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PRINCIPLE OF LEVELLING THE STATES AND
ITS APPLICATION TO THE CALCULATIONS
. OF MULTIPLE PRODUCTION



For estimating the probability of the multiple production the covariant expression for the phase volume
in the momentum space begins recently to be more frequently used. It is applied as mn original model ( the -

/161y

covariant model and as a component of the calculations by the Chew-Low scheme /7/. For the cal-

culations of the covariant phase volume the recurrent relations are usually used. They are the basis for the
tables and graphs' 74,8/ on which the phase volume is plotted agamst energy for some reactions. The analy-
tical fon_'mulae/1 911/ are known only for some limite ( by the masses) cases, for the production of three
particles and for any number of identical particles /8/* The finite expressions for the phase volume of
arbitrary systems of particles are absent. ‘

This paper makes an attempt to fill up the gap. A new principle is formulated of drawing approximate
formulae for the phase volumes followed up to the calculation formulae in case of the covariant phase space
integrals. In conclusion the fitness of thes;a phase volumes for the calculations of the average particle pro-

duction multiplicity is shown.

1 The Principle of Levelling the States

This principle is widely used in the calculation of multiple integrals by the Monte-Carlo method and is
known as *importance samplmg As far as we know, to use it as an analytical method is something new.
Meanwhile, the analysis of the application of the ‘importance sampling® at the electromc computers shows
that this procedure is most succesful, when it reduces to the (analytical) change of the mtegratlon vari-
“ables decreasing the variation of the integrand,

The speed with which the Monte-Carlo process converges to the magnitude of the integral S=[P(d)dd

is given by the formula **
N=_T 57, ¢}

where
N is the necessary number of random points
1 —_7_17_ is the reliability of the result

¢ is the relative accuracy of the result

&
The formula from
ok

/w/oabnnot be used because of a misprint.

It s assumed here that the pointas -& are dlstributed over the integration region uniformly.



57 is the degree of the variation ® ( a)
7= _T-s’ (2)
¢ S :
: &)
T=[07(2)da )
Yence it is seen that the convergence may be accelerated whatever much by decreasing & 24 in the
limit ® (a) » Const 5°+ 0. Itis possible to achieve the decreasing of 8 by such a choice of the
variables Qh_ich makes the integrand ( in new variables ) more close to the constant, levells it.
The levelling principle may be also serve for the analytical calculation of the integral S. Let there be
found such a change of the variables that in new variables § ? is a small number throughout the interval
of the change of the parameters on which the integral depends. Then, instead of the formula for S one may

make an attempt to draw a formula for the calculation T (3), and S will be then determined from (2):

s=_ ! VT 2T (4)

V1+82
Thus, instead of the integral of the function the levelling makes it possible to calculate the integral
of the squared function; it may turn out that the latter problem is simpler ( say, if D (&) is the product ‘of
the square roots ).

*-Moreover, formula (2) may be generalized. If ® (2) is close to the constant, then, for some sequence

_ of the operations F the quantity

2 [F(d(a)da - F-(m(z)ds)‘
5 = (5)
F ([ (a)da)

! is close to zero. As F (x) may be chosen the operations xJ ¥ ,In x , etc, and their choice depends on
the form of the function @ .

If [F(®(2))da is calculated easier than [P(q) da , then

[0 adMFy__[F@®@)da @
1 + 62

Another methad of calculating the integrals of the levelled functions consists in applying to them a theorem

of the mean



[®(3)da =) fdz (6)
For the functions whlch change little over the integration interval, it is easier to find the dependence

of the point position ¥ on the integral parameters,

Although the idea of the levelling is very simple, a concrete application of formulae (4) ~ (6) requires

further efforts. The search for the levelling substitutions a + a”, the proof of the emallness 82 , the prin-
ciple of the choice of the mean point@ depend upon the skill of the calculator,.*
However, if applied to the phase volumes the matters become snmpler in view of their generally known
~monotony with respect to the change of one of the volume parameter ( the kinetic energy of the system r,
or the mass of one of the particles m, ) for the fixed values of other parameters. Further, in the limiting
" cases of the ultrarelativistic (p. =m+..+m =0 )and non-relativistic (r ro << p;n ) particles the

phnse volume is calculated accurately. Therefore, it is possible:
1) to look for the representation levelling the density of the states ® () in these limiting cases ;
" 2) to become convinced in the smallness of 52 in the limiting cases as well
3) to search for the mean point @ so that in the limiting cases (6) would be accurately satisfied,
Further, these principles will be applied to the covariant phase volume.

2. Levelling Representat ions.

- The covariant phase volume of n particles with the masses m, 5., m , the momenta p P B,

and w1th the energies €, veeme with the total energy M 1s

S,(M)=f a7 p, ---zd, Pa 5%p +o.4+p -P),PI-M?, (
1 n n n n

2e, .. e,

It may be transformed into a repeated integral/u/

s,(Mn)u_iz?ﬁ'_L [ax, fdE L LA A 8)
n ] 0 0

where7, is the kinetic energy of particles 1, 2, «eey k, in their rest system, Px is the momentum of the

* .
Somatimes physical considerations may help the searching of the levelling representations,



particle k in this system *. 5; depends upon—r;_l g s ,-r; , according to the recurrent formulae

Py = [« Mk—mk)z" '.'!12:-1] [(M, + mk)z_ M:_l] ‘ (9)
2
4M,

M*='-r-k U, ?, =0 (10)

wyo= mli—....’+mk- 1

The integration region in (8) can be transformed in a many-dimensional unit cube in many ways. Two such

changes of variables used in/u/are levelling ones.

A) a method of ordering the energies. Let # be commutation operator of the numbets?n_l Ty eeny r'; (form-

g . . * hod hogd .
ing a certain vector r ) in the order of increasing. Let us determine the function ® = P P, givenon

the simplex 7, 2 ... 27 in all the hypercube in the following manner

b (F)=0(#7). (12)

In other words, the values of the function @ at the point with arbitrary coordinates (g ) are equal to its
value at the point with the ordered ( commutated in order of increasing ... < -r; < FH-I < ... ) energies.

Let us make the substitution

-;k = ;:1 g , ‘ (13)
It will lead to
( (2”) n-1 . n-2 1 1 no_
S M)= n o [ d veda 11 (14)
n n) a (n—z)! “n { “[ an-l az 2 pk

B) a method of covariant levelling consists in the two-staged change of variables

Fo=Toy VX (k=n ~1,0,2) . o (15)
ke ‘ k. -
ag=k X, =(k-1) X, o _ (16)
Now (8) turns into , : .
S (M) = (n/2)"" Tin-’ }...}da | w.da F[ Mk__. = a7
noon (n=2)! (a-1)! M, o o n 22 72 '-—7;"1
k| *

711/ )
If compared with the order of the enumeration is inverse.



nel ne2 1 1 n-1 1 n :
=7 Tn__ [..fda_ ..da T ny (19)
(=27 (n-1)! Mo, o ™ 22 xk'kj'l'_‘ (]—xk) 2k

e

- To prove the levelling properties of the substitutions A and B we calculate 52 (see(2)) for the limiting

casesa(p =0) and A( rn <<#,) .In these cases (14) and (17) are divided into the product of the

one-dimentional integrals what makes the calculation easier. The expressions for Snare already

known /1:9:11/, there remains only to calculate T (see (3) ).
A) Here , 21 1 ) .
n-1 n- .
M) = (¥ da - 20 Y fda, da, T B
2Mn (ﬂ—-2) : 0. 0 ‘ (19)
" a
-1 n-2 2 1 n-1 3 n 2
o[ (2 r 1 =3
=[ M n : ](ne2)! _]'dand f dan- oo f da,lepk ;
n 0 0 0
X (2 )2 i 5a M- (4 o
LR CUREN . DA = Po Mo THM_ (20)
n net : :
By a direct calculation from (19) and by the induction method from ( 20) it is possible to get
A a) for p, =0
23n-3 ”2n'-2 r4n-8
Tp = n (21)-
T =T (G- (3n—2) :
Taking into account that
n-
= (n/2) in-4
Sh =0T RINT T (22
we obtain
il =) =D ) )
= ) an=2) o1 ;8 =.22580 =965, 8 =3.1;5... (23)
2, (3n = 4)1(3n = 2) s . Yo =313
AB)forr, <<p,
Ple 2l By (-7 ), (20)

k Iy k k-1



so that

. 3n-5
(21 ”%n-’ n m T .
Tp= 1 k n 5
" 4 Th=2)1(2n -93)! p,n.‘! ‘ (25)
Comparing with »
ne T 3n-3
s! - __m’P Am , (26)
T S 277 T 2(3/2(n-1)) Y
we get
8 = (4/17) l"(3/2(n 1) ='0 57 =24 ...67 =.70;
(n =2)1(2n = 3)! 8,5 =.24; .8 =.7 (27

The monotony of 8° with respect to the change of the parameters follows from physwal considera-
tions (see also Table 1). '_I‘herefore, for any \fln , mx, veeym_ .08 <5’ <.22; 21< 8 < .96;.
that for n = 3,4 , the representation ( A) we have ié.a levelling one.

B’ For this choice of variables

B 2 (n-1) 2(n-2) 1 1 n-t n
A w A — [efla_da 1 _ip2- (29
Ln2)t (a-1)1 M 17 o o ™ 22 et (1 22
2(n-1) 2(n-2) 1 1 n-! n
7 r - 1 -
= n I Mp2 29
(n-2YT (a-1YT M7 of o‘rdxn-t dxz 2 T x, (A-x) 2 Py (29)
or r 2
(8 2 - 2n-2 " A 2
T ()= 21 "n dr "1"" Do Tralra. ). (30
e e N Vi eI R e e 72 ) 1{Fa-2)
n n-{ n ne
Hence, for By = 0 follows
2 2
Ba) - T=8 , & =0, (31)
This is also seen from (17) where the factors at p; =0 are all equal to 1.
B A r, << ”’nv Now ( see (24) and (15)) .
2 2m,  u . w o % #
pr=— Kk k! r x X, (1-y ), (32)



<1 3n-s 7 k-3
an‘d‘ (2,72)" fnn EI my n 1 X, ?
T, = fMfd 3
" ) D! iy R (33)
k-3 *
T
The integral Wl oy e calculated by the formul 1
B * in = e a, = - ’
gl egl'as uk Zb xk 1+Y% are calculate y e rormula ’lk k_‘_)‘ uk_l
u, =In2, so that we have Tk

n F? 3/9(n- n-1
7= 2 (3/2(n1) gy u, -1; 67 =.07; 82 =.13;... 8°= 1133 .0
3 4 to )

n an-t (n-2)!1(n-1)! 2

2 .
So, the representation B3 leads to comparatively small & even for n = 10.

3, Calculation Formulae

Being aware of the levelling representations, one can proceed to the deduction of approximate formulae
for the phase volume. We have already seen that the approximate constancy of the density of the states

i i . . : . y ! »
® (2) in the a — representation may be used in two ways: 1) by reducing according to (4) the calculation

of the phase volume to that of the integral of the square of the state density and 2) by applying the theorem

of the mean.

1 method. From (4), (19), (20), (28)-(30) we get -

n-2 7--

-4 n-1 5 Tn - F.[ 3 Y2
s (1457 2m) _r? (4 Flar .. ar5?opd  a=34 (35
n 2“n \7———“—(!1_2)! 0 n-{ 0 n-2 2 ' n 2 .
Y n-t rn-J/? T s n or 52 v
S, 2Q+8) T n Ufdr a0 2o P ], (36)
"M 2 (n-2)! (n-1)1]% Jry. el ] 72 _72
k k-1 :
(n=3-10)

The accuracy of (35)-(36) is rather high. So, even for n = 20 (36) gives the inaccuracy of not more

than 25%.
S "
o= (1.0 0.5 )T, N
especially if we take for 5the expression

% 2
8=(p /M )&
n n r

< ( see ’—(34)).
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It follows from (9), (10) that ;Tk’ is the rational function 7

. T - Therefore, the integrals in (35)-
- (36) are expressed in elementary functions, '

So, for n =3, it follows from (35)

8/2 8724
Sy=1(.93+.03) T, ; 1‘,:1’4“';_[31_"_%_ s el S P
- 7
3

3/2 3/2
a, —a .
R orn Ry ) (Tl w01, @)

2
ag=(m4m) s ag= (My+m,)’
4

/11/
An exact formula for three arbitrary particles is much more cumbersome

From (36) one can get a simplé formula for the phase  volume of n—1 ultra-high  energy (m =0)
- ' . . 1Y/ . .
particles and one arbitrary particle with the mass m =m (ecf. with ( B.3) in / ). Having substituted

into (36) ;, - (r r(’ )[(22m+r,, > - =1 amd T, - 52, , we get
. - 9 Mn ) ne ne-
- et 2 5 (39)
= (. n 4mM, (n-1 T 38
Sn(M,) \/l+8,‘, (n-1)! (n-2)! M: Vim (n ) T 'a :

. 2. The seeond method.

The theorem of the mean in the combination with the representation B will
give an approximate formula

n-1 n-2 n-1 N~
o~ Tt LSRN | (39).
-2 (a-1)T M, =2 X7 (l—xk) # 'k

- .
where ‘)Zk s P  (k=2, ..., n-1) must be taken at a ccrtain intermediate point. To find it we require that

(39) would be fulfilled exactly in the non-rélativistic case for all n (in another limiting case (39) is

fulfilled automatically). This leads (see (25) and (32)) to the equation for ').(' .

o X o
- 3 -1 - dn-8 1y
203:_ 77( i my ... M, )V‘r"n;’ = 22 "nx Tn 2 ( Myeee My )x (40)
£ (3/2(n-1)) l‘n:’ n (n-2)! (n- 1)! ;tn’ )
1 1 n-t
xf...fda"_,'...dazﬂ VI —v/xx )

2 : (1-y )
o 0 xk 4 Yk
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hence net 1 e
N [da VX (41)
o * Y"I‘ (I YT 2T (3/2 (n-1)) :
Let x, =')'<‘k be chosen for k=2,3, ...,n ~2 so that
n- % ne i ‘ Y n-2
7 (=% g; (1-m) _ 77 (a=3)! (n-2)!
2 TSR, ) 0 xg - (1-x) 2 T (3/2(n-2))
then for X, = 32:1-1 the equation is obtained by the theorem of the mean
‘ W %
(1=Xnyg ) - Va(n-2)(n-1)T(3/2(n-2)) (42)
% (1-x) ' (3/2(n-1))
n-1" a-1

It is necessary to choice the least root of (42). The roots (42) X, =% . should then be substituted into

(39). For n < 10, the quantities .5?/, and the coefficients

” n-1 ne1 1 .
c. = i _ (43)
n (n=2)T(n=1)!2 '52;1‘2—’—(1.._‘)'(')

w

are listed in the Table 2. Finally, we have the formula applicable for any masses and energies

n~ 2

r - - .
S, = C, ___"M_n__ P, P, ’ (44)
M: R
~2_ T3 2, = +my = Mgz | = .
Pe = €~ ™M} €k Nix 3 M et B b ,(45)"
™ Te X k-1 H Pr-g= Myt t Mgy

This formula for different m, up to n =10 was compared with accurate values of S calculated by the
tables from/ /. For identical particles ( see the Table 3) its error is not high than 3% ( by the way, for this
_case in /8/ ‘a more convement formula (10‘) is found) For non-xdentxcal ( by theu‘ mass ) partlcles the order
of their enumeration affects the magmtude of the error. The best order of enumeration is symmetrical ( see

the Table 3 ). When the mass of only one particle is different from the rest ones ( e.g., in the system ‘
Nz..m ), then the number [n/21 +1 has to be ascribed to it; if as in the system 2Nlr_h_n’ two par-
ticles have the same mass, and the other ones have a different mass, then the mean numbers [#i/21+ 1,

[n/2] +2 are also ascribed to these two particles; when there are three kinds of particles ( just as in
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KZm...7) the best enumeration is mrrSKnan, For 3 —4 particles the accuracy is little dependent on the
order of ..e'numeration. Two opposite orders (e.g., 374N37 and 2N672N) lead to the errors of the opposite
sign so that the mean éeometric value gives an increased accuracy, Up to n = 10 it is possible by using
such methods to gain the accuracy not lower than 6%. .
Ifr, <<u, the calculation of Bk by (45) may be followed by the loss in éccuracy. In this case 'pk is
better to be calculated by (24).
Note, that by (44) the distribution by the effective mass of group of particles can be expressed in a
“closed form ( but not in terms of an integral as usual),
If out of n particles, v have the masses My ses My, and the effective mass m .. - and the rest
n—v particles have the masses m, , ... , My and if the phase volume of any k pa}'ticles with the
masses m ; ..., m and the energy M are to be denoted by S_(M; moeem ), then from (2.20) [11 ,]

follows

ds ,

’-d'ﬁlf 2m Sv(meu Fmypem) Sn-!H-I( M m ort Magreemy o) (46)

4. Comparison of the co-variant model with experiment

The formulae of the present pqpér and the tables of paper/8/ gllow to compare the predictions of the
co-variant model with the experiment. It has been already compared with the experimental data on pp-scat-

/2/

tering and, in the main, on the pair annihilation/a"""m’“/. In these papers it has been emphasized

that this model reflocts satisfactorily different mean characteristics of the multiple production.
It remains, however, obscure how to choose the only fitting parameter of the model k ( see/Z/) orA

(see below ) for pp-interaction “

The expression for the statistical weight of the reaction may be put as in6/ either in the form

3 n-t
| (47/3) 0/ m_ ) . ,
Vo= A )ty Mom s (M) (47)

or

) Mom, S (M), (49)

f” n

s -1
W o (477/3)(/}/m,.,) my, +my
n v 8”‘1

Here m,, is the meson mass, a and b. are two colliding particles, fr'sgives the number of isotbpic ahd
spin states. (48) is written so that it would coincide with the Fermi model in the non-relativistic case.
For the annihilation of NN at rest there is no difference between (47) and (48). In /2/ formula (47) was used
(without 12n, ).
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To c&npare these two ways of introducing the parameter A the data on inelastic pp-scattering at
9 BeV [15] were taken. The average multiplicity is here e = 3.34 +0.6. The calculation of the probabi-
lity of 1-9 meson production { by/B’/ and (44)) has shown that such n, is obtained if in (47) A is taken
to be .75 or in (48) to be 1. For these two values ofA the calculation was then‘ made for the energy range
from 1,5 up to 23 BeV (Table 4 ). In another Table 5 the distribution in the number of prongs is compared
with experiment ( a list of experimental data was kindly communicated by I.M.Gramenitski whom the
author expresses his gratitude ). ‘

It follows from the tables 4,5 that (47) for A =.75 and (48) for A = 1 are both in good agreement with
experiment. If one considers that A =1 is an exact number, but not a fitting parameter, one can prefer (48),

Then the final calculation formula is as follows

) - ma + m
W, (M) =( et bM ) fT,sl;(2mk s (M ) (49)
4 n

Further, it follows from the same tables that the covariant model agrees with the experimental data just as
well as the Fermi model. Since the calculation formulae for the first of them are simpler the covariant phase

/6/

volumes can be recommended for estimating the average multiplicities or mean momenta’®’, as well as for

the calculations By the Chew-Low scheme.
5. Some words about the calculations of the Fermi model

To check the assertion about themonotony S we have made the calculations of the statistical weight
by the Mlonte-Carlo method ( using B). Some results are presented in Table 1. The Fermi model was calcu-
lated in this way together with the covariant model. As these calculations héve shown i) The quantities.
5 up to the multiplicities n = 16 - 20 are of the same order and small enough in both models; 2) Therefore,
( see table 6 ) the calculation of the Fermi weight S,by the Monte-Carlo method up to n =20 with an accuracy
of 5-10% takes 5-10 minutes at the electronic computer M-20 ( N =10 ’ ). This time should be compared

with 10 hours necessary for the calculation of S, for n =12 - 14 by the method used at CERN/18/,

The author is grateful to L. Isa]eva, V. Khlapomna, and V.Komolova for making necessary calculatlons



Linear dependence ofﬁ2 on (/‘n/“n)%

5 identical particles.

14

Table 1.

at 7, = const for the system of

% ' i
o=, M) 0 0,57 0,71 0,85 0,91 1
numerical 0 0,21 0,26 0,20 0,31 0,35
_experiment
8252 , 0 0,20 0,25 0,30 0,32 0,35
max n
Table 2.

The> constants of formulae (44) , (45).

kR,

0,0000
0,3420

5191
- 6170

0,6805
7253
7390

7851

0,8060

S\oeo'\iox U W o

c

n

16,34
43,45
78,20.

106,7
117,4
108,4
86,21
60,27
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Table 3.
Errors in formula (44) (in%)
The order of . \,.,.L-./_.\.El,.
particle enumeration n
n,n-1,...2,1
0,2 . 0,4 : 0,6 0,3 0,95
3n -1 -1 .2 a1 0
inm -1 -2 -2 -2 - 1
6m 9 -1 -2 -2 0
8 1 1 -1 -2 0
107 3 3 0 -1
31111311} -5 -6 -4 -2 -1
anddn -5 -5 -3 .3 1
4w 2K 4 -3 -4 -3 -2 0
372K 4r -2 -2 0 0
XEna -2 -3 -1 0
n % Kn -2 .3 -2 0
37KX¥3n -1 -3 -4 -6 -5

Table 4.

The calculation of ng for p-p -interaction at different energies by the covariant model.

(1) - by (47
(2) —ly (49)
A list of experimental data — from/ls‘/.
energy TP (n (2) (exp.) (2) (exp.)
(BeV) Ty T i i, i,
1,5 2,12 2,13 2,12 1,34 1,2
2,75 2,36 + 0,06 1,8
3,0 2,36 2,43 2,37+0,07 1,8 1,7
4,2 2,59 2,67 2,9 2,14 '
6,2 2,94 3,00 '3,14+0,1 2,62 2,8+ 0,4
6,2 - 2,27 + 0,27
8,7 3
8,7 and 9,0 3,3 3,3 3,344+ 0,06 3,1 3,14
23 4,3 4,0 4,1+ 0,6 4,1

1~
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. Table 5.

The comparison of the distribution in the number of prongs n for p-p -

and p-n -interaction at 9 BeV 718/ with the covariant (49) , Fermi‘s /12/ and

. Chemavski‘s model i/ .

n 2 4 6 8 "—s

[12] 32,8% 58,5 8,6 0,1 3,53

[17] 35 58,9 6,0 0,1 3,46

(49) 41,2 52,6 6,2 0,03 3,32
151 454%28 43,6:28 9,5¢1,3 1,5:0,5  3,34£0,06

n 1 3 5 7 T,
-l12 ] 14,5% 59,4 25,0 1,1 - 3,25
(a7 18,4 65,2 15,7 0,7 2,96 .

(49) 21,5 60,5 17,505 2,94
g 32,383 49,7:3,5  13,5:1,9  4,2:1, 2,811 0,08

Table 6.

The calculation of S for n ultra-relativistic particies by the Fermi model.

" N=107, The timé'of calculation is 5-10 minutes. kg is the scale factor.

n _ o kS, exact value.
5 0,216+10° - 0,218+10”
N S 0,878'10:186

10 0,687:10°% ~0,60010

12 0,505-10"1° 0,504 -10°°
14 00201072 0,104:1072
16 0,151:10"° 0,165+ 10

20 -~ 0,131+0,007
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