H14

Лаборатория ядерных проблем

Yu.K. Akimov, V.I. Komarov, K.S. Marish, O.V. Savchenko, L., M. Soroko
$\Pi \Pi$ - ANOMALIES OF THE \boldsymbol{R}^{3}-SPECTRUM IN THE REACTION $p+d \rightarrow \pi^{3}+\pi^{+}+\pi^{0}$
AT THE PROTON ENERGY OF 670 MeV .
ne अक, 1961, 140,65, e 1532-1535. nuce. 'Phys., 1962, i30, n2, p, 258-268.

Yu.K. Akinov, V.I. Komarov, K.S. Marish, O.V. Savchenko, L. M. Soroko

D- 714

П H. ANOMALIES OF THE \boldsymbol{H}^{3}-SPECTRUM
IN THE REACTION $p+d \rightarrow \pi^{s}+\pi^{+}+\pi^{0}$
AT THE PROTON ENERGY OF 670 MeV ,

Abstract

The low-energy region of the H^{3}-momentum spectra at 5.8° in the lab. syatem has been measured in ($p+d^{\prime}$)-collistons at the proton energy of 670 MeV . We have not got the confimation of the resonance interaction befween two pions in the states with the faotopic spin $T=1$ and the total energy from 275 up to 400 MeV in the center masc of the $\pi \pi$ system. It has been found that the cross section for the two pion pro$d_{u c t i o n ~ i n ~ t h e ~ s t a t e ~ w i t h ~} T_{n \pi}=O$ is grester by an order of a magnitude than that with $T_{m \pi}=0$, up to the tofal energy of 400 HeV in the c.m.s. of two piona.

Introduction

Recently the existence of the resonance $\pi \pi$-interaction in the states with the isotopic spin $T_{\pi \pi}=1$ has begun widely discussed $/ 1,2 /$. Possible parameters of this resonance depend both upon the electromagnetic properties of a nucleon $/ 3 /$, and on the nature of the strong interaction between nucleans $/ 4,5 /$. In order ta investigate such a resonance directly, some authors $/ 6,7 /$ suggested the processes in the final state of which two pions are eritted. For instance, in order to observe the $\pi \pi$ resonance with the isotopic spin $T_{\pi \pi}=1$ the authors $/ 7 /$ suggested the study of the energy spectra of deuterons and $H_{0}{ }^{4}$ nuclei in the reactions

$$
\begin{align*}
& p+p \rightarrow d^{+}+\pi^{+}+\pi^{0} \\
& \pi^{+}+I e^{d} \rightarrow \pi e^{4}+\pi^{+}+\pi^{0} \tag{1}\\
& \pi^{+}+d^{4} \rightarrow d^{+}+\pi^{+}+\pi^{0}
\end{align*}
$$

The idea of such experiments is as follows. It is well-known, that the resonance interaction between any two particles in the final state gives rise to a strong deformation in the spectram of the third particle. Therefore, if the observed spectrum of heavy particles in reactions (1) is compared with the phase-space volume element, then a possible anomaly of the result will prove the existence of the resonance. Besides, it allows to determine its general parameters,

Such a method of investigation was employed in $/ 9 /$, the authors of which measured the momentum spectra of $H e^{3}$ and $7 e^{3}$ nuclel enitted in ($\left.\rho+d\right)$-collisions. In this case the following reactions are possibie:

$$
p+d \rightarrow\left\{\begin{array}{l}
\pi e^{3}+\pi^{0} \\
\pi e^{3}+\pi^{0}+\pi^{0} \\
H e^{3}+\pi^{+}+\pi^{-} \\
H e^{3}+\omega^{0}
\end{array}\right.
$$

$$
p+d, 1 \quad \begin{array}{ll}
& 7^{3}+\pi^{+} \\
& n^{3}+\pi^{+}+\pi^{\circ} \\
& \pi^{3}+\omega^{+} \tag{3c}
\end{array}
$$

where w js a hypothetical particle with a nass intermediate between those of a π-meson and a K -meson.
The mamientum. spectra of Me nuclei were measured at the proton energy of $743,695,648$ anj 624 : iev. The spectra obtained were conpared with the statistically independent distribution. The guthors of $/ 9 /$ did not succeed in fitting this distribution with the observed spectro at either of the energies indicated. The spectra measured hat a narrow peak which corresmonded either to the total energy of the two pions, or to the mass of a hypothetical w^{0}-particle equal to $\left(310_{ \pm} 10\right)$ ' leV .

The momentum spectrum of A^{3} nuclei at the proton energy of 743 NifV had not been mieasured with a sufficient accuracy. However, on the norentum spectrum of H^{3} nuclei given in/9/ one can observe besides the peak, corresponding to the nomentum of $1.553 \mathrm{eV} / \mathrm{C}$, from reaction (3a) also some increase of the yield of

I ${ }^{3}$ nuclel with the momenturi $1.4 \mathrm{BeV} / \mathrm{c}$.
All these results of the experiments $/ 9 /$ were treated as an indication that these two pions have the resonance interaction in the state with $T_{n \pi}=1$. However, this conclusion of the authors $/ 9 /$ needs a further experitiental check, inasmuch as the total energy of two pions at which this anomaly was observed is in essential contradiction with the resonance energy predicted theoretically/3/.

The alm of our experiments was to investigate the momentum spectrum of n^{3} nuclel more precisely. This spectrum is very important since in this case the system consisting of π^{+}- and π^{0}-mesons may be in the state with the isotoplc spin $T_{n \pi}-1$ only. In the experiments performed the region of the momentum spectra of I^{3} nuclei which is adjacent to the low-energy branch of reaction (3a) has been neasured at the proton energy of 670 FleV . The region of the momentur spectrum of Λ^{3} nuclej from $840: 1 \mathrm{eV} / \mathrm{c}$ up to $1100 \mathrm{MeV} / \mathrm{c}$ corresponds to the total energy of two pions in their c.m.s. from 275 up to 400 : leV , respectively. (Fig. 1).

Experimental Conditions

A reneral experimental scherne is shown in Fig. 2. The external proton bean with an intensity of about $10^{t 1} \mathrm{sec}^{-1}$ wa:s focused by nagnetic quadrunole lenses at the qaseous deuterium or hydrogen target fillet up to tho pressure of 3 atm. Secondary charged particles generated in the gaseous target were selected by a collinator pliced at 5.8° to the sroton bean axis. After the deflection in the analysing magnet at the angle of 27° the particles with a $\begin{aligned} & \text { wefinite pffective morenturn passed through the collimator in the shielifing concrete }\end{aligned}$
wall and were detected by a telescope consisting of seven scintillation counters, \boldsymbol{n}^{3} nuclei were selected by the time of flight, by the range and by the ionization losses in fous scintillation counters. This made it possible to select reliably the particles with high ionization against the hiqh level of the background of outside particles with lower ionization $/ 10 /$.

The pulses from counters ' 14 ' were fed to the coincidence circuit with the resolving time of about 6 nsec, the pulses from the first counter were delayed for a time necessary for I^{3} nuclei to cover the distance of 3.20 between these counters. One of the counters '11' selecting by the magnitude of the ionization was placed in front of the first counter which selected the particles by the time of flight, i.e., at a large distance from the rest counters ' 11 '. This was done in order to decrease the background from the stars which the particles having smaller ionization than in ${ }^{3}$ nuclel formed inside the counters and the absorber.

In Fig. 3 the counting characteristics of the telescope are plotted against the thickness of the slowing down filter / $/$ /, the discriminator threshold $/ \mathrm{II} /$ and the voltage of one the counters which selected the particles by the time of flight/ $\mathrm{TII} /$. A similar characteristic has been also obtained of the voltage-dependence at another counter.

Results of Measurements and Their Discussion

Fig. 4 shows the results of the measurements af the momentum spectrum of $\|^{9}$ nuclel. The abscissa axis is the current of the deflecting magnet in the relative units, the ordinate axis is the counting difference from the deuterium and hydrogen target filled up to the same pressure. The background of the hydrogen target was $20-30 \%$ of the maxirnum counting rate of π^{3} nuclei in reaction (3a). Arrow N1 indicates the minimum value of the current corresponding to the lower limit of the spectrum of $\|^{3}$ nuclei. Arrow N 2 indicates the value of the current corresponding to the energy of two plons in their own c.m.s. equal to 310 MeV and to the momentum of In 3 nuclei equal to $875 \mathrm{MeV} / \mathrm{C}$.

The statistical analysis of the results of measurements shows that the yield of H^{3} nuclei with the momentum $875 \mathrm{MeV} / \mathrm{c}$ at 5.8° in the lab. system does not exceed 6% of that in reaction (3a) at the same angie with the confidence of 90%.

The ahsolute cross section for reaction (3a) has been measured by comparing it with the known cross section for the reaction $p+p \rightarrow d^{d}+\pi^{+/ 11 / ~ C a l c u l a t e d ~ i n ~ t h e ~ c . m . s . ~ a n d ~ r e f f e r e d ~ t o ~ t h e ~ a n g l e ~ o f ~} \pi^{+}$-meson emission the cross section for reaction (3a) is

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}\left(\Theta_{\pi^{+}}=12^{\circ}\right)=(9.1 \pm 0.5) 10^{-30} \mathrm{~cm}^{2} / \text { etetad } \tag{4}
\end{equation*}
$$

The cross section for teactions (3b), (3c) reffered either to the angle between the velocity vector of the masssyster. of the light particles and the beam axis, or to the angle of ω-particle emission is

$$
\begin{equation*}
\frac{10}{d \Omega}\left(2_{0}-12^{\circ}\right)<0.210^{30} c n^{2} \text { sterad. } \tag{5}
\end{equation*}
$$

with me conitience of 39r.
As is seen fromFig. 4 , obvious anomalies in the spectrum of \boldsymbol{a}^{3} nuclei are not observed in the range of the total energies of light farticles in their c.r.s. from 275 deV up to 400 deV .

The cross section for reaction (2a) (Fig. 5) has been also neasurej for the high-energy branch of this reaction. It has been found that in the c.r.s.

$$
\begin{equation*}
\frac{d o}{d 0}\left(x_{0}^{0}=154^{\circ}\right)=(0.295 \pm 0.032) 10^{3} 8_{m^{2}}^{2} \text { eterad. } \tag{6}
\end{equation*}
$$

Besites, the yield of n^{\prime} nuclei from reactions ($2 \mathrm{~b}, 2 \mathrm{c}$) wos been reasured for three values of the romenta in the region aticcent to the highenerfy branch of reaction (2a). The results of these measurements plated in F'in. 5 show that the crosis section for reactions (2b) (2c) can be corpared by a magnitude with that for reacthon (20).

We did not succee \bar{i} in making direct measure:nents in the region of the spectrum of η^{3} nuclei which is adjacent to the hinhenergy branch of reaction (3a) hecause of the large background and high level of the counting rotes due to the protors elastic illy :acatered on deuteriun.
"When strikn: at the corresponding currents the colli"ator in the shielding concrete wall tircugh the deflecting magnet, the protons produce secondary particles on the internal walls of this collimator. These secordorles may he detected by a telescope tuned to H^{3} nuclei with little but a noticeable probability.

Yet, we rake an attempt to compare quantitatively our results with the data of paper $/ 9 /$ With this aim the angular distrinutions of reactions (3a) and (3c) have been calculated in the impulse approximation like it was done in papers $/ 12,13 /$ for reaction $(3 \mathrm{a})$. In the calculations the wave function of Hulthen was used for a deuteron, unt for the fritin mucleus -- the wave function of an exponental form

$$
\begin{equation*}
\varphi_{t}=N_{t} \exp \left\{-a_{t} \sqrt{\left.\xi_{1} r_{t}^{2}\right\}} .\right. \tag{7}
\end{equation*}
$$

where $\overrightarrow{\mathbf{r}}_{1}-\overrightarrow{\mathbf{r}}_{j}-\overrightarrow{\boldsymbol{r}}_{f}$ is the iti:'rnce between the mucleons ' \boldsymbol{i}, and $\%$. The parameter \boldsymbol{a}, is found from the eneray of the Coulomb interacion in a Me nucleus, which is 77 KeV . The radius of the repulsive core of the nucleon was assumet to be zero.

Just in the zame :anner the anqular dependence of n^{3} nuclei emission in :eactions (3b) (3c) has been
aalculated. At the same tire we assured that the process occurs at two stages: fitst, two π-mesons or a ω^{+}-panticle are produced in the reactions

$$
\begin{array}{ll}
\rho+\boldsymbol{p}\{ & d+\pi^{+}+\pi^{0} \tag{9}\\
& d+\omega^{+}
\end{array}
$$

and, then a neutron and a deuteron form a 7^{3} neucleus. The calculation has been nade under two extreme assumptions about the angular distribution of deuterons in reactions (8): a) isotropic and b) $-\cos ^{2} 9$. The no: malization factor was determined from a possible relationship between reactions (3a) and (3b) which, according to the estimate of $/ 9 /$ is $1.9: 1$ in the lab. systern and depents weakly on the proton energy.

Under these two extreme assumptions the angular distributions calculated for reactions (3c), (3b) are only little different at the angles close to 0° and 180° in the c.m.s. This allows to estimate rather definitely an expectation value of the cross section for reactions (3b), (3c) in its lowenergy branch for the angle of 5.80 in the lab. system. The yield of T^{\prime} nuclei calculated by such a method, (in Fig. 4 it is shown by a dotted line), exceeds approximately by an order of a magnitude the upper limit of the cross section for reactions (3b); (3c) measured in the course of this investigation.

Thus, the results we have obtained and the given estimates of possible angular distributions of reaction (3c) Indicate that the $m \pi$-resonance interaction in the state with the isotopic spin $T_{n}=1$ and the total energy of 310 MeV is absent.

As far as at present there are quite definite indications to the absence of the vector meson with $T=0 / 16 /$ and the rass of $300-400 \mathrm{MeV}$, then it is also unlikely to account for the anomalies in reaction (2d) by assuming the existence of such a meson.

A possible explanation of the non-monotony observed in the spectrum of πe^{3} nuclei $/ 9 /$ may be threshold effects $/ 17,18 /$ in reactions (2b), (2c) which are due to the endothermic process

$$
\begin{equation*}
\pi^{0}+\pi^{0} \rightarrow \pi^{+}+\pi^{-} \tag{9}
\end{equation*}
$$

As the analysis of the threshold effects by the method of dispersion relations $/ 19 /$ shows the energy non-moncto. nies in the reactions involving three particles in the final states may extend far enough from the threshold of the corresponding endothermic process.

The authors express their gratitude to L.I. Lapidus for the interest in the investigations and discussions, as well as to ${ }^{3}$.'M. Pontecorvo for fruitful remarks.

Concluations

1. The results obtained in these experiments do not confirm the existence of the $\pi \pi$ resonance in the states with the isotople spin $T_{\pi \pi}=1$ for the interval of the total energy in the c.m.s. of two mesons from 275 up to 400 MeV . They ollow also to conclude that there exists no ω particle with the isotopic spin $T=1$ and the mass of 310 MeV .
2. The comparison of the cross sections for the reactions $p+d \rightarrow H^{3}+\pi^{+}+\pi^{0}$ and $p+d \rightarrow H e^{3}+\pi+\pi$ shows that the cross section for the two pions production in the state with the isotopic spin $\boldsymbol{T}_{M \pi}=0$ exceeds approximately by an order of a magnitude that with $\boldsymbol{\gamma}_{\boldsymbol{\pi}}=1$ up to the total energy of two plon equal to 400 MeV (c.Thes.).

Such a ratiobetween the cross sections is likely to change at higher energies. What the data on the process $\pi N \rightarrow \pi \pi N$, obtained at energles of pions of 500 MeV , point to $/ 20 /$.
3. An alternative explanation of the anomalles in the spectrum of ${ }^{\text {I }}{ }^{3}$ nuclei enitted in the reactions $p+d \rightarrow \pi e^{3}+n^{0}+\pi^{0} \quad p+d \rightarrow H e^{3}+\pi^{+}+\pi^{-} \quad$ should be looked for in the threshold effects due to the endothermic process $\pi^{0}+\pi^{0}+\pi^{+}+\pi^{-}$.

Fig. 1.
Kinematic characteristics of the reactions $p+d \rightarrow 7^{3}+\pi^{+}$and $p+d \rightarrow \eta^{3}+\omega+$ at the proton energies of $670: 1 \mathrm{meV}$.
I. The abscissa axis is the momentum of $H^{\text {s }}$ nuciel emitted at 5.8° in the lab. system. The ordinate axis is the total energy of light particles produced in the reactlons $p+d \rightarrow \eta^{3}+\pi^{3}, \quad n+d \rightarrow H^{3}+\omega^{+}, \quad p+d \rightarrow H^{3}+\pi^{+}+\pi^{0}$ in their own c.m.s.
II. Curve 1 (or 3) shows the relationship between the angle of the enitted In nuclei in the lab. system and the angle for the reaction $p+d * I^{3}+a^{+}$ $\left(\right.$ or $p+d+I^{s}+\omega^{+}$) in the c.m.s. Curve 2 (or 4) - the kinematic coefficient of the transition from the cross section in the c.rn,s. to those in the lab. system for the reaction $p+d \rightarrow H^{\mathbf{3}}+\pi^{+}$(or $p+d \rightarrow \boldsymbol{l}^{\mathbf{5}}+\omega^{+}$) lepending upon the angle of I^{3} nuclel enission in the c.i.s.

Fig. 2.

Experimantal set-up

1. - deflection pleces
2. - external proton beam
3. - magnetic quadrupole lenses
4. \sim gaseous target
5. - lead shilding
6. - monitor
7. - the trajectory of secondary charged particles
8. - deflecting electromagnet
9. - focusing shimms
10. - concrete shielding
11. - telescope consisting of five scintlliation counters
12. - shielding wall
13. - vacuum pipe
14. - scintillation counters select ing by the time of flight

Fig. 3.
Conditions of $\boldsymbol{n}^{\mathbf{3}}$ nuclei detection fran reaction $\rho+d \rightarrow \boldsymbol{1}^{\mathbf{3}+\pi^{+}}$
I. The counting rate of the telescope v s the thickness of the slowing down filters.
II. The counting rate of the telescope ve the discriminator threshol i.
III. The counting characteristic of the telescope vs the voitage at one of the counters selecting by the time of flight.

Fig. 4.
Momentum spectrum of n^{3} nuclel detected at 5.8° in the lab. system.
The abscissa axis is the current of the deflecting magnet, the ordinate axis is the counting difference of the deuterium and hydrogen target which is reduced to the unit interval of momenta. The arrow Nl indicates the value of the current corresponding to the lower limit of the spectrum of $\boldsymbol{\boldsymbol { I } ^ { \boldsymbol { p } }}$ nuclel from the reaction $p+d \rightarrow \pi^{3}+\pi^{+}+\pi^{0}$. Arrow $N 2$ indicates the value of the current carresponding to the total energy of two pions in their own $\mathrm{c}, \mathrm{m}, \mathrm{s}$. equal to 310 MeV and to the momentum of $\boldsymbol{H}^{\mathbf{y}}$ nuclei equal to $875 \mathrm{MeV} / \mathrm{c}$.

Fig. 5.
The nomentum of $n e^{3}$ nuclei detected at 5.8° in the lab. system. Arrow N ? indicates the value of the current corresponding to the upper linit of $\% e^{3}$ nuclet from the reactions $\boldsymbol{p}+d \rightarrow \pi 0^{3}+\pi+\pi$. Arrow $N 2$ indicates the value of the current comesponding to the total energy of the two pions in their c.n.s. equal to 310 MeV .

Fis. 6.
The angular dependence of the cross sections for the reactions $p+d \rightarrow H^{\mathbf{3}}+\pi^{+}$ (cuve 1) and the reaction $p+d \rightarrow I^{3}+\omega^{+}$(curves 2 and 3) calculated in the impulse approximation Curve 2(or 3) corresponds to the isotropte distribution (or $-\cos ^{37}$) of deuterons in the teactions $p+p \cdot d+\omega^{+}$and $\boldsymbol{p}+\boldsymbol{p} \rightarrow d+\pi^{+}+\boldsymbol{\pi}^{0}$. The differential cross sections for the reaction $\boldsymbol{p}+\boldsymbol{d} \rightarrow \boldsymbol{1}^{\boldsymbol{s}}+\pi^{+}$ were measured at the proton enerqies: \& $591 \mathrm{iteV} / 15 /$, $\$ 670$ i.ieV (this work), $\$ 670 \mathrm{MeV} / 14$. The arrows indlcate the anules of obser:iatlon: (a) - this work, (b) - paper $/ 9$.

References

1. S.D.Drell. Proc.Ann.Intern.Confer. on High Energy Physics, CERN (1958).
2.G.F.Chew, Proc.Ann. Intern,Confer. on High Energy Physics, Rochester (1960).
2. W.P.Frazer, J.R.Fulco, Phys.Rev.Lett., 2, 365 (1959). Phys.Rev., 177,1609 (1960).
3. J.Bowcock, W.Cottingham, D.Lurie. Phys.Rev.Lett., 5, 386 (1960).
4. F.Cerulus. Nuovo Cim., XIV, 4, 3731 (1959).
5. G.F.Chew. Препринт 1960; N.Cabibbo, R.Gatto, Phys.Hev.Lett., 4, 313 (1960). L.M.Brown, F.Calogero. Phys.Rev.Lett., 4, 315 (1960).
6. Хэ Цзо-сю, Чжоу Гуан-пжво. ЖЭТФ, 39, 1485 (1980).
7. А,Б.Мигдал. ЖЭТФ, 2810 (1955).
8. A.Abashian, N.E.Booth, K.M.Crowe, Dhys.Rev.Lett., 5, 258 (1960).
9. Ю, К. Акимов, В.И.Комаров, О.В.Савченко, Л.М.Сороко. ПТЭ, Nя4 (1900).
10. М.Г.Мещеряков, Е.С.Неганов, ДАН СССР, 100, 877 (1955).
11. S.Bludmon. Phys.Rev., 94, 1722 (1954).
12. M.Ruderman. Phys.Rev, 87, 383 (1952).
13. Ю.К.Акимов, О.В.Савченко, Л.М.Сороко. ЖЭТФ, 38, 643 (1960).
14. D.Harting, J.Kluyver, A.Kusunegi, F.Rigopoulas, A.Sachs, G.Tibell, G.Vanderhaeghe, G. Weber. Phys.Rev., 119, 1716 (1960).
15. R.Gomez, H. Burkhardt, M.Daybell, H.Ruderman, M.Sands, R.Talman. Phys.Rev, Lett., 5,170
(1960).
16. Л.И.Лапидус, Чжоу Гуан-чжао. ЖЭТФ, 39384 (1980).
17. L.Fanda, G.Newton. Phys,Rev., 199, 1394 (1960).
19.Л.И.Лапидус, Чжоу Гуан-чжөо. ЖЭТФ, 39, 112 (1900).
18. W.J.Willis. Phys.Rev., 116, 753 (1959).
