
A.S. Vovenko, B.A.Kulakov, M.F.Likhachev,
A.L.Ljubimov, Ju. A.Matulenko, I.A.Savin,

Ye. V.Smirnov, V.S.Stavinski, Sut Yuin-chan, Shzan Nal-sen

TOTAL CROSS-SECTIONS FOR K^{+}-PROTON INTERACTIONS

A.S.Vovenko, B.A.Kulakov, M.F.Likhachev,
 A.L.LJubimov, Ju.A.Hatulenko, I.A.Savin,
 Ye. V.Smirnov, V.S.Stavinaki, Sui Yuin-chan, Shzan Nai-sen

It fo shown thet $\kappa^{+} \rho$ total cross section rises from $\{15.0 \pm 2.1$)mb to
(25.8 ± 2.7) mb in the momentum range $2.72-4.75$ 9ev/c.

The reported experimental data on $\mathrm{X}^{+} \boldsymbol{P}$ interactions $/ 1 / / 2 / 2$, give an indication to the existence of a maximum in the total cross section equal to $\sim 19 \mathrm{mb}$, at a momentum $\sim 1 \mathrm{Bev} / \mathrm{c}$ with a drop to $\sim 13 \mathrm{mb}$ at 2.4 Bev/c. Preliminary data of the Dubna group $/ 3 /$ and the CERN results $/ 4 /$ give larged values of the total cross section for higher energies.

The aim of the present work is to investigate the behaviour of the total cross section for $K^{+} p$ interaction In the momentum range $2.7-4.8 \mathrm{Bev} / \mathrm{c}$.

The measurements were performed at the symchrophasotron of the JINR with 'good geometry' setup. Positive particles, generated on an international target, were analysed according to their momenta by the magnetic . field of accellerator, focused by 2 quadrupole lenses, collimated and deflected at 6.3° by the bending magnet.

The K^{+}-mesons in the beam were selected by their velocity with two differential gas Cerenkov counters in coincidence with scintiliation counters and a threshold gas Cerenkov counter connected in anticoincidence for decreasing the π^{+}-meson contaminotion.

A typicol plot of the counting efficlency for different particles vs gas pressure (etylene) in the Cerenkov counters is shown in Fig. 1. The background and the accidental accidences is 1% of \mathbf{K}^{+}-meson peaks. Similar curves were obtained for each momentum, for some momenta with two gases-ethylene and air. The momenta were determined by the position of the peaks for different particles with an accuracy of $\sim 1 \%$.

The change of the halfwidth of the peaks shows, that the momentum spead is $\sim 2 \%$.
A 50 cm liquid hydrogen target, made of styrofoam, was used. The geometry of experiment is shown on Fig. 2. S_{g} is the last monitor counter and S_{4} counts particles, which passed thraugh the target without interactions. Three ring counters were used for determining the small angle scattering corrections to the total ctos: sections. These counters recorded particles in the giveri solid angle from elastic and inelastic interactions.

It may be of interest to compare the ring counter data for different primary particles. In the 3 th column of table I corrections to the total cross sections are given, determined from ring counter data. The 4 th column presents the calculated corrections by the optical theornm, $A s$ is seen from the table, for π^{+}-mesons the ring counters gave a correction appreciably larger, than that irom the optical theorem. At the same time for K^{4}-mesons the rinq counter correction does not exceed that from the optical theoren. This qives in particular an evidence for a small contribution of inelastic K^{*} interactions in the given angle interval.

The corrected values of the total cross sections are listed in column 5 of table I and tiso in Fig. 3, where data from other groups are shown for comparison. It is seen, that the present data point to a rise in the total cross sections from $15.0 \pm 2.1 \mathrm{mb}$ up to $25.8 \pm 2.7 \mathrm{mb}$ in the morentum range $2.72 \div 4.75 \mathrm{Bev} / \mathrm{c}$. This result is in disagreement with the CERN data $/ 4 /$.

If one plots the $\mathbf{K}^{+} \mathbf{P}$ total cross sections from this work and from $1 / \omega / 2 /$ together with the summary data on $\eta^{+} p$ total cross sections $/ 5 /$ as a function of $p c / \mathrm{mc}^{2}$ in the laboratory system /Fig. 4/, similarity in these dependences are seen.

In the region of the first maxima for \mathbf{r}^{+}and \mathbf{K}^{+}total cross sections lies the \boldsymbol{p} - \mathbf{p} total cross section maximum.

At the present time the measurements of the K^{+}total cross sections are being continued. A detailed re port will be published in JETP. We are grateful to V.J. Veksler for the constant interest to our work and helpful discussions.

Table I

Total cross sections for K^{+}and $\boldsymbol{\Pi}^{\boldsymbol{+}}$-meson interaction with protons obtained in this paper. In the 5 th Column are indicated the croaa sections corrected for $\boldsymbol{K}^{\boldsymbol{+}}$-mesons by the optical theorem, for $\boldsymbol{7}^{\boldsymbol{*}}$-mesons from the ring counter data, as well as for the M-meson adrixture which is 2.8%.

| Momentum
 Bev/c | without corrections |
| :--- | :---: | :---: | :---: | :---: | | Ring counter corrections |
| :---: | | Optical theory |
| :---: |
| corrections |
| mb | | with |
| :---: |
| corrections |

Fig. 1 The dependence of the counting efficiency for different particles as a function of ethylene pressute in the differential Cerenkov counters. The particles momentum is $4.75 \mathrm{Bev} / \mathrm{c}$.

On the axis the pressure in atm, is plotted.
The ordinate qives the N / M ratio of differential counters to the bear monitor counts.

Fig. 2 The geometry at the experiment $S_{8}, S_{4}-$ scintillation counters, $\phi 6$ and $\phi 14.6$ cm respectively. $S \mathbf{K}_{\mathbf{1}}, S \mathbf{K}_{\mathbf{2}}, S \mathbf{K}_{\mathbf{B}}$ - ring scintillation counters.

The inner diameter,
SK, - 33 cr
$S K_{2}-28 \mathrm{~cm}$.
$S K_{3}-19 \mathrm{~cm}$
$\begin{array}{llll}\mathrm{l}_{1}=185 \mathrm{~cm} & \mathrm{l}_{2}=339 \mathrm{~cm} & \text { for } & \mathrm{p}=4.75 \mathrm{Bev} / \mathrm{c} \text { and } 3.38 \mathrm{Bev} / \mathrm{c} \\ \mathrm{I}_{1}=185 \mathrm{~cm} & \mathrm{l}_{2}=235 \mathrm{~cm} & \text { for } & \mathrm{p}=2.72 \mathrm{Bev} / \mathrm{c} \\ \mathrm{l}_{1}=215 \mathrm{~cm} & \mathrm{l}_{2}=180 \mathrm{~cm} & \text { for } & \mathrm{p}=2.9 \mathrm{Bev} / \mathrm{c} \text { and } 3.72 \mathrm{Bev} / \mathrm{c} \\ \mathrm{H}_{2}-\text { liquid hydregen target. } & 1_{3}=15 \mathrm{~cm} & & \end{array}$

Fig. 3.
$K^{+} p$ total cross section.
$4^{1 / 1 /}$
/2/, $\boldsymbol{\phi}^{/ 3 /}, \boldsymbol{\psi} / 4 /, \boldsymbol{\phi}^{-t h i s}$
work.

Fig. 4.
Total cross sections for $\mathbf{7}^{\boldsymbol{+}}$ ans \mathbf{K}^{+}-meson interaction with protons are plotted aqainst $\quad \mathbf{P} / \mathrm{mc}^{2}$ in the lab. system.

References

1. Kycir et al. Phys. Rev., 118, 2 (1960).
2. Burromes ot al. Dhys. Tev. Lett., 2, 3 (1960).
3. М.Ф. Лихачев, В.С.Ставинскии, Сои Кинь-чан, Чжан Наи-Сень.

Proc. of the 1960 Ann. Int. Conf, on High Energy Dhys. at Rochester, p. 444.
4. von Dardel et al. Phvs. Zev. Lett., 5, 7(1960).
5. Н. І.Клепиков, В.А.Мешеряков, С.Н.Соколов. Грепрннт ОИЯИ, Д-584.

