

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ
 Лаборатория теоретической физики

 \qquad

\author{

Hu Shih－ko，Wang Yung

 \[д-742
\]
 > A PLAUSIBLE MODEL OF $\boldsymbol{\Lambda}$－PARTICLE PRODUCTION IN HIGH ENERGY πN COLLISION れeअপ刀；1961，T41，skn6，e1868－1869．
 －-742

教空}
ns：
\square

\qquad

$$
0
$$

Hu Shih-ko, Wang Yung

$1120 / 5$
A PLAUSIBLE MODEL
OF 1 -PARTICLE PRODUCTION
IN HIGH ENERGY πN COLLISION

In a recent work of Wang Kan-chang. W.I. Soloviev and others $/ 1,2,3^{/}$, the transversal momentum and angular distribution of $\boldsymbol{\wedge}$-particle produced in high energy $\boldsymbol{\pi N}$ collision (momentum of incident pion $\sim 7 \mathrm{BeV} / \mathrm{c}$) have been measured, and longitudinal polarization of \wedge-particle was observed. Here in this note we will show that all the characteristic features of Λ-particle produced in high energy $\pi \mathbb{N}$ collision are in good agreement with the model suggested by D.I. Blokhiotsev and one of the authors (Wang $\left.\mathrm{Y}_{\mathrm{ung}}\right)^{/ 4 /}$. This model consists of two essential points:

1. The pole term corresponding to diagram of Fig. 1 gives predominant contribution.
2. The vertex ($\wedge \vee \mathrm{VK})$ takes the form $1 \pm \boldsymbol{\gamma}_{5}$. (This model does not claim the conservation of parity in strong interaction $/ 5 /$).

Other than energy-momentum and strangeness conservation laws, there are no other restrictions to the multiplicity of particles produced together with Λ. The theoretical results here discussed, just alike the corresponding experimental results, are almost independent of this multiplicity.

From this model, following results were obtained:

1. Optimal transversal momentum of Λ-particle
$\sim 400 \mathrm{MeV} / \mathrm{c}$ (almost independent of incident pion energy).
2. In center of mass system, about 14% of \wedge-particles are flying forward.

These are just the characteristic kinematic features in the Λ production experiments $/ 2,7 /$. Furthermore, one can also predict from this model:
3. A-particles are polarized in laboratory system, the direction of polarization vector coincides with direction of momentum of A, i.e. polarization is purely longitudinal. Moreover, the degree of polarizelion is

$$
\bar{p}=\zeta_{v}= \begin{cases}+\frac{v}{c}, & \text { for } 1+r_{\xi}, \\ -\frac{v}{c}, & \text { for } 1-r_{s},\end{cases}
$$

where v - velocity of Λ in laboratory system.
The coefficient of asymmetry of \wedge decay is:

$$
\alpha \cong-0.89^{/ 6 /} .
$$

hence we have the following table of theoretical values of $\alpha \overline{\mathcal{P}}$:

$$
\begin{array}{ccc}
P_{A}\left(\frac{\mathrm{~V}_{\mathrm{e}} \mathrm{~V}}{\mathrm{c}}\right)_{\text {lab.syst. }} & \alpha \bar{\rho}\left(\text { from } 1+r_{5}\right), & \alpha \rho\left(\text { from } 1-\boldsymbol{r}_{5}\right) \\
\sim 200 & -0.16 & 0.16 \\
\sim 600 & -0.42 & 0.42 \\
\sim 1000 & -0.59 & 0.59 \\
\sim 1300 & -0.67 & 0.67
\end{array}
$$

We see that, so far as casea of $P_{A} \leqslant 1200 \frac{\mathrm{MeV}}{\mathrm{c}}$ are concerned, this model again gives agreement with experimental results related to the polarization of Λ produced in high energy πN collision, ${ }^{/ 3 /}$ if $1+r_{5}$ is taken.

As for the cases with $P_{A}>1200 \mathrm{MeV} / \mathrm{c}$, no definite experimental data have been given, because in identifying the \wedge-particles, some difficulties of kinematical criterion arose. ${ }^{/ 3 / B u t} P_{\wedge}>1200 \mathrm{VeV} / \mathrm{c}$ in laboratory system corresponds to large angle (relative to backward direction) and smaller momentum of $\wedge —$ particle in center of mass systern, and according to the suggested model, the relative number of cases in this region ($P_{A}>1200 \mathrm{MeV} / \mathrm{c}$ in laboratory system) is much smaller than that of $P_{A}<1200 \mathrm{MeV} / \mathrm{c}$ region, i.e. it is probable that only a few in the $29^{/ 3 /}$ not identified cases could be cases of Λ, henceforth, the model with $1+r_{5}$ is still probable to agree with polarization experiment even in the region $P_{A}>1200 \mathrm{MeV} / \mathrm{c}$.

The authors wish to thank D.I. Blokhintsev for valuable suggestions and V.S. Barashenkov, Y.I. Soloviev for interesting discussions.

Fig. 1 .

References

1. M.1. Soloviev. Proceeding of the 1960 Annual International Conference on High Energy Physics at Rocheater., 388.
2. Ван Ган-чан et al., ЖЭТФ, 40 (1981) 484-473.
3. Ван Ган-чан et al., ЖЭТФ, 38 (1960) 1854-195日.
4. D.I. Blokhintsev, Wang Yung. Nuclear Physics 22 (1961) 410-425.
5. В.Г. Соловьев. ЖЭТФ, 36 (195日) 628-829.
6. D.A. Gleser. 1958 Annaal International Conference on High Energy Physices at CERN, 265.
7. M.I. Soloviev. Private Communication, will be published.
