

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Лаборатория теоретической физики

В.С. Барашенков, Д.И. Блохинцев, Бан Жун, Э.К. Михул, Хуан Цзу-чжань, Ху Ши-кэ

Д-780

2.3

НЕУПРУГИЕ ПИОН-НУКЛОННЫЕ ВЗАИМОДЕЙСТВИЯ ПРИ БОЛЬШИХ ЭНЕРГИЯХ

В.С.Барашенков, Д.И.Блохинцев, Ван Жун, Э.К. Михул, Хуан Цзу-чжань, Ху Ши-кэ

Д-780

НЕУПРУГИЕ ПИОН-НУКЛОННЫЕ ВЗАИМОДЕИСТВИЯ ПРИ БОЛЬШИХ ЭНЕРГИЯХ

1190/5 Jep.

Объединенный институт Плерных исследований БИБЛИОТЕКА

§ 1. <u>Введение</u>

При современном состоянии теории количественные характеристики процессов сильного взаимодействия могут быть получены лишь на основе определенных предположений о механизме явления. Такой модельной теорией долгое время являлась статистическая теория Ферми. Однако еще в 1956 году в докладе на Симпозиуме в ЦЕРН'е одним из авторов была высказана критика этой теории и было предложено разделять неупругие взаимодействия на "центральные" и "периферические" /1,2/ . С тех пор было получено много новых опытных данных по NN и π N - столкновениям при больших энергиях и выполнено немало расчетов (см. /3-6/ , где приведена подробная библиография). В настоящее время кажется, что эта более детальная картина находится в удовлетворительном согласии с опытом.

В дальнейшем описываются расчеты неупругих *п* N -взаимодействий при энергиях E > 1 Бэв, которые были выполнены в последнее время в Дубне на основе физической картины двух типов столкновений.

§ 2. <u> *π*N – взаимодействия в одномезонном приближении</u>

Расчеты выполнены в предположении, что механизм обмена импульсом между пионом и нуклоном является одномезонным. На рис. 1 изображены типичные диаграммы. Как видно, следует различать процессы с четным и нечетным числом рождающихся пионов. В первом случае основным процессом является рождение пионов в периферическом *пп* -столкновении (диаграмма А). В случае нечетного числа пионов этот процесс сопровождается рождением одного пиона в процессе рассеяния виртуального мезона на нуклоне (диаграмма В).

С процессом, изображенным диаграммой А, может конкурировать процесс, изображенный на рис. 1 диаграммой А¹. Подобным же образом процесс В может иммитироваться процессом, изображенным диаграммой В¹.

Л.Родбергом ^{/9/} быю показано, что диаграмма А, соответствующая взаимодействию с керном нуклона (см.рис. 2а¹, дает значительно меньший вклад, нежели диаграмма В (рис. 2в), представляющая *п*N - взаимодействие. Эти диаграммы входят как составные части в диаграммы, изображенные на рис.1. В частности, по этой причине оказывается выгодным заменить два пиона, рожденных керном нуклона (диаграмма A¹) на два пиона, рожденных в *пп* -столкновении (диаграмма A). Такое рассуждение применимо к диаграмме В и В¹.

Поэтому достаточно рассматривать лишь процессы А и В. Соответствуюшие им сечения имеют вид:

(1)

(2)

Y

$$\sigma_{2n}(E) = g \frac{1}{g\pi^2 v} \int_{0}^{q_{max}} \frac{n}{q} \frac{q^2 dq}{q_0} \sigma_{0}^{(2n)}(Q) \sqrt{1 - (\frac{2\mu}{Q})^2} Q^2 x$$

$$= \{ \frac{1}{4pq} \ell_n (1 + \frac{4pq}{2pq - 2pq - 2M^2 + \mu^2} \}$$

$$-\frac{\mu^2}{(2pq_0-2M^2+\mu^2)^2-4p^2q^2}$$

$$\sigma_{2n+1}(E) = \frac{1}{4\pi^3 v} \int_{0}^{P_{max n}} \frac{P^2_{dP}}{P_0 \omega} \int_{\sqrt{P^2 + (M+\mu)^2}}^{E - \sqrt{P^2 + m_n^2}} S^2 \sqrt{1 - (\frac{2\mu}{s})^2} \frac{\sigma_{\sigma}^{(2\mu)}(S)}{\pi\pi} dP_0$$

$$\frac{\sigma_{\pi N}(p)\sqrt{(R^2 - M^2 - \mu^2)^2 - 4M^2\mu^2}}{(2P_o P_o - M^2 - R^2 + \mu^2)^2 - 4P^2p^2}$$

Здесь

$$q_{max n} = \frac{1}{2E} \sqrt{(E + M + m_n)(E + M - m_n)(E - M + m_n)(E - M - m_n)}$$

$$s^{2} = (E - P_{o})^{2} - P^{2}; \quad Q^{2} = (E - q_{o})^{2} - q^{2}, \quad R^{2} = P_{o}^{2} - P^{2}$$

 $P_{\max n} = q_{\max n} \mid m_n \to m_n + \mu$

Е – полная энергия первичных частиц в CMS ; $p_0^2 = p^2 + M^2$ $q_0^2 = q^2 + M^2$ р – импульс первичного нуклона в системе центра масс (с.ц.м.), М –масса нуклона, m_n – сумма масс частиц, рождеющихся в $\pi\pi$ –столкновении, v – относительная скорость пиона и нуклона в с.ц.м., $\sigma_{\pi\pi}^{(n)}$ – сечение $\pi\pi$ –взаимодействия, g^2 – константа πN – связи, ω и μ – энергия и масса пиона в с.ц.м. Формула (2) имеет смысл, если в $\pi\pi$ –столкновении рождаются только лишь π –мезоны; в случае рождения нуклон-антинуклонных пар формула (1) справедлива как для четного, так и для нечетного числа π – мезонов¹.

В рассматриваемом расчете, когда предполагается, что одномезонное приближение применимо для сколь угодно больших передач импульса (далее мы увидим, что вклад очень больших передач импульса в действительности оказывается невелик), все $\pi\pi$ - взаимодействия объединены в верхних узлах диаграмм А и В. При этом диаграмму В можно заменить эквивалентной ей диаграммой Д (см.рис.3).

Вычисления показали, что диаграммы типа Д дают эначительно меньший вклад в πN - взаимодействие, нежели диаграммы типа А. Это видно из таблицы 1, где приведены отношения сечений для четного и нечетного числа мезонов при разных энергиях первичного π -мезона E_{α} .

Для каждого заданного п отношение сечений $\sigma_{2n+1} / \sigma_{2n}$ возрастает при увеличении энергии Т, однако с ростом энергии быстро уменьшается относительный вклад канала с заданным п. Можно сказать, что каналы, дающие основной вклад во взаимодействие, расположены в диагональной части таблицы; при этом $\sigma_{2n} \gg \sigma_{2n+1}$.

Данные таблицы 1 показывают, что изучение генерации нечетного числа мезонов при высокой энергии первичного пиона может служить способом изучения керна нуклона. Однако следует иметь в виду, что эти каналы являются второстепенными; рождение большого четного числа пионов будет преобладающим процессом при этих высоких энергиях.

¹⁷ Заметим, что численно близкие результаты получаются также при использовании метода Вейцзекера-Вильсона /8/

§ 3. пп - взаимодействие

Для вычисления относительной множественности пионов, передачи импульса и для угловых распределений необходимы парциальные сечения $\pi\pi$ -взаимодействия. Парциальные сечения неупругих взаимодействий были вычислены в предположении отсутствия корреляций между частицами, рожденными в $\pi\pi$ столкновении. Такое предположение приводит к факторизации матричного элемента рождения частиц в $\pi\pi$ -столкновениях в виде $\sim \Omega$ (E) ρ_n (E), где Е – энергия первичных частиц в с.п.м., $\rho_n^{(E)}$ – импульсный объем для п -частиц, $\Omega(E)$ – некоторый трехмерный объем. Вычисления были произведены в предположении, соответствующем теории Ферми $\Omega(E) = (\frac{\pi}{\mu c})^3 \frac{\mu c^2}{E}$

При статистических расчетах $\pi\pi$ – взаимодействий учитывалось резонансное взаимодействие π –мезонов при $M^*_{\pi\pi} = 0,6$ М в состоянии с изотопическим спином T = 1 и спином I = 1. При вычислениях принимались во внимание каналы вплоть до ⁿ = 8, учитывались также каналы с рождением нуклон-антинуклонных пар.

Кроме неупругих $\pi\pi$ -взаимодействий следует учитывать также упругое $\pi\pi$ -рассеяние. В настоящее время полностью отсутствуют какие-либо экспериментальные данные о величине сечения такого рассеяния. По аналогии с π N и NN -взаимодействием /11/ можно было бы ожидать, что сечение упругого $\pi\pi$ - рассеяния $\sigma_{el}(\pi\pi)$ составляет порядка трети от сечения неупругого $\pi\pi$ - рассеяния. Оценки показали, что в пределах точности современных экспериментальных данных результаты расчетов слабо чувствительны к предположению о величине $\sigma_{el}(\pi\pi)$.

Принимая неупругое сечение πN -столкновения равным 23 mb и константу πN -взаимодействия $g^2 = 14,5$, из формул (1) и (2) можно оценить эффективное сечение $\pi \pi$ -взаимодействия:

 $\sigma_{\pi\pi} \sim 40 \; {\rm mb}$.

²⁷ Предположение об отсутствии корреляций также и с начальным состоянием ведет к $\Omega(E) = const$ (теория Сударшана), практически оба предположения дают близкие результаты (см. также /10/).

§ 4. Результаты расчета

На рис. 4 приведены результаты расчетов по множественности рождающихся частиц (с учетом нуклона отдачи)³⁾:

$$n(E_0) = \Sigma (2n+1) \sigma_{2n}(E_0) / \Sigma \sigma_{2n}(E_0).$$
(3)

На графике виден рост множественности с энергией, хорошо согласующейся с экспериментальными данными. (Библиографию экспериментальных работ см. /4-6/).

На рис. 5 приведен импульсный спектр протонов отдачи в с.ц.м. для энергии первичных ^п-мезонов Ес = 7 Бэв (лабор.система):

$$w(p) = \frac{q^{2}}{q_{o}} \left\{ \frac{q}{4pq} \ln \left(1 + \frac{4pq}{2p_{o}q_{o} - 2pq - 2M^{2} + \mu^{2}} \right) - \frac{\mu^{2}}{(2p_{o}q_{o} - 2M^{2} + \mu^{2})^{2} - 4p^{2}q^{2}} \sum_{i} n_{p}^{i} \sigma_{nn}^{i}(s), \qquad (4)$$

где $q_{\pi\pi}^i$ - сечение і -го канала $\pi\pi$ -взаимодействия; n_p^i - число протонов отдачи, остальные обозначения те же, что и в формулах (1) и (2).

Как видно, вычисленные значения ω(p) близки к экспериментальным. На рис. 6 для энергии π⁻-мезонов E₀ = 7 Бэв указано угловое распределение протонов отдачи в с.ц.м.:

w (Q) =
$$\sum_{i} n_{p}^{i} \int_{0}^{q_{max}i} \sigma_{\pi\pi}^{i}$$
 (s) $\frac{p_{0}q_{0} - pq\cos\theta - M^{2}}{(2p_{0}q_{0} - 2pq\cos\theta - 2M^{2} + \mu^{2})^{2}} \frac{q^{2}}{q_{0}} dq$ (5)

Согласие экспериментальных и теоретических распределений получается вполне удовлетворительным.

На рис. 7 приведены угловые распределения протонов отдачи ω(θ) для Е₀=3 и 16 Бэв. Эти распределения нормированы таким образом, что

3) Численные расчеты выполнены на электронной машине М-20 в вычислительном центре ОИЯИ.

$$2\pi \int \omega(\theta) \sin \theta \, d\theta = 1.$$

В таблице 11 для с.ц.м. указаны средние значения импульса протона отда-

$$\overline{\mathbf{p}} = \int \mathbf{p} \, \mathbf{w}(\mathbf{p}) / \int \mathbf{w}(\mathbf{p}) \, d\mathbf{p} \tag{6}$$

и средние значения его поперечного импульса

$$\overline{P}_{L} = \int q_{\perp} w_{\perp}(q_{\perp}) \, \mathrm{d}q_{\perp} / \int w_{\perp}(q_{\perp}) \, \mathrm{d}q_{\perp} \qquad (7)$$

чи

$$\sqrt{q_{max}^2 - q_{\perp}^2}$$

$$g_{L}(q_{L}) = q_{L} \sum_{i} n_{p}^{i} \int_{maxi}^{\sqrt{q^{2} - q_{L}^{2}}} \sigma_{\pi\pi}^{i} (s^{*}) \frac{p_{0}q_{0L} - pt - M^{2}}{(2p_{0}q_{0L} - 2pt - 2M^{2} + \mu^{2})^{2}} \frac{dt}{q_{0L}}$$

$$s^{*} = \sqrt{(E - q_{0L})^{2} - q_{L}^{2} - t^{2}}; \quad q_{0L}^{2} = M^{2} + q_{L}^{2} + t^{2}.$$
(3)

Как видно из таблицы, теоретические значения \overline{P}_{2} изменяются очень медленно, что согласуется с экспериментальными данными, полученными на ускорителях и в опытах с космическими лучами.

Из выполненных расчетов можно сделать заключение о том, что механизм периферического *пп* -столкновения является преобладающим.

В настоящее время расчеты продолжаются в область более высоких энергий и изучаются причины того или иного поведения вычисленных характеристик.

Удовлетворительное согласие наших теоретических расчетов с экспериментальными данными указывает на то, что сделанные приближения:

а) пренебрежение многопионным (а вместе с этим и "центральными" взаимодействиями) и

б) замена виртуальных амплитуд на реальные (известно, что в некоторых, более тонких, вопросах такая замена едет к парадоксальным результатам^{/12/}), приводят к ошибкам, находящимся в пределах точности имеющихся экспериментальных данных. Пользуемся случаем поблагодарить сотрудников вычислительного центра ОИЯИ Н.Н.Говоруна, Ким Хе Пхень и П.Либл за большую помощь при численных расчетах. Мы благодарны также Сянь Дин-чан за полезные обсуждения методов расчета зарядовых распределений в статистической теории.

Т	а	б	. л	И	п	а	1
_		_			_	-	

Т Бэв		σ ₃ / σ ₂		σ_{s}/σ_{4}	•	
2		0,1	· · · · · · · · · · · · · · · · · · ·			
7		0,15	•			
100	•	1		0,25	:	
1000		2		0,5		
			•	•		

Г	а	б	л	И	ц	а	11

Кинематическая энергия л – мезонов Е_О Бэв	Средний и отдачи	мпульс протонов р Бэв/с	Средний поперечный импульс протонов отдачи Р. Бэв/с		
(лаб.сист.)	теория	опыт	теория	опыт	
3	0,5	· _ ·	0,3		
7	0,8	0,89+0,04	0,4	0,37 <u>+</u> 0,04	
10	0,85	-	0,45	-	
16	1,15	-	0,5	0,4	

Рис. 1. Важнейшие типичные диаграммы (А и В) в неупругом пN -рассеянии и диаграммы А и В, менее существенные.

Рис. 2. Диаграмм (а) имеет значительно меньшую амплитуду, нежели диаграмма (в).

Рис. 4. Среднее число частиц, рождающихся в *п*р -столкновениях при различных энергиях первичного *п* -мезона (лаб.система). *п* - полное число, *п*<u>+</u> - число заряженных частиц. В эти значения включен также нуклон отдачи.

Рис. 5. Импульсный спектр протонов отдачи (с.ц.м.) при энергии падающего *т* -мезона Е =7 Бэв. Пунктиром указана экспериментальная гистограмма из работы ^{/5/}. Значения даны в единицах Бэв/с.

Рис. 6. Угловое распределение протонов отдачи (с.ц.м.) при энергии падающего π⁻⁻-мезона Е₀=7 Бэв. Пунктиром указана экспериментальная гистограмма из работы /4/.

Литература

- 1. D.I.Blokhintsev, CERN Symposium II, 155 (1956).
- 2. Д.И. Блохинцев, В.С.Барашенков, Б.М.Барбашов. УФН, 68, 417 (1959).
- 3. С.З.Беленький, В.М.Максименко, А.И.Никишов, И.Л.Розенталь. УФН, 62, 1 (1957).
- 4. V.S.Barashenkov, Nuovo Cim. 14, 656 (1959).
- 5. В.А.Беляков, Ван Шу-фень, В.В.Глаголев. ЖЭТФ,
- 6. Материалы Х-й Международной конференции по физике высоких энергий, Рочестер, 1960.
- 7. R. Hagedorn, Fortschrine d. Phys. 9,1 (1961).
- 8. V.S.Barashenkov, Fortschrine d. Phys. 9, 42 (1961).
- 9. L.Rodberg, Phys.Rev.Lett. 3, 58 (1959).
- 10. В.М.Максименко, И.Л.Розенталь. ЖЭТФ, 39, 754 (1960).
- 11. В.С.Барашенков, В.М.Мальцев. Препринт ОИЯИ Р-724 (1961) (будет опубликовано)
- 12. В.Б.Берестецкий, И.Я.Померанчук. ЖЭТФ, 39, 1078 (1960).

Рукопись поступила в издательский отдел 14 августа 1961 года.