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L.1. Electrodynamics is the only field theory, which is completed to some extent and confirmed by

experiment, Such a theory is invariant not only under the group of charged field transformations

W (x)= explie A 1/ (x) A = const (1)

(this group is: connected with charge conservation ) but also under a wider group of gauge transformations

u,//)(x)= exp[ie Ax)] (x) - (2)
where the group parameter (phase) A (x) is an arbitrary function of a space-time point x . Simultaneously
the 4-vector of electromagnetic field undergoes the transformation

.‘\’:(X)=A“(X)+—%’-:—(¥). . . (3)
" .

Jp to now ‘the physical meaning of gauge invariance is still rather mysterious. It will be shown below
that the gauge invariance can be understood as the condition for 4-vector fleld A” to describe spin 1 only,
In the particular case of limited gauges this meaning had been cleared up in our prevnous paper/ls/

1.2 By analogy to the transition from (1) to (2) one can attempt to suppose an arbitrary dependence on
x of the parameters of other known, groups also, e.g., of the isotopic group, of groups of transformations
connected w1th the baryon and hyperon-charge conservation laws and so on. Then one obtains new gauge
transformanons. Necently a series of attempts have been undertaken to raise the invariance under such
transformaiions to the level of principle and to construct. a theory of strong and weak interactions by means
of thls gauge prmclple. These attempts have been made in papers of Yang and Mills, Lee and Yang,

Uhyama, Salam and Ward, Sakurai, Glashow and Gell- '\1ann and others/1 17/

/113 / ig based on the belief, that gauge principle necessitates

1.3. The phylosophy of the papers
the existence of massless vector fields coupled to corresponding conserved currents. For instance, it 1s
stated that the requirement of the invariance under transformatnon (2) leads automatlcally from an in‘tial

free lagranglan, say, for the spinor field:

r,b(x):-g?;(yu_aiwnm)-x/, L (4)
X“ L

to the electrodynamical lagrangian



” E, (5)

where i
iy =ie %y, v | - ®
;- %i: e . )

1-1 :
_ Thus, as if with necessity/ "+ the electromagnetic field — the massless vector field.A# (x) appears.

1.4. However, this statement is not correct. In fact, gauge invariance will be assured if instead of

lagrangian (5), one takes the lagrangian

F(x)—“--lﬁ( % .%l: m) +'j#g_)-?; . _ (8)

and prescribes to the scalar field B(x) the gauge transformation

B =B +A G, o ©

Lagrangian (8) has no free part for the field B (x) and therefore it does not lead to the equation of mo-

tion for this field. -
1.5. Butthe same situation takes place with lagrangian (5) also. Four-vector A# can be decomposed

symbolically as*

A = T3 0Ap )T 729 A, oAl 1A
L= (A, D?&V#HEL'ﬁﬁ‘“+M a0

where A'# bcorresponds to three degrees of freedom and does not change at gauge transformations (3), A‘;‘

corresponds to one degree of freedom and takes the whole gauge variation of A#
0/ A0 AA . A’ Al ' '
A# A#+ 7)‘& H f\# A# (11)

v'\‘:L and A[_ll. describe spin 0 and 1, respectively, as one can see with the help of the invariant operator of

the square of the spin momentum for vector field/ 1918/ ;

] . ~1
*fjlin formulae (10) and (12) should be understood as an integral operator, e.g. D f(x) = de T)F(x-y) f()’)

where D is the causal Green function of D*Alembert operator.
F
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1.6. The free lagrangian for A contains a field tensorlz‘ pnly. This tensor is gauge invariant and ¢ con-

sequently does not- dependon the part of A whxch changes at the gauge transformations.

In fact,

1 A2 '
F o= %A, _ dA  _ 9AL dA, . 13)
w ax# dx;, ax dx,, .
Therefore, lagrangnan (5) gwes the equation of motion not for the field A on the whole, bu; for the gauge

: mdependent part A" only.

The gauge dependent part A enters into an interaction term.only and lagranglan (5) does not give any

equation for it. The very fact that A changed by quite an arbitrary function gA means . that A cannot
obey any equation, The situation is exactly the same as for the field B in the cage of lagrangian (8)

Therefore, lagrangian (5) which does not nge the equation for Aﬂ 1s not a bit better than lagrangian (g)
which does not give the equation of motion for scalar field B. Moreover, three components of A for which
(5) gives equations have nothing to do with gauge invariance as they fail to undergo gauge transformatxons.

2. Thus, we are led to the following conclusmns on the gauge principle:

2.1. The gauge principle does not lead to electrodynamncal lagrangian (5), as having a dynamical mani-
festation part AI is introduced quite arbitrarily. Therefore references on ‘minimality* are out of place.

2.2, This prlnclple causes, as we have shown above, the appearance of some scalar field only though
it were B orD’ ‘aA which have no dynamical manifestation. The ‘minimal® lagrangian which followed.
directly from gauge principle is lagrangian (8), .

2.3. The scalar field B under consideration does not obey any equation and does not lead to any dynami-
cal manifestation. It is quite fictitions and harmless. It can be removed by the canonical point transformation

of field variables*

¥ )= exp[_ievB(x)]t/l(X)- R 4 (14)

In fact, lagrangian (8) describes the free ‘field Y , but at the same time the so desired’1" 13/arb|trarmess of

phases at different space time points (“locality’) have .been achleved.

The similar transformation in a similar situation has been applied tn/18/, General questions conoerning such
‘ transformations have been disoussed ln/2°/. .



24. Such an invariance can be introduced into any theory if one switches on the field B by means of the
transformation inverse to (14). ’
3. As for the meaning and the significance of the gauge invariance the above consideration allows ue to
say the following: »

3.1. Though it is impossible to deduce the existence of a vector field A# frorj the gauge invariance, one
can postulate the exi‘stence of such a field. After this, of course, it is possible to switch on the interaction
with this postulated fieldin a gauge invariant manner, e.g. as in lagr’angian (5). Then four-vector A# will
describe spin 1 only. ' |

3.2, Actually, gauge invariance fays the role similar supplementary conditions in the higher spin theo-
ry: it limits the number of degrees of freedom*, This limitation is realized in such a way, that zero-spm ,
part turns out to be quite arbitrary instead of being excluded And really, just to this part quite arbltrary )
function A is added at gauge transformations. .:Ience, it cannot be and in fact it does not follow any
equation for this part from 1agrangian, It enters. only in the interaction term, »

3.3. The abs.ence of the equation of motion does not permit the interpretation of the corresponding field
variable in a mechanical language of conjugate coordinates and moments, and, therefore it is 1mposslble to
carry out conventxonal quantization**. This explains the difficulty of the quantization of Vlaxwell‘s equa—

tions - it is impossxble to obtain commutation relations for components of the vector-potential \

But at the same time it seems natural that commutatlon relations can be obtamed for gauge invariant ( inde.

pendent of A ) quamtxes/zl/ Long ago this has been made by ‘Ielsenberg and Pauli for a field tensor

F 722/,
py

3.4. As the‘spin 1 field Alj is gauge independent then, ap parently, the gauge invariance is not connect-

edwith problems of the mass of these quanta and of the universality of the electric charge.

4. Many authors implied that a Lag‘rang‘lan density L (x) is gauge lnvanant strictly and that A (x) is
quite an arbltrary function. Then, as we have seen, there is no equatlon of motion for the gauge dependent '
component. Such an equations can be postulated if one considers Lagrangian density which is invariant

" only up to a four-divergence and a gauge functions A (x) which are limited by an appropriate equation,

In addition, one of Maxwell equations plays the role of the ordinary supplementary 'condltlon.

This reduces the num-
ber of degrees of freedom corresponding A toa.

Another quan’?izution method—method Fermi —t{ll now containes some vagueness (an indefinite metrio, a meaning

of a supplementary condition ).
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For example, such-a Lagrangian density is

It is invariant up to four-divergence under transformations
px)=explie A Iy(x), B ‘()= B(x)+ Cl A(x) S (18)

provided ‘ : ' » : :

- I (O-MHAx=0. : , RN 1))
X, v _ A )

Correspondmgly, it is poss:ble to switch on gauge invariant interaction with the massive neutral vecton

fleld +/ 18/

« | .
T . DAL IAy. M e
L(X)_; v (y, 7?};+ m)l,[l+j# A=% %&u ax#" 2_AVAV . (18)

" This density is invariant again up to four-divergence under transformation

¥’ () =exp [ieA (x) ] ) ,. Ar) = A(x)+ gA(x) (19)

provided that the same condmon (17) is satisfied. The scalar field B and the part of A with zero spin

1, _Ja_ %A /18/ obey free Klein-Gordon equation. Now they can be quantized but bemg free they
M x

have no dynamlcgl mamfestatlons. They can be excluded by means of the contact transformatlon of field

/18 20/ / 24/

-variables or the unitary Dyson transformation

In detail the gauge invariant theory 6f the massive neutral vector field has ‘.bee‘n considered in our

paper/ 18/,

5. As to an Yang-Mills 1sotop1c gauge invariance hete we note only that one can guarantee 1t wlthout

introducing vector field. For instarice, an isotopic gauge invariant Lagrangian is

.

" L(x) =v--|;[;- _:93_+ m )u+|,[1exp(—igra b, ).)l/l[_aé;exp(igra b1y T (20)
. I

Reoently the. hypothesls of the ex!stene‘e of neutral vector mesons has been lntenslvely dlsoussed See

/28/

‘L Kobsarev s and L.Okun’s paper and the papers quoted there.



" where b, (x) are three scalar in wdinary space function. When ¢ transforms according to a law
Yx)=expligr, A )1y ()

transformation of b, is defined not uniquely. For example, we quote two possibilities (written in implicit

form)

exp[igr, b (x)]=exp[1g b, (x) 1 ~expbig 7y A, 0]

or

exp [ig r, by ()] =-éxp[ igr, z\a(O)] exp[lgr b, (x)]-"exp[—igu"a '\_a(")]

- The introduced fleld b, (x) has as many components as there are gauge functions A (x) . Yang-Mills vec-
tor field contains more components, than needed*. Our field does not lead to any dynamxcal mam{esta-
tions as it can be excluded by means of the point transformanon of ﬁeld variables
t,[;—vexp[lgr b ]¢/1819/‘ ‘ v .- .

Tkeda and ’\hyaclu/ /, Salam and Ward/ 117 4nd Glashow and Gell-‘\iann/ 3/considered vecter fields,

.whlch seem necessary for generallzed Yang-’\hlls invariances to be guaranteed It is easy to see, that here
one can also do without mtroducmg vector fields, w1thout superﬂuous components. It is. qulte enough to .
use scalar fields whlch have no dynamlcal rnamfestanons. Con'esponding Lagrangians w1ll be an evident
generalization of Lagrangian (20) o - T
These examples show onice more the 1mpossxb111ty of deducing vector fields from the gauge principle.
1t is worthwhile to note that an investigation of meaning of the gravxtatxonal gauge invariance and a

criticism of a con'espondmg_ gauge prmcxple/ 17/mgy be made snmllarly.

In conclusion the authors are indebted sincerely to Ya.A.Smorodinski for discussions.

Of course, all statements of Seotion 8 are valid for the Yang-Mills veotor field also.
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