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1.1. Electrodynamics is the only £ield theory, which is completed to some extent and confirmed by 

experiment. Such a theory is invariant not only under the group of charged field transformations 

•/1 ' ( x) = exp [ ie t\ l •/I ( x) A= canst (l) 

(this group is. connected with charge conservation ). but also under a wider group of gauge transformations 

•/1'( x) = exp [ ie A (x)] 1/J ( x) (2) 

where the group parameter (phase) A (x) is an arbitrary fllnction of a space-time point x • Simultaneously 

the 4•vector of electromagnetic field undergoes the transformation 

('J) 

IJp to now the physical meaning of gauge invariance is still rather mysterious. It will be shown below 

that the gauge invariance can he llnderstood as the condition for 4-vector field ~ to describe spin l only. 

In the particular c~se of limited gauges this meaning had been cleared up in our previous pape/181. 

1.2 By analogy to the transition fro"m (1) to (2) one can attem~t to suppose an arbitrary dependence on 

X of the parameters of other known. groups also, e;g., of the isotopic group, of ·groups of transformations 

connected with the baryon and hyperon-charge conservation laws and so on. Then one obtains new gauge 

transformations. fiecently a series of attempts have be~n undertaken to raise the in variance under such 

transformations to the level of principle and to construct a theory of strong and weak interactions by means 

of this gauge principle. These attempts have.been made in papers of Yang and \!ills, l..ee and Yang, . . . 
Utiyama, Salam and Ward, Sakurai, Glashow and Gell-\fann and other/1-17 I. 

1.3. The phylosophy of the papersl1-13 I is based on the belief, that gauge principle necessitates 

the existence of massless vector fields coupled to corresponding conseryed cllrrents. For instance, it is 

stated that the requirement of the invariance under transformation (2) leads automatically from an in:tial 

free lagrangian, say, for the spin or field: 

(4) 

to the electrodynamical lagrangian 
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L(x)=-;'&(y _E._+ m)ifl+ i.. A -~4F Fv 
'1-1.ax · "~-'-1-f. /-f.J.I 1-1. 

(5) 

1-1. 

where 

j = ie ";$ Y. if! 
1-1. 1-1. 

(6) 

F = a A v _ ___fLk__ 
/-f.V rJ X ax 

1-1. v 
(7) 

Thus, as if with necessity/l-l
3
/, the electromagnetic field- the massless vector field A (x) appears. 

. 1-1. 

1.4. However, this statement is not correct. In fact, gauge invarianc~ will be assured if instead of 

lagrangian (5), one takes the lagrangian 

L {x) = - if; ( Y. _a_ + m ) if! + j _a_n_ 
1-1. ax~-~. 1-1. ax~-~. 

(8) 

and prescribes to the scalar field B (x) the gauge transformation 

B '(x) = B (x) +A (x) • (9) 

Lagrangian (8) has no free part for the field Tl (x) and therefore it does not lead to the equation of mo­

tion for this field. 

1.5. But the same situation takes place with lagrangian (5) also. Four-vector All can he decomP.osed 

symbolically as* 

A =(A -o·ta ~)+0-~ ~=A1 +A0 

/-1. /-1. dx/-1. d X11 r1x,.t a Xy Jl. /-1. 
(10) 

where A~ corresponds to three degre~s of freedom and does not change at gauge transformations (3), A~ 

corresponds to one degree of freedom and takes the whole gauge variation of A 
fl. 

Ao'.,. Ao + ....ilJ1._ • t;,I '= A, 1 
1-1. 1-1. ax ' 1-1. • 1-1. 

(11) 

fl. 

•\
0 and r\1 describe spin 0 and l, respectively, as one can see with the help of the invariant operator of 
1-1. 1-1. 

the square of th~ spin momen.tum for vector field/19•18/: 

* I . . ·I 
[TIn formulae (10) and (12) should be understood as an Integral operator, e.g. 0 f{x) = .{dy n F(x•y) f{y) 

where D Ia the oau8al Green function of n•Alembert operator. 
F 

I 
l­
·! 
l' 
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(12) 

1.6. The fre~ lagrangian for Ap. contains a field tensor~~~ fnly. This tensor is gauge invariant and con· 

sequently does not dependon the part of A which changes at the gauge transformations. 
p. 

In fact, 

(13) 

Therefore, lagrangian· (5) giv~s the equation of motion not for the field A on the whole, but for the gauge . p. 
independent partA1 only. 

. . p. 

The gauge dependent part A~ enters_ into an interaction term.only and lagrangian (5) does not give any 

equation for it. The very fact that A~ changed by quite an arbitrary function :: means that A0p. cannot 

obey any equation. The situation is exactly the same as for the .field B in the ca~e of lagrangian (8). 

Therefore, lagrangian (5) which does not ·~ive the equation for -~ is not a hit better than lagrangian (8) 

which does not give the equation of motion for scalar field B. \foreover, three components of A for which 
e· p. 

(5) gives equations have nothing to do with gauge invariance as they £ail to undergo gauge trans£ormations. 

" 2. Thus, we are led to the Eollowing conclusions on the gauge principle: 

2.1. The gauge principle does not lead to electrodynamical lagrangian (5), as ha"ing a dynamical mani­

Eestation part A
1 

is introduced quite arbitrarily. Therefore re£erenc~s on 'minimality' are out of place. . p. 

2.2. This principle causes, as we have shown above, the appearance o£ some scalar field only though 

it were B or O_laAv which have no dynamical manifestation. The 'minimal' lagrangian which Eollowed . a~ . 
directly £rom gauge principle is lagrangian (8)

1 

2.3. The scalar field B under consideration does not obey any equation and does not lead to any dynami­

cal manilestatlon. It is quite fictitions and harmless. It can he removed by the canonical point transformatioa . 
of field variables* 

\V(x) := exp Ue B (x) ] lfr (x) • 
(14) 

In fact, lagrangian (8) describes the Eree ·Eield l/1 , but at the same time the so desired/1-13/ arbitrariness of 

phases at diEEerent space time points ('locality') have been achieved. 

The similar transformation In a similar el.tuatlon has been applied ln/18/. General questions oonoernlng euch 
transformations have been discussed ln/20/. 
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2.4. Such an in variance can be introduced into any theory i£ one switches on the field B by means of the 

transformation inverse to (14). 

3. As for the meaning and the signi£icance of the gauge invariance the above consideration allows us to 

say the .following: 

3.1. Though it is impossible· to deduce the existence of a vector field Ap. from the gauge invariance, one 

can postulate the existence of such a field. After this, of course, it is possible to switch on the int!'lraction 

with this postulated field in a gauge invariant manner, e.g. as in lagrangian (5). Then four-vector Ap. will 

describe spin 1 only. 

3.2. Actually, gauge invariance flays the role similar supplementary conditions in the higher spin theo­

ry: it limits the number of degrees of freedom*. This limitation is realized in such a way, that zero-spin 

part turns out to be quite arbitra~y instead of being excluded: And really, just to this part quite arbitrary 

function ~ ~ is added at gauge transformations. Hence, it c.annot be and in fact it does not follow any 

equation for ttfts part from lagrangian, It enters. only in the interaction term, 

3.3. The absence of the equation of motion does not permit the interpretation of the corresponding field 

variable in a mechanical language of conjugate coordinates and moments, and, therefore it is impossible to 

carry out conventional quantization*"'. This explains the difficulty of the quantization of \laxwell's equa-

tions - it is impossible to obtain commutation relations for components of the vector-potential .. o\ , 
. • p. 

But at the same time it seems natural that commutation relations can be obtained for gauge invariant ( inde· 

pendent of A: ) quanities/2l/, Long ago this has .. been made by ijeisenberg and Pauli for a field tensor 

F /22/. 
p.v 

3.4. As the spin 1 field A 
1 

is gauge independent then, ap Jnrently, the gauge invariance is not connect­p. 

ed with problems of the mass of these quanta and of the universality of the electric charge. 

4. ifany authors implied that a Lagrangian density L (x) is gauge invariant strictly and that A (x) is 

quite an arbitrary function. Then, as we have seen, there is no equation of motion for the gauge dependent 

component. Such an equations can be postulated i£ one considers Lagrangian density which is invariant 

only up to a four-divergence and a gauge functions A (x) which are limited by an appropriate equation, 

In addition, one of Maxwell equations plays the role of the ordinary supplementary 'condition, This reduoes the num• 
ber of degrees of freedom corresponding A to 2. 

p. 

**Another quan"tlzatlon method- method Fermi- t111 now contalnee some vagueness (an Indefinite metrlo, a meaning 
of a supplementary condition ) , 
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For example, such.a Lagrangian density is 

L(x) ""-iJi(y a + m) .p +i as -%as as -1nn. (15) 
. p. --rx; . ·p. .Oxll ~ dxll 2 

It is invariant up to four-divergence under transformations 

,P'(x)"" exp [ ie A(x) ],P(x), S'(x)"" S(x)+ _1_0 A(x) (16) 
. ~2 

provided 

(17) 

Correspondingly, it is possible to switch on gauge invariant interaction with the massive neutral vecto~ 

.field •1181 

(18) 

This density is invariant again up to four-divergence under transformation 

.p '(x) = exp [ ie A (x) ] ,P(x) , A' (x) = A (x) + a A (x) 
ll . /.! ax 

(19) 

/.! 

provided that the same condition (17) is satisfied. The scalar field Band the part of A with zero spin 
/.! 

_j_2 a 2.t\)181 obey free Xlein-Gordon equation. Now they can be quantized hut being free they 
~~ fJX~ ax II . 

have no i:lynamical manifestations. They can. he excluded by means of the contact transformation of field 

variable/18•20/ or the unitary Dyson transformation 1241. 

In detail the gauge invariant theory of the massive neutral vector field has been considered in our 

pape/18/. 

5. As to an Yang-\tills isotopic gauge invariance here we note only that one can guarantee it without 

introducing vector field. For instance, an isotopic gauge invariant Lagrangian is 

L(x)=-;fr<r. ~+m )l/f+,Pexp(-igra ha)Y. [..Lexp(igra ha)],P (20) 
/.! ax /.! ax 

/.! /.! 

* Recently the. hypothesis or th'! exletenc!'e or neutral vector mesons has been Intensively dlecuesed, See 

' I.Kobsare_.:•a and L.Oklin'e pe.per1281 ~nd the papers quoted there, 
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where ba (x) are three scalar in 'tl'dinary space function. When t{l transforms according to a l~w 

t{l'(x) .. exp[igr A (x)]t{l(x) a a 

transformation of ba is defined not uniquely. For example, we quote two possibilities (written in implicit 

form) 

exp [ ig 'a b~ ( x)] "' exp [ ig 'a ba (x)] • ·expE-ig r a A a (x) ] 

or 
exp [ ig 'a b~ (x)] = exp [ ig 'a A a (0)] • exp[ igr a ba {x)] • exp [-igra A a (x)] 

The introduced field ba (x) has as many components as there are gauge functions .A a (x) • Yang-Mills vec­

tor field contains more components, than needed*. Our field does not lead to any dyn!lmical manifesta­

tions as it can be excluded by means ti the point transformation of field variables 

t{l-+exp [ ig ra ba]t{l/18,19/, 

Ikeda and '\tiya~hi/5/, Salam and Ward/ll/ and Glashow and Gell-'\fanuf131 considered vectoo fields, 

whicli seem necessary for generalizedYang·\1ills invariances to be guaranteed. It is easy to see, that here 

one can' al~o do without· introducing vector fields, without superfluous components. It is.quite enough to 

use scalar fields which have no dynamical manifesh~tions. Corresponding Lagrangians will be an evident 

generalization of Lagrangi_an (20). . · 

These examples show once more the impossibility of deducing vector fields from the gauge principle. 

It is worthwhile to note that an investigation of'lneaning of the gravitational gauge invariance and a 

• • • f : J• • 0 1 /4,17/ b d 0 '1 l cr1tlc1sm o a correspona1ng. gauge pr1nc1p e may e rna e s1m1 ar y. 

In conclusion the authors are indebted sincerely to Ya.A.Smorodinski for discussions. 

* Of ooUJ'ae, all etatements of Seotlon 8 are valid tor the Yang·Milb vector field alse>, 

...___ __ 
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