

8

А.С. Вовенко, Б.А. Кулаков, М.Ф. Лихачев, А.Л. Любимов, Ю.А. Матуленко, И.А. Савин, Е.В. Смирнов, В.С.Ставинский, Сюй Юйнь-чан, Чжан Най-сень

Д-721

ПОЛНЫЕ СЕЧЕНИЯ ВЗАИМОДЕЙСТВИЯ К⁺-МЕЗОНОВ С ПРОТОНАМИ

А.С. Вовенко, Б.А. Кулаков, М.Ф. Лихачев, А.Л. Любимов, Ю.А. Матуленко, И.А. Савин, Е.В. Смирнов, В.С.Ставинский, Сюй Юйнь-чан, Чжан Най-сень

Д-721

ПОЛНЫЕ СЕЧЕНИЯ ВЗАИМОДЕЙСТВИЯ К⁺-МЕЗОНОВ С ПРОТОНАМИ

1064/6 nd.

Аннотация

Показано, что полное сечение взаимодействия К⁺-мезонов с протонами растет от (15,0+2,11) mb при импульсе 2,72 Бэв/с до (25,8+2,7) mb при импульсе 4,75 Бэв/с. Имеющиеся в настоящее время экспериментальные данные по взаимодействиям K⁺-мезонов с протонами /1/,/2/ указывают на существование максимума в полном сечении взаимодействия при импульсе ~1 Бэв/с, равного ~19 mb, с последующим спадом до ~13 mb при импульсе 2,4 Бэв/с. Предварительные данные дубненской группы ^{/3/} и результаты ЦЕРН'а^{/4/},полученные в области более высокой энергии, дали заметно большие значения величины полного сечения. Целью настоящей работы является исследование поведения полного сечения взаимодействия К⁺-мезонов с протонами в области импульсов 2,7-4,8 Бэв/с.

Измерення проведены на синхрофазотроне ОИЯИ методом выбывания частиц из пучка в условиях хорощей геометрии. Положительные частицы, рожденные на внутренней мишени, анализировались по импульсу магнитным полем ускорителя, фокусировались 2-мя квадрупольными линзами, коллимировались и отклонялись дополнительным магнитом на угол 6,3°.

Выделение К⁺-мезонов из пучка этих частиц осушествлялось по скорости двумя газовыми угловыми черенковскими счетчиками, включенными на совпадения со сцинтилляционными счетчиками и пороговым газовым черенковским счетчиком, включенным на антисовпадения для уменьшения фона от П⁺-мезонов. Типичная кривая эффективности счета различных частиц в зависимости от давления газа (этилен) в угловых счетчиках приведена на рис. 1, где видно, что в районе Кмезонного пика фон других частиц и случайных совпадений составляет ~1%. Аналогичные кривые получены для каждого импульса. Для некоторых импульсов кривые получены с двумя газами - этиленом и воздухом. По положению максимумов для различных частиц с точностью ~ 1% определялся импульс, а по изменению полушжрины - разброс частиц по импульсам, составивший ~ ±2%.

При измерениях использовалась жидководородная мишень из пенополистирола, длиной 50 см. На рис. 2 показана геометрия опыта, где S_3 - последний мониторный счетчик, а S_4 - счетчик, регистрировавший частицы, прощедшие через мишень без взаимодействия. Для определения поправок к полным сечениям, учитывающих рассеяние на малые углы, использовалось 3 кольцевых счетчика. Эти счетчики регистрировали частицы, цопавшие в данный интервал телесного угла в результате упругого или неупругого взаимодействия.

Интересно сравнить данные кольцевых счетчиков для разных первичных

частиц. В 3-ем столбце таблицы 1 приведены величины поправок к полному сечению, определенные по данным кольцевых счетчиков. В 4-м столбце приведены поправки, вычисленные по оптической теореме. Как видно из таблицы, для Π^+ мезонов кольцевые счетчики дают поправку заметно большую, чем рассчитанная по оптической теореме. В то же время для K⁺- мезонов кольцевые счетчики дают поправку, не превышающую вычисленной по оптической теореме. Это, в частности, указывает на малый вклад неупругих взаимодействий K⁺-мезонов в рассматриваемой области углов.

Полученные значения полных сечений с учетом поправок приведены в 5 столбце таблицы 1, а также на рис. 3, где для сравнения нанесены данные других групп. Видно, что настоящие данные свидетельствуют о росте полного сечения взаимодействия К⁺-мезонов с протонами от 15,0+2,1m6 до 25,8+2,7 m6 в интервале импульсов 2,72 - 4,75 Бэв/с, что противоречит данным ЦЕРН'а^{/4/}.

Если представить полные сечения взаимодействия K⁺-мезонов с протонами, полученные в настоящей работе и в работах ^{/1/, /2/}, а также совокупность данных по полным сечениям взаимодействий Tt⁺ -мезонов ^{/5/} в функции P^C/mc² в лабораторной системе координат (рис.4), то можно заметить подобие хода этнх зависимостей. В районе первых максимумов в полных сечениях Tt⁺ и K⁺ мезонов лежит и максимум в полном сечении взаимодействия протонов с протонами.

В настоящее время измерение полных сечений К⁺-мезонов продолжается. Подробный отчет будет опубликован в ЖЭТФ.

Авторы выражают благодарность В.И.Векслеру за постоянный интерес к работе и полезные обсуждения. Мы считаем также своим приятным долгом поблагодарить весь коллектив синхрофазотрона, его руководителя Л.П.Зиновьева и операторов И.Н.Ялового, С.В.Федукова, Е.Н.Кулакову, И.М.Баженову и М.И.Яцута за обеспечение четкой работы ускорителя.

4

Литература

1. Kycia et al. Phys. Rev., 118, 2 (1960).

2. Burrowes et al. Phys. Rev. Lett., 2, 3(1960).

- 3. М.Ф.Лихачев, В.С.Ставинский, Сюй Юйнь-чан, Чжан Най-сень. Proc. of the 1960 Ann. Int. Conf. on High Energy Phys. at Rochester, p. 444.
- 4. von Dardel et al. Phys. Rev. Lett., 5, 7 (1960).
- 5. Н.П.Клепиков, В.А.Мешеряков, С.П.Соколов. Препринт ОИЯИ Д-584.

Рукопись поступила в издательский отдел 18 апреля 1961 года.

Таблица 1

Полные сечения взаимодействия К⁺-мезонов и П⁺-мезонов с протонами, полученные в настоящей работе. В 5-ом столбше даны сечения, поправленные для К⁻-мезонов по оптической теореме, для П⁺-мезонов из данных кольцевых счетчиков, а также на примесь М -мезонов, составляющую ~ 2,8%.

Имп Бэв/	улыс с	без поправок	Поправки из кольцевых счетчиков	llоправки из оптиче- ской теоре- мы	с по- правками	
2.72	К [†] мезоны	14,9 <u>+</u> 2,1	~ 0	0.085	15,0+2.1	
2.9	8	17.4 <u>+</u> 1,7	0.05+0.05	0.285	17.7+1.7	
3,38	10	18.5 <u>+</u> 1.6	0.1 <u>+</u> 0.04	0.1	18,6+1.6	
3,72	57	20.1 <u>+</u> 1.6	0,4 <u>+</u> 0,33	0,49	20.6+1.6	
4.75	*	25.4 +2.7	0.15 <u>+</u> 0.04	0.35	25.8+2.7	
4,75	мезоны	27.7 <u>+</u> 1.35	0.73 <u>+</u> 0.15	0,5	29,3 <u>+</u> 1.4	

Зависимость эффективности счета различных частиц от давления этилена в угловых счетчиках. Импульс частиц 4.75 Бэв/с. По оси абсцисс отложено давление Р в атмосферах. По оси ординат - отношение Ум счета угловых счетчиков ко всему пучку. Пик П -мезонов сият без антисовпадений.

Рис. 2.

Геометрия опыта. S_3, S_4 - сцинтилляционные счетчики ϕ 6 и ϕ 14,6 см соответственно. $SK, SK_2 SK_3$ - кольцевые сцинтилляционные счетчики.

		Внешний					диаметр				Внутренний диаметр			
			SK, - 33			CM						23 см		
			SK2 - 28		CM					15 см				
			SK	3		19	СМ						10 см	
L.	115	18	5 c	см			l2	=	339	СМ	для	p=	= 4,75 Бэв/с и 3,38 Бэв/с	
e,		18	5 0	CM			l2	22	235	СМ	для	p=	= 2,72 Бэв/с	
e,	=	21	5 c	M			22	=	180	СМ	для	P=	= 2,8 Бэв/с и 3,72 Бэв/с	
H	-	ж	ид	KO	во	дор	одна	я	миц	цены	D.4		е, =15 см.	

Полные сечения взаимодействия К⁺-мезонов с протонамн. **4**[1], **4**[2], **4**[3], **4**[4], **4** данные настоящей работы.

Рис. 4.

Зависимость полных сечений взаимодействия П⁺ и К⁺ -мезонов с протонами от Р^с/тс² в лабораторной системе координат.

. 8