{\pi^0\pi^-p}^{\pi^-p} \leq 0,2 \text{ м6}^{x/}$ и $\sigma_{\pi^+\pi^-n}^{\pi^-p} \sim /0,6 + 0,13/$ мб. Но так как при этой энергии изотопическое состояние двух π^- мезонов с $T_{\pi\pi} = 1$ не играет роли, то из этого следует, что $\sigma_{\pi^0\pi^-p}^{\pi^-p} \simeq 1/s |B_{32}|^2 \leq 0,2$ мб, откуда $|B_{32}|^2 \leq 1$ мб. Верхняя граница амплитуды $|B_{10}|^2$ и интерференционного члена $B_{32} = B_{10}$ равна $2|B_{10}|^2 - \sqrt{s/s}|B_{32}||B_{10}|\cos\phi_{32,10} > 2,5$

При энергии 317 Мэв, если использовать результаты работы $^{/30,31/}$ по измерению сечений $\sigma_{\pi^0\pi^-p}^{\pi^-p} \simeq /0.2 \pm 1.2/$ мб и $\sigma_{\pi^-\pi^+n}^{\pi^-p} \simeq /0.71 \pm 0.17/$ мб, можно оценить величины $|B_{32}|^2$ и $\{|B_{10}|^2 - \sqrt{s/s}|B_{32}||B_{10}|\cos\phi_{32,10}\}$, которые оказываются равными ~ 1 мб и~ 3 мб, соответственно.

При энергии 370 Мэв имеется достаточно экспериментальных данных для того, чтобы сделать оценки всех амплитуд и интерференционных членов. При этой энергии были измерены в $^{/19,30/}$ полные сечения $\sigma \pi^- p \simeq /0.5 \pm 1.5/$ мб и $\sigma \pi^- p \sim /1.19 \pm 0.37/$ мб. Из сравнения пол- $\pi^+ \pi^- n$ ных сечений $\sigma \pi^- p$ и $\sigma \pi^- p$ для заряженных частиц при энергии 370 Мэв и 427 Мэв, из работы /19,30/

x/ Эта величина является верхней границей сечения.

ции $\pi^- p \to \pi^0 \pi^- p$ имеет величину $\sigma_{\pi^0 \pi^- p}^{\pi^- p} \sim 0.3$ мб. Численные значения амплитуд и интерференционного члена равны:

 $|B_{32}|^{2} \sim 1.5$; $|B_{20}|^{2} \sim 3.4$; $|B_{32}||B_{10}| \cos \phi_{32,10} \sim -1.32$

Хотя полные сечения данных реакций измерены с большими ошибками, все же можно сказать, что при этих энергиях амплитуда B_{32} не равна нулю вследствие того, что сечение $\sigma_{\pi^0\pi^-p}^{\pi^-p} \neq 0$. Амплитуда B_{10} также не равна нулю, потому что одна амплитуда B_{32} не может объяснить большого сечения $\sigma_{\pi^+p}^{\pi^-p}$. Абсолютное значение интерференционного члена не мало.

Если рассмотрим отношение полных сечений $\sigma_{\pi^0\pi^0}^{\pi^0\pi^0}$, то оно не равно 2, как получается на основе предположения, что состояния двух π^- мезонов с изотопическими спинами $T_{\pi\pi} = 2$ и $T_{\pi\pi} = 1$ не дают вклада в полное сечение, как предполагали в^{/31/}. Используя данные работы^{/19,30/}, пра энергии падающего π^- мезона 370 Мэв получаем отношение $\frac{\sigma_{\pi^+\pi^-\pi^-}^{\pi^-}}{\sigma_{\pi^0\pi^0\pi^-}^{\pi^-}} = 1$

Выше мы показали, что амплитуда $|B_{gg}|$ не равна нулю, а интерференционный члеи не мал и имеет отрицательный знак. Все это приводит к увеличению указанного отношения.

6. О возможности проверки изобарной модели

Ряд работ Линденбаума и Штернгхеймера $^{/4,5/}$ был посвящен изучению неупругого взаимодействия π -мезонов с протонами. В этих работах процесс образования дополнительного π -мезона рассматривается как процесс, идущий через образование возбужденного нуклона, в состоянии с $T_{\pi N} = J = 3/2$. Анализ экспериментальных данных $^{/21,22,32/}$ показывает, что эта модель дает хорошее согласие для энергетического спектра π -мезонов в реакции $\pi p \rightarrow \pi^+ \pi^- n$, и худшее для мезонов в реакции $\pi^- p \rightarrow \pi^0 \pi^- p$.

В изобарной модели образования мезонов предполагается, что изотопическое состояние с Т_{п N} = 1/2 вконечном состоянии не играет ролк и должны быть равны нулю все переходы с полными моментами, отличными от J = 3/2 Это означает, что амплитуды $|A_{3I}| = |A_{II}| = 0$. Эти условия приводят к тому, что между полными сечениями реакций $\pi^+ p \rightarrow \pi^+ \pi^o p$ к $\pi^+ p \rightarrow \pi^+ \pi^+ n$ должно₊ быть следующее соотношение

Однако опыт /6/ дает

Эта разница между экспериментальным значением отношения и отношением, получаемым из модели, говорит о том, что все изотопические состояния участвуют и, в частности, $|A_{j1}| \neq 0$.

_ = 6.5 .

 $\frac{p}{p} = 1,5$.

⊦*__*+_n

Мы будем рассматривать более общий случай, в котором будем учитывать как изотопическое состояние с Т_{п N} = 3/2, так и с Т_{п N} = 1/2, а также все орбитальные моменты.

Опыт, который позволяет проверить изобарную модель, можно осуществить на пучке π^+ -мезонов в широкой области энергий, особенно в об ласти энергии 1300 Мэв, измеряя величины $\sigma_{\pi^+\pi^+n}^{\pi^+p}$, $\sigma_{\pi^+\pi^0p}^{\pi^+p}$ и $\Delta\sigma(\pi^+p \to \pi^0)$. Если известны эти величины, то можно определить изотопические амплитуды, а также фазы между ними.

Для рассмотрения области возможных значений амплитуд | А₃₃ и | А₃₁ удобно ввести следующие обозначения:

На рис. 2 приведена область допустимых значений а и К, представляемая семейством кривых:

$$\frac{13\sqrt{5} h^2 - 20 h \cos \Omega_{33,31} + 5\sqrt{5}}{2\sqrt{5} h^2 + 20 h \cos \Omega_{33,31} + 10\sqrt{5}}$$

с параметром сов $\Omega_{ss.ss}$. Область ограничена снизу кривой

$$a_{\Omega_{33,31}=0} = \frac{13\sqrt{5} h^2 - 20 h + 5\sqrt{5}}{2\sqrt{5} h^2 + 20 h + 5\sqrt{5}}$$

которая имеет горизонтальные асимптоты a = 6,5 (h $\rightarrow \infty$) и $a = \frac{1}{2}$ (h $\rightarrow 0$) и достигает минимума $a = \frac{1}{4}$ при h = $1/\sqrt{5}$.

Сверху область ограничена двумя ветвями кривой,

$$a_{\mathbf{n}_{33,13}=\pi} = \frac{13 \text{ h}^2 + 20 \text{ h}^2 + 5\sqrt{5}}{2\sqrt{5} - 20 \text{ h}^2 + 10\sqrt{5}}$$

которая имеет две горизонтальные асимптоты $a = 6.5 (h \rightarrow \infty)$, $a = \frac{1}{2}$ (h \rightarrow 0) и одну вертикальную асимптоту при $h = \sqrt{5}$.

На рис. 2 еще приведены: кривая $\cos\Omega_{33,31} = \pi/2$, которая имеет монтонную зависимость и кривая $\sqrt{\sigma(\pi^+ p \to \pi^\circ)} = 0$, которая представляет случаи симметричного испускания π -мезонов относительно импульса нуклона. Из рис. 2 видно, что если $\sigma_{\pi^+\pi^0}^{\pi^+ p} = a = 6,5$, то возможные значения $\sigma_{\pi^+\pi^0}^{\pi^+ p}$

ћ заключены в области $0.9 \le h \le \infty$. Это означает, что если *а* было бы равно 6,5, то это не могло являться доказательством справедливости изобарной модели, так как амплитуды $|A_{33}|$ и $|A_{31}|$ могут иметь очень широкую область значений при одном и том же *а*. Для *a* = 1,5, как видно из рисунка 2, h пробегает значения $0,4 \le h \le 2,8$. Эти цифры говорят о том, что $|A_{31}|$ не может быть меньше $1/3 |A_{33}|$. То же самое получается при h = const , величина *а* измен яется в результате изменений фазы между амплитудами A_{33} и A_{31} .

Интересно отметить, что в $\pi - \pi$ разбиении значение $a = \frac{1}{4}$ соответствует нулевому вкладу состояния с $T_{\pi\pi} = 1$, $a \to \infty$ соответствует нулевому вкладу состояния с $T_{\pi\pi} = 2$.

7. Резонансное взаимодействие двух π -мезонов в изотопическом состоянии с Т_{ππ} = 1

Разные авторы обсуждали вопрос о возможности существования резонансного взаимодействия двух π -мезонов в состоянии с $T_{\pi\pi} = l = 1$. Фрезер и Фулько^{/12}, используя данные о рассеянии электронов на протонах, при объяснении форм-фактора для магнитного момента нуклона указали, что резонанс может находиться в сбласти энергии от $\omega^2 = 3 m_{\pi}^2$ до $\omega^2 = 13 m_{\pi}^2$ и наиболее вероятное положение этого резонанса $\omega^2 = 10 m_{\pi}^2$, другие авторы пришли к выводу, что он находится при $\omega^2 = 22m_{\pi}^2$. В работе ^{/27/} было показано, что до $\omega^2 = 8,2 m_{\pi\pi}^2$ резонанс в состоянии с $T_{\pi\pi} = 1$ не находится следии и др. $\frac{14}{14}$ показали экспериментально существование такого резонанса при $\omega^2 = 13,2 m_{\pi}^2$ состояние с $T_{\pi\pi} = 1$ дает существенный вклад в сечение.

В настоящей работе используются экспериментальные результаты^{19,34}. На рис. 3 приведена зависимость полного сечения рассеяния $\pi^- p$, полного сечения процесса $\pi^- p \rightarrow \pi^0 \pi^0 n$ и полного сечения заряженных частиц при взаимодействии π^- -мезонов с протонами. Последнее содержит, в основном, сумму сечений каналов $\pi^- p \rightarrow \pi^- \pi^+ n$ и $\pi^- p \rightarrow \pi^- \pi^0 p$, вклад других каналов в полное сечение заряженных частиц составляет приблизитетьно-Змб при энергии 1,5Бэв. Предполагаем, что все процессы, которые конкурируют с процессами $\pi^- p \rightarrow \pi^- \pi^+ n$ и $\pi^- p \rightarrow \pi^- \pi^0 p$ / 4 -частичные процессы, процессы со странными частицами и т.д./ не имеют резонансного характера в этой области энергий.

Из рис. 3 видно, что при энергии падающего п⁻⁻-мезона около 600 Мэв и 900 Мэв сечение образования заряженных частиц имеет максимумы приблизительно при том же значении, что и сечение упругого рассеяния (п--р).

Далее предполагаем, что эти максимумы получаются за счет взаимодействия между π -мезонами и нуклонами в конечном состоянии с $T_{\pi N} = 3/2$ и с $T_{\pi N} = 1/2$. Из соотношения /2/ следует, что все три сечения $\sigma^{\pi^- p}$, $\sigma^{\pi^- p}$ и $\sigma^{\pi^- p}$ содержат амплитуды A_{33} , A_{13} , а также A_{31} , A_{11} . Это требует, чтобы и сечение $\sigma^{\pi^- p}$ имело максимум при той же энергии, что и суммарное сечение ($\sigma^{\pi^- p} + \sigma^{\pi^- p}$). Но экспериментальные факты отрицают это. Рост и потом спад в сечении $\sigma_{\pi'\pi^0 n}$ с энергией можно объяснить тем, что $q_{1/2}$ больше, чем $\sigma_{3/2}$ до энергии около 1,1 Еэв и оба эти сечения растут до энергии π^- мезона около 800-900 Мэв, а потом $\sigma_{1/2}$ сильно спадает.

Предполагаем, что максимумы в сечении образования заряженных частиц являются результатом взаимодействия двух п -мезонов. Из соотношения /11/ видно, что сумма сечений процессов п р→п⁺п и п р→п - п^ор содержит состояния с Т_{пп} = 1, в то время как сечение процесса

 $\pi \bar{p} \rightarrow \pi^0 \pi^0 n$ не содержит состояния двух π -мезонов с $T_{\pi\pi} = 1$, оно содержит состояния с $T_{\pi\pi} = 2$ и $T_{\pi\pi} = 0$, которые включены также в сумму указанных выше процессов. Поскольку полное сечение реакции $\pi \bar{p} \rightarrow \pi^0 \pi^0 n$ не имеет максимума, то остается предполагать, что эти максимумы возникают за счет взаимодействия в состоянии с $T_{\pi\pi} = 1$. Если рассматривать угловые распределения нуклонов в реакции $\pi^- p \rightarrow \pi^- \pi^+ n$ и $\pi^- p \rightarrow \pi^- \pi^0 p$ /14,21,22,32/, то видно, что они вылетают преимущественно назад. Это явление наблюдается и для упругого рассеяния , что соответствует малой передаче импульса нуклону.

Если принять экспериментальный факт, что нуклоны вылетают преимущественно назад, то можно приблизительно оценить, какой полной энергии двух π -мезонов в их с.ц.м. соответствуют эти максимумы. Эти оценки соответствуют верхнему пределу для полной энергии двух π -мезонов, когда нуклоны вылетают с нулевым импульсом, но они в действительности вылетают с конечными импульсами. Положение первого максимума при этом находится при полной энергии двух π -мезонов в их с.ц.м., $\omega^2 = 16.2 \, m_\pi^2$ и второго, при $\omega^2 = 30.5 \, m_\pi^2$. Первый максимум находится в области энергий, предсказанной теоретиками. Сравнение с экспериментальными результатами из работы $^{/14/}$, где положение первого максимума соответствует $\omega^2 = 15.4 \, m_\pi^2$ и второго $\omega^2 = 30 \, m_\pi^2$, показывает, что результаты находятся в хорошем согласии с нашей оценкой.

При рассмотрении экспериментальной зависимости полного сечения $(\pi^{+}-p)$ от энергии в /рис.4/, взятой из ^{/21/}, видим, что в области энергии 800 Мэв для падающего π -мезона нет максимума. Это можно объяснить тем, что переход из начального состояния с $T_{\pi N} = 3/2$ идет слабо при этой энергии. Кроме того, состояние с $T_{\pi\pi} = 1$ содержит только реакция $\pi^+ p \to \pi^+ \pi^0 p$, с ней конкурируют упругое рассеяние и реакция $\pi^+ p \to \pi^+ \pi^+ n$, которые вполне могут маскировать максимум соответствующим $T_{\pi\pi} = 1$. В области энергии 900 Мэв в полном сечении виден горб, который совпадает по положению с максимумом из $\pi^- - p$ взаимодействия. Можно предполо - гать, что он соответствует изотопическому состоянию с $T_{\pi\pi} = 1$, т.к. вероятность перехода из начального состояния с $T_{\pi N} = 3/2$ при этой энергии становится значительной.

Подобный анализ реакций $\pi^+ p \to \pi^+ \pi^0 p$, $\pi^+ p \to \pi^+ \pi^+ n$, $\pi^- p \to \pi^0 \pi^- p$, $\pi^- p \to \pi^+ \pi^- n$, и $\pi^- p \to \pi^0 \pi^0 n$ позволит однозначно установить являются максимумы результатом взаимодействия между π^- мезонами в изотопическом состоянии с $T_{\pi\pi}$ = 1. В области энергии 1370 Мэв для падающего

 π -мезона из рис. З видно, что полное сечение рождения заряженных частиц при π^- Р столкновении имеет максимум. На рис. 4 можно видеть, что полное сечение π^+ Р. взаимодействия имеет в этой области энергии максимум. Анализ результатов π^- Р и π^+ Р взаимодействий говорит о том, что эти максимумы могут получаться в результате взаимодействия двух π -мезонов в изотопическом состоянии с $T_{\pi\pi} = 2$ или с $T_{\pi\pi} = 1$. Экспериментальные результаты в настоящее время не достаточны для того, чтобы однозначно разделить эти состояния. Можно предполагать, что эти максимумы соответствуют изотопическому состоянию двух π . -мезонов с $T_{\pi\pi} = 2$, как предполагал $^{/37/}$, для максимума из зависимости полного сечения π^+ -р столкновения.

Если наши выводы правильны, то должна иметь место следующая картина максимумов

* 1 = 1 = 1 = 1		a second second second second				
E _π		$\pi^+ p \rightarrow \pi^+ \pi^+ n$	$\pi^+ p \rightarrow \pi^+ \pi^0 p$	$\pi^- p + \pi^+ \pi^- n$	$\pi^- p \rightarrow \pi^- \pi^0 p$	$\pi^- p \rightarrow \pi^\circ \pi^\circ n$
600	· .	Het	$T_{\pi\pi} = 1$	$T_{\pi\pi} = 1$	$T_{\pi\pi} = 1$	нет
900		нет	$T_{\pi\pi} = 1$	$T_{\pi\pi} \approx 1$	$T_{\pi\pi} = 1$	нет
1370		$T_{\pi\pi}=2$	$T_{\pi\pi} = 2$	$T_{\pi\pi} = 2$	$T_{\pi\pi} = 2$	$T_{\pi\pi} = 2$

Таблица 4

Как видно из таблицы 4, в области энергии падающего *п* -мезона 1370 полные сечения всех процессов должны иметь максимум.

8. Олыт по опре,	делению взаимо,	действия двух	π −мезонов
•	в состояниях с	Т _{пп} =0 и Т _{пп} =1	

Наблюдение взаимодействий в чистых изотопических состояниях очень важно для уяснения сущности этих взаимодействий. Такие эксперименты можно осуществить, если использовать нуклоны или легкие ядра. Например, энергетические спектры легких ядер в реакциях:

 $d + d + He + \pi^{+} + \pi^{-}$ $+ \pi^{0} + \pi^{0}$ $d + He^{4} + L_{i+\pi^{0}}^{e+\pi^{+}+\pi^{-}}$

позволяют изучить взаимодействия двух п -мезонов в изотопическом состоянии T_{пп} = 0.

Точно так же энергетический спектр ядер L_i в реакции

$$p + L_i^{\delta} \rightarrow L_i^{7} + \pi^{+} + \pi^{\circ}$$

позволяет изучить взаимодействие двух *п* -мезонов в изотопическом состоянии T_{пп} = 1. Если энергия падающего протона равна 680 Мэв, то полная энергия двух *п* -мезонов в их с.ц.м. может достигать $\omega^2 = 16 m_{\pi}^2$. При этом можно рассматривать область до первого максимума, наблюдаемого в полных сечениях рождения заряженных частиц при взаимодействии

п т−мезонов с протонами.

9. Опыт на пучке π^+ -мезонов

Для того, чтобы определить за счет какого из механизмов $(\pi - \pi)$ или $(\pi - N)$ возникают максимумы в фиг. З и 4, необходимо выполнить опыты по регистрации двух частиц в процессах

$$\pi, N, \rightarrow \pi^*, \pi^* N^*$$

Из соотношения /1/ видно, что амплитуда B_{32} входит во все процессы образования π -мезона в другом представлении; как видно из /2/, такую роль играют амплитуды A_{33} и A_{31} . При регистрации двух π мезонов в реакции $\pi^+ p \rightarrow \pi^+ \pi^+ n$ при разных энергиях падающего π -мезона можно установить которое из взаимодействий является ответственным за максимум.

Предположим, что (π-π) -взаимодействие преобладает. Измерение π⁺-мезонов и протонов для реакции π⁺ р → π⁰π⁺ р позволит при известной амплитуде В₃₂ определить амплитуду В₃₁.

Если преобладает / п-N / -взаимодействие, то для того, чтобы установить, какая из амплитуд A₃₃ или A₃₁ преобладает, как было указано в § 6, надо измерить отношение A33 ющего П-мезона.

Выводы

 Из выражения /8/ следует, что дифференциальные сечения процессов имеют асимметричный характер относительно вылета *п* -мезонов только тогда, когда процесс сопровождается образованием двух *п* -мезонов в состоянии с Т_{пп} = 1.

 Так как не все процессы взаимодействия *т* -мезонов с нуклонами могут быть осуществлены экспериментально, то нельзя строго однозначно определить все амплитуды В_і и А_ік и интерференционные члены.

3. Отсутствие (π-π)-взаимодействий в состоянии с T_{ππ} = 1 до полной энергии двух π -мезонов в их с.п.м. 400 Мэв, доказанное в работе, совместимо с остальными данными только в том случае, если помимо участия состояния двух π -мезонов с T_{ππ} = 0 также дает заметный вклад и состояние двух π -мезонов с T_{ππ} = 2.

4. При больших энергиях падающего 7 -мезона, в частности при 500 Мэв, участвуют все изотопические состояния, их отношение меняется с энергией.

5. Сечение образования *т* -мезонов при взаимодействии *т^о* -мезонов протонами близко по величине к сечению процессов образования мезонов при взаимодействии *т* -мезонов с протонами.

6. Для решения вопроса о справедливости изобарной модели Линденбаума-Штейнгхеймера, надо измерить отношения вероятностей образования мезонов в состояниях с $T_{\pi N} = 3/2$ и $T_{\pi N} = 1/2$. Экспериментально это сводится к измерению величин $\sigma_{\pi^+\pi^+\pi^+}^{\pi^+p}$, $\sigma_{\pi^+\pi^0}^{\pi^+p}$ и $\Lambda \sigma(\pi^+p \to \pi^0)$ в широкой области энергии и особенно при энергии /1300-1400/ Мэв.

7. Экспериментальное осуществление полного опыта по образованию мезонов в широкой области энергий позволит определить природу аномалий, которые наблюдается на опыте, и указать какому состоянию они соответствуют.

8. Анализ максимумов в энергетической зависимости сечения образования заряженных частиц в (*п*-р) взаимодействии при энергии падающего

 π -мезона 600 Мэв. и 900 Мэв позволяет предполагать, что они получаются в результате взаимодействия двух π -мезонов в изотопическом состоянии с Т $\pi\pi$ = 1 при $\omega^2 = 16,2 m_\pi^2$ и $\omega^2 = 30,5 m_\pi^2$.

9. Можно предполагать, что широкий максимум, который наблюдается в энергетической зависимости полного сечения образования заряженных частиц в (π -p) столкновении и в полном сечении (π +-p)-столкновения в области энергии 1370 Мэв, получается за счет взаимодействия двух π -мезонов в изотопическом состоянии с $T_{\pi\pi}$ = 2.

Автор выражает благодарность Л.М. Сороко и Л.Д. Соловьеву за интерес к работе и дискуссии, а также Л.И. Лапудусу за полезные замечания.

Рис. 1. Область возможных значений $h^2 = \frac{|A_{33}|^2}{|A_{31}|^2}$ и $k = \frac{|B_{32}|}{|B_{31}|}$ кривая 1 соответствует $\varphi_{32,31} = \pi$, кривая II - $\phi_{32,31} = \pi/2$ и кривая III - ϕ

BAR III
$$-\phi_{32,31} = ($$

Кривая I соответствует $\Omega_{33,31} = 0$, кривая $(I - \Omega_{33,31} = \pi/2)$ Кривая III - $\Omega_{33,31} = \pi$ и кривая IV - $\Delta \sigma (\pi^+ p + \pi^0) = 0$

Рис. 3. Энергетическая зависимость полного сечения реакций (π-р) Кривая 1 соответствует упругому рассеянию (π-р), кривая π -рождению заряженных частиц при взаимодействии π -мезонов с протонами и кривая III реакции тр → π⁰π⁰п

Рис. 4. Энергетическая зависимость полного сечения упругих и неупругих процессов взаимодействия π^+ -мезонов с протонами.

- 1. R.R.Crittrnden et al., Phys.Rev.Lett. 2, 121 (1959).
- 2. E.Fermi. Progr. Theoret. Phys. (Kuoto) 5, 570 (1950).
- 3.С.3. Беленький, А.И. Никишов. ЖЭТФ, <u>28</u>, 744 /1955/.
- 4. R.M.Sternheimer and Lindembaum. Phys. Rev. 106, 1107 (1957).
- 5. R.M.Sternheimer and Lindembaum. Phys. Rev. 109, 1723 (1958).
- 6. W.J.Willis. Phys. Rev. 116, 753 (1959).
- 7. W.D.Walker. Phys. Rev. 108, 872 (1957).
- 8. S.D.Drell. Pros.Ann.Intern.Conf. on High Energy Physics, CERN (1958).
- 9. G.Chew and F.Low. Phys.Rev. 113, 1640 (1959).
- 10. C.Goebel . Phys. Rev. Lett. 1, 337 (1958).
- 11. S.Mandelstam. Phys. Rev. 112, 1344 (1958).
- 12. W.R.Frezer and J.R.Fulco. Phys.Rev. 117, 1603, 1609 (1960).
- 13. G.Chew. Phys. Rev. Lett. 4, 142 (1960).
- 14. A.R. Erwin et al. Phys. Rev. Lett. 6, 628 (1961).
- 15. В.Б. Берестецкий. АН СССР, 94, 421 /1954/.
- 16. Л.М. Сороко. ЖЭТФ, <u>34</u>, 87 /1958/.
- 17. К.С. Мариш, Л.М. Сороко. ЖЭТФ, <u>40</u>, 605 /1961/.
- 18. Э. Ферми. Лекции о П-мезонах и нуклонах. ИИЛ, 1956 стр. 68
- 19. P.Falk-Vairand and G.Valladas. Conf. on Strong. Interaction, Berkeley (1960).
- 20. J.Meyer. to be published.
- 21. I.C.Brisson et al. Nuovo Cimento XIX, 210 (1961).
- 22. V.Alles-Boreli et al. Nuovo Cimento XIV, 211 (1959).
- 23. L. Deraro and N.Scheritz. Phys. Rev. 118, 309 (1960).
- 24. E.Pickup. Private communication
- 25. J.Kopp et al. Private communication.
- 26. Roelling and D.A.Glaser Phys. Rev. 116, 1001 (1959).
- 27. Ю.А. Акимов и др. Направлено в Nuclear Physics.
- 28. А.Ю. Батусов и др. АН СССР, <u>133</u>, 52 /1960/.

- 29. Ю.А. Батусов и др. Направлено в печать.
- 30. A.Perkins et al. Phys. Rev. 118, 1364 (1960).
- 31. В.Г. Зинов и С.М. Коренченко. ЖЭТФ, <u>34</u>, 301 /1958/.
- 32. L.M.Eisberg. Phys. Rev. 97, 797 (1955).
- 33. F.J.Bowock et al. Phys. Rev.Lett. 5, 386 (1960).
- 34. L. Bertanza et al. Nuovo Cimento XIX, 467 (1961).
- 35. C.D.Wood et al. Phys.Rev.Lett. 6, 681 (1961).
- 36. J.J.Shanle. Phys.Rev.Lett. 5, 156 (1960).
- 37. F.Selleri. Nuovo Cimento XVI, 775 (1960).

Рукопись поступила в издательский отдел 7 сентября 1961 г.