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· The q8aeral pbyaiea1 pr\flclples aupplemcnrteiby the requirement o.f renormaliiabi

. lltV are shown to lead to very stroliq restrictions on the admissible deqrees of ~owth of 

~atrix_el .. tlt'ta ;me~ imposed on the scatt~q m~trlx 1n the f'axtomaUc" approach. 
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1. Introduction. 

A great attention was drawn -during the last five years to the general structure of the locaJ.:.thec,ry of 
. . . 

quantized fields/1-41. The main problem to be expiored here is the question, how close do the general 
' ~ . . 

1 principles only - thes.e being the (1) Lor.enti covariance, (2) ~itatity and completness of the set of posi-

j- tive energy states, and (3}locality - define the theory without any dynamical specifications, that are 

necessarlly being made in th~lheoey based on the HamiltOnian formalism. 

The system of basic p~ysical principles may be formulated in many Cilfferent ways. It seems to us 

I most convenient to emphasize the scattering matrlx, as it was first proposed by Heisenberg and to formu

late the physical prindples as requirements .imposed on its matrix elements. Some local operators. ~hould 

necessarily be introduced into the theory besides the S-matrlx. In!ieed, without these we could not distin-
-

guish between the· different space-time points and formulate the causality condltlon. To do this, we write 

·down the S-matrix as an expansion in normal products of asymptotic fields 

... ll ll ·. 
S=l:. l-1\ .. fdx1 ••• dx • (x1-,~ •• ,x ):~(x1 ) ... ~(x): 

ll•Onr ll ll II (I) 

. .. 

. _,. and then extend it out of the energy-shell, removing the condltlon • 

--
.. 

CO -rl/) cf>(x)=O. .(2) 

Now, the local Heisenberg operators desired, may be obtain~ by taking variational derivatives of the ex

. tended S-matrix wlth respect to the cf>-Uelds. · . 

Such a system of fundamental principles was proposed by Bogolubov/6/ for a theory with adiabatic 

switching the interaction and- as demonstrated by Bogolubov and Shirkov/7/- in the frame of perturbation 
. \ . 

. theory it leads essentially to the same conclusions as the usual Lciqranglan formalism supplemented by the 
I . 

renormaHzation programme. Later on this system of basic principles was reformulated by Bogolubov and the 

-present authors/41*, this scheme ~eing especially suited to the derivation of dispersion relations and the 

* Hereafter referred to &II. P..;DR. 

Kcillen-Lehmann specttcil representations. The method to cfuvelop the-quantum field theory based an the system of 

fundamental physical principles as formulated in PTQR, Sec. 2, and meoking use df dispersion relation's technique we 

will call later on the dispersion approach. The meariing of dispersion ~roach to the quantum field theory is not 
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exhausted by the-Uril!ted numberofexoct res.ul.ts achieved thereby, this approach being able to give a new.· 

trend, to '!level,~ the wiu:Jle.theory •. 

)f.Jtt p~ipular, we.would ttY. ~o.tro.tisfy all the req~rements of di~ersion aPPrdaoh ...itt~ the formal 

. series .In ·powers ·o~ ~o~e 5mal1 par~eter~ ttten-' we 'may find out the solutiGn term by teflll:..;i;as lfla cus-
··-._, .· . .' _, ' . . 

• 'tO)llaty in the petturbatlon theory~ 'Nhai .we gain here over. the\usual theory, is th•t we do not have to. re.! . 

. sott anY m~re to the physic;~ly U!\S~sfa~tory ·pinc~dure. oJ adiabcrtic ~Itching of the interaction. Further.: 
_,, . . . "" 

inore:. only the renormalbed quantJtles mqy be- ' .used, and. thus we avoid the questlori about the relations 

between the 'lrenormal~ze!i-11 and "unr.enormallzed" qugntltles, this question being meaningless-in the . ' . . : . 

present -theory •. It was ~oin ted out recentt/81 thot ln this way successive perturbation· terms are deter- · 
,. - -~ . . ' ' -. .. - . . . 

·mined up to u Unite number of constants coming ouUnstead of the Unite counter terms* ot'tlie Hamiltonian 
• .. • • • : J, . .• . • • ~ • ' . - • 

method.-- ·, 

~- ft la ~~out ot plaqe to ..... eotloll ~o ... sttU aootlaet·uY...W•• of *lutolbpanl.;.-JOaoll.It clo0a eape0lall7 oluffy, 
w:laftoe .h. '"• .Outertort~~li -co11le a~~d where or do th.e cllver.eooleio of the. uiaal theoi,r adae, Maaety .._e o. .. e Ia t1ae 

••..,Hot pi'OcodiiM or aqlUplyla• 'the tuilctloD's a~~ aufftole11tly ucoalu by tlae 8.fa!lo\loll&0 -tlal• belq eqalftleat Ill 

- 't•• aollleaw. apaoe·to aPPIIoatlo11 of CallOhy'a late81'&1 toftllqla to • fllll.,.lloa _:hlcb cto .. not 4~• at laltalty; 

.w:lthout taltlll. tlae oontrlbutloll of t_he •r-t olro"-e IlliG &c;I'!Qwlt. (. Cf. tlae cllaouaaloa lo PTDR0 S.o, l .. cl ')• 

The precise number of cons~ants n,8d'ts \fOV~med by .the degieed of growth of matrix t'!l~ents._Tbe 

interaction (J_ae}rangian. being Ol~~. the d89rees of growth are defined in the well·known manner. It Was 
• ' ·'- ' • ' - >. /' • .; 

claim4Jd repeatedt/1,4/ that in. the dispersiolt.approach the prescription of deflnlte.degrees of growth may 

subatltute in some ~es~ects the adopting of the spl!cific fo~ Qflt\e.LogrGitgian. On the other hand, it 

--· -~~med obviousfl,S/ that we cann~t set those qUite a@itt~ily. · . . 
. . ' . . 

The crlm of this ,Paper .is to clear Up the extent up t0 which the differeD matrht elements degrees of 

growth can be precribed arbitrarily. Som~what surpdslnqly, the arbrtrarlness proves to be-very sm~l and 
' . ~ ' 

~or the .most in!portan,t class of the.!'properly renormallzabte-"lheories" the ~egrees of growth nee_d not to be' 
. '· . 

set up by a special postulate, but are almost uniquely detennltled by thi aYtem of fundamental prlnclplee 
. ,; . i " ' . . . . ' ' . 

_of PTDR~d the transforma~on. properties :~f the fields. 
--· 

The inv~sti<}atron which cOnceJ!I here the simplest cqse of ~plnless selt..;iftteraqtbtg field may be .· 

performed without expllcit use of the perturbation th~. 

2. Coupled eqllatiOJlS for matrix elements. 
. . . 

• The system of basic pri~ciples, a• formulated in PTDR permits to· derive in numerous ways sets 
. .i 

" -'i ~~. • 

·-----~-- ----~---- -~-- ... 
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coupled equations connecting the generalized vertices with different numbers of external lines, i.e. the 

matrix elements correspondincr.1o different numbers of initial and final particles. Since the causality con

diti~ is used thereat_ we have -·as just mentioned - to introduce 'some local Heisenberg ~perators besides 

the scattering matrix. Two sue~ operators at least mu$t b; introdua.d which hav~ the meaning of the first 

and second varlati~ol derivati~es of the S-matrix or -:-to be precise .t~ey are the " radiative' operators" 

{ Cf. PTOR) of the ,first and second order~ Then we may formulate the theory in. such a manne' that all ex

ternal lines excei>t r~spectively onc!'br two would be "real" llJles on the energy shell*. 

So, we shall deal with the on thEt energy shell matrix elements. 

and 

of the two Hermttlan operators J and J (x). The first operator J is here just the Heisenberg current taken 

at the poil'lt x•O to elimlmte trivial dependenc~ on the coordinate x: 

. 1 J ... j(Q); J(x) .. i 8 S · S +. (5) 
8 q,(x) -- ' ' ' ' 

By ~station inva rlance, its mcitrtx elemert,ts are conneeted with those j( x j ... p ••• ; ... q ... ) of the ope-

- rator j (x) as follows: . • 

J( pt, ••• , Pt; q 1' ••.• , q .> ,_ i<x I p,, ..• ,pt; q ,. ... , q .~~> e·..:t (~pI -'Eql) x • (6) 

:The second operator J(x) ~~·~the retqrded radiative operator of the second order: 

J (x) = _ 8 j (- x/2 ) (7) 
. 8q, (x/2) 

the trivial coordinate depe~dence being again eliminated.' · 

#t The au'thou are Indebted to N.N.BO .. el~bov who clrew 'their attention to the oonvenleue of euoh a treatment. 

fill· 

Its mo.trix elements cOincide with the I functions F.r: I being used in PTDR. Note, that the arguments of 

the matrl~ elements eq. (3),. include in fact one out of the energy shell momentum 

P·=. £pi ·~q1 :~.·o.\ 
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and these of matrix elements eq. I 41 - two such momenta that given by eq! /8/ and that corresponding to 
j ' 

explicitly written down co-ordinate x. 

One may see that irrespectivd of the causality condition, the matrix elements eqs /3/ and /4/ are con-
"' - '\ 

nected by the relations*: 

* The operator P( q, ) ba eqe. /1/ Ia the apu~~etrlsiDC operator deflaed ID/T/, S.o. 11 • 
... ' ... 

iliA 

. J (p,p, , ... ,pt:q,, ... ,q '} -p( q, )B(..Q- ~) J(p,, ... ,pt;q2, ... ,q ) -
8 q2' ooo I q 8 8 

1 ~· ......-r~7'J.Pfl fdx J(xlp,, ... ,pt; q,, ... ,q.)el(p+ Ipf. -Iq,) x 

(9,1) 

J (pf , .. ~, Pt ;q,q ,, ... , q•)•P( ' p r )8(.Rr q.)J (p2'""'' Pti q ,, ... , q •)-
' p2 , ••• , P£ 

1 
. ·. ...1( q+ p, - Qc ) X 

f ~J(xlp 1 , ... ,p1 ;q,, ••• , q 
8

) e 2 
[2 )J/2 2p 0 

and 
J (x) - J(-x) • il j(x/2) j(-x/2)-j(-x/2) j( x/2) J 

The causality condition provides an addltlonal restriction on the operator J (x): 

•· J (x) • 0 for xSO. 

(9.2) -
~ 

(lr. 

(ll) 

' 
Thus, we obtained a set of equations for tl:e matrix elements of .operators J and J(x). One may 

think that this system is sufficient to determine these operators. At any rate~ we could show that this is 

really the case <" ct./81) in the frame of the perturbation theory. 

To eliminate J (x) from the system obtained, ~e rewrite the Eq. (10) in tenilll of matrix elements: 

J(xlp
1 

••• ~.Pt : q
1

, ••• ,q.)- J (-xlp,, ••• ,pe ;q,, ••• ,_q.) (12) 

... 
-iS _1_ Jd_lt •••• d,k J(p.l·, ••• ,p,;k,; ••• ,k )J(k,, ••• ,·k jq , ••• ,q) ..-o vi '"t 11 - L 11 ., .I • 

i ( Sp, + lq, -Sk ) X ( e 2 ., 
-it !P, +lg, .. Str \&. 

-e 2 "V}• 

• 

·' 

• 

" 
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Now, we have to explloit the causality condition {11) imposed cin J (x). This condition demands 

J (-xI .,. p ••• ; ••• q .•• ) to vanish for x~ 0. To this end we may formally multiply Eq. {12) by the function 

0(x 0
); 

. 1 
J ( X I p 1 I ••• , Pf ; q 1 , ••• , q s) :::: i I -- f d ~ •••. dk ., 

11 II I -..,. -v 

J(pr ·····Pe ;k t , •.. ,kll) J(kt , ••• , kll;q r•···· qs) • {13) 

. i(( Ip +Iq . - Ik )x -i( Ip + Ig -l:k)x 
O(x0 )(e 2 -e 2· -

If the functions entering Eq. (12) are not sufficiently regular, the well-known divergences can certain

ly arise in a straightforward calculations. The dispersion relations theory tells that to avoid them some 

preliminary substractions have to be drawn. As a consequence, the right-hand- side of E~(l3)is to be 

suplemented with appropriate arbitrary polynomials in the momentum space. We shall understand the Eq.{l3J 

and the forthcoming formulae, just in this sense without writting, down the polynomials explicitly. 

With this agreement we substitute {13) into eq. (9) (e.g. into the first one), thus arriving 11t an infinite 

set of coupled equations; 

.• ( )3/2 00 

1 ( P1. , ••• , Pf ; q2 , ••• , q ) -~ I _l_ f &.
1 

••• rllr 
8 

· y2p- 11=0 11! "" 
_(14) 

'\ 

and at a similar set which may be derived from eq. /9.2/. Both of them have to determine the.matrix ele
ments of J. 

It is convenient to deal not with the matrix elements J ( ••• ) themselves, but with the irtvariant matrix 
elements; 
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normalized; in the common way. ( ·In order to relcrte our notation to the usual one, remincl- tbct the number 

of external lines of the corresponding qenerallzed ~raph exceed by one the number of the (a~ments of our 

~unctions! that ~e expll~tly written down. Tliis ls b~i:tuse we mak~ use qf translation lr!variance. ) In 

terms of the matrix elements I ( ... p ... r ... q ... ) the basic eqilations re~d 

I(pl, ... ,pf;ql , ... ,q.)•P(--PL-)B(p -q)~ I(p2'"''Pf:q,, •• .,q) 
. p , ... ,p, 1 • 

2 " . ,. .-

-(217) 1"9 f ... I( pi , .... o. ;k, , ... ,k )I(k, ... ~,k : ql .~ ... 'q ) 3/2 1 ~ ~- -
• II Ill 2k . ,,; 2k

11 
·r; II II 8 

8 <e.+ I.e,,- ~L,) 
I,!(~ -~-po·-:h 

8 (2, -~art~,., ) 
- 'Ek~ + 1qj -p0 -if 

) . 

.. 

( 16.1) 

The lower Umlt 1n the sulft over v ts det~rmlne~ here in the followtnq way: First of all, it is easily 
0 • -

seen that only the connectea qraphs cqntrlbute t9 ~e curtent J; bene~, the v • 0 does not enter. Furthfr 

on due to the vacuum and one-particle states stablllty condltlons, PTDR I, (6), we have to put 
;-

1(-;-)• I(- ;q) • l(p;-) • 0. (17) .... 
Then, if any·of the numbers 1 or sis equalto zero the sum beQlns at 11•-2. 

Quite similarly the e_q. (9.2) oJ,ves us the second half of the set of equations: ---
I(p,, .. ;,pt;q,q,, ... ,q.)•P(· Pt )8(,el-g;)J2ii,o2 Cf I(p,., .. ~;p.;ql, ... ,q .l 

P, , ... ,pt 0 • • IL • 

-(211)3/~ 1 f dj , ... diu 
- · '7.Tv 2k0 2k0 

. .JI • ' 1 ''' II 

8< -9. + t.,U -·t.k.w 
1 k:- ~p; + cf -it 

I(pl. , ... ,p_.:k •••.•• -:k )I( k •••• ,k : q , ... , q ) 
. 1L • II ·1 II f 8 

a (-g.- I.~+ Sls,v) ) • 
-n~ + Xqj +:cf· 11 

(16.2) 

Let us remem~ once more the polynomials not Vlflt~en down explicitly we should remember to k"P in 

Jllinclin the r.h.s -es of eqs. (16), as we spbke about 1n Cbnnectlon with eq. {13). 
- . ..,~ . 

The matrix elements with two on the energy ahelllega do not enter the ay•tem' (1$), cf. (17). Hence, to 

_ iqclude the self-energy-parts we have ·to go out of the energy shell. For sake of tbla we .tum to the matrix 

elements (4) of the operator. JM and define their four-:dlmenslOllal Fourter-trGnafonlll as 
. . 

'' .~~ 

• 

L-~'~~~----
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I ( k I p1 , ••• ,pf: q 1 , ••• , \t 8 ) .. --;:;;:::;;, :==:::;:::;:::;l::::;o:=====;;= 
' ' .. . ' V2Pf.·· 2pt 2<f, •.• 2rf. 

ikx · f dx e . J (x IP1 , ..• ,pt: q1 , ••• , q8 
) 

'(18) 

( the vector k here is not silltject te the condition ·k2"' m 2! ).Acc~rdirtg to eq. (13), we ccm exp;ess these: 

Fourier-transforms in terms of I (· ••• ) as 

·- ' 3 ,00 

dk., ••• dk..v I(k 1P1 .~. Jtr; q1 , ••• , q ) = (2u) I ._!_ f 
' . • v=o Jll 2k0 2ko 

1 ... .JI 

8 (k-
XR.1+It.J I 

/8(~+. 
I;. 1+ XQ..J - ~~Ill) l- · · 2 •• Ik...l + 2 l (19) 

-ko+ ~r +Iqj -Iko -u -ko- Ip1+Iqj +Ik0 -u· 
. 2 Jl 2 

·JI 

/ 

The· expression (l9 ) allows, in particular, to find the self-energy parts, all other matrix elements on the 

·energy shell being known • 

.....-. We may call eq. (19). as formulae "to leave the energy shell". The inversi' rel~Jtion~ mqy Qj written, 

/l ... 
as well which read: 

! 

I (p,pl , ... , Pt: ql , •• _., q) • p ( j l ) 
. / q, •••• ,q. ../2p0 2 tf. I_( p , ••• ,p,:q- , ••• ,, ) - . 

·1 . I 2• • 

with P' • •'·· 

Without entering the problem of solving the equations (16)*, these being in effect the relativistic 
' ' ' 

analogue to Low equations, we will. use them to estimate the aimissible degrees of growth ·of the matrix 

elements of the operator J. 

• • 'Two kinde of obetaoloo ooaio Into play when tl'}'iq to aolve such a set of equations. Fbstly, tlao set eorpr••••• 
. , , . . . . . . ' I 

tlae lo"er •atrbc eleaonta (I.e. tlae •atrbc elo•ont& wltla lower number of arawnenta) bl tanaa of ~· MP•r one e • 

. · ..... , .. to tlae wa,-o of tl!.• el<aot eohatloa, tlaoy are quite ob8oure. If on tlae otlaor hand aoae oort of eppJOXIaatloa 

·,-- le to be ue4, tlao ovor4etanalaao,-.of tlae e,-ete• aanlfoate ltoelf. Jn4ee.d the oauoalli,- oon41U.n lo&U aot Ul,- todoo 

·, ' 
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••t<ll) biR to .... ·-·roue othu tatialt• •• uA/·ot elmllar ••••• MG.,, "'oald •• ••*- ·~* eolut~· of ~-<•q· 
thla ahoald obey -tomaUQlly all o~r ..U of,eqiaaU4ae~ But: aa ..,roxi.iat15 "'bloh I• pod tor tile •- •" ...... · 

" ~ •• \ f • 

,_.out to be'"" bad for aaothoi ~~~-

3. Degrees of growth of'matrix eleJnents. 

the'.dep~dence of matrlxelem~ts on the various mo~ents cqp be very eompllcated_and we do not 

• pret1!fld to examine it 1n d~tOtl, We are tcslsing a m~ch more simple problem, that con~tng only the to~ 
degree of growth cat a ~form extetuii~n of all the momenta, ·just lid one proceeds 1n the p~batlon 

• - ' ' 1,. •• 

theory ( Cf.e.g.fll, ~. 26) to estlmat$ the degree of qrowth of any graph. . 

Namely, we demand a flnlte 9rowth index t9 exist for any matrix element .with l,s momenta of each kind. 

This is defined a~ a .mlil!m~ lnteqer c» ( f,s) .such that when all '"the mOJ~~enta are extended uniformly · .. 

o -e P : .... : · a. - e,t P : q.- ., P.: •.•• q - ., P: P .. -1 1 ... · ·r: - 1 1 . • • 
(21) 

the matrix ele~Qent l( p1 , ..... pt ; q1 , ••• , q
8

) irier.6s .. .slQWer tlianl'~ _(t, s )+ a fohmy a> 0. The 

theory wlll be ecdled renormallzabl~* if 1t satisfies this condition. Only the renormallzable th"rles shall 

1'~ ooaoap of .roaoraallsal!fllty ~~ daftaed·l8 ao~ewhat wide~ thaa Ua• ~ .... ·oae, tho.lattar .. ~. fafther tu 
a-b•r of -trlx ol••••ta .rtth ••llll4!••Uvo do.,.•• of -tlrth to be fta~. Yet It .,UI bo •••ill m. ~at-folio"• ilu.&. 
Uae cllft~aoo b•*"'-•• ~· t- olaa ... 8a dofiDad ·~•• .fill ...,,Y an. ' 

,. \ 

be oonsldered henCefOrth. Now, we wllllook 1for the restrletlona, 1f ell% the • ~( 16) Impose on the poulble 
choice of the numbers c»(t, s). · 

. Leavtn9 out the disconnected graphs' oontrtbutlon thatls of no m~&t to us, .the right hand stde ot eq. U6} ts 

a (inflnlte) suin of noaUneor terms of the slmllar .struCture, such as 

·f d!s,, ... d~ l(p,., ... ,o.;k,, ••• ,k )I(k 1 ,~ •• ,k ;q,,.;.,q >'· 
2ko •••• 2ko . • - •t. . II • . 

•. v 

.t 8(J2.+Xa.; -Xk> 
"ko - 'C'-o- Po -11 Af v ....... , ' . 

1t (1!.- :tq,, +Xi..,) 
- XkC:, .+ :lqj -p0 - i i 

r 
I . I' 

(beside the out of interest contribution frcllli the dlscgnneeted ijraphsr.Eaeh Qf the terms involves 3v ; 

integrations over the components of momenta k , v factors k 0 .ln the.-clenominiator and. ane thr""dlmenalonciJ 

3-fun¢tion, divided by th~ one-dimensional eae~gy denominato~: Furtbemo'rf, the ln(egrand lndludes Cl pro-
~ - , ", . . - ' I . . . . ! ' . . 

duet of matrtx·elements t ( ••• ) with .the numbers r, v and. v, s. It is obvious that the exact dependenCe. of •. 

• 
i ': 

'! 

---------~----- --- --- ----~~- < , ..... _._,, 



·,<'. 
> ~~ 

.U 

, '. · · .tbelatter upcm tb~ ~omenta is unk~wn. ·Hence: we cdn not, evidently, find out the mo'me~~ dependence 
'' •• ' • • < • • l ' .• . '• 't· J ·. 

"· of the who_le lnte<JMI. N~Vertheless, H. we ~elieve in .the natural assumption that tbe main ~ntltbution in · 

the lntegrGuoz:! over k1 ,.~ •• kvcomes hom the hlQh-monienta reglon~_then it is sufflcient to know only the 
. . \ . . . -

high-mOmenta asymptotic behaviour of the matrix elements contained in the integralid this ls, just given by 

the gm~th indiced OJ ( t, ., ) or· OJ (v, s ). Now, to examine _the behaviour of a typical 'integral at high· ~o

menta It remains then but to count directly the degr:ees of the momenta,involved1 just as one does in the 

perturba~ theory • We o~aln ttiereby 

- ' ' 3.,- v.,. 3.- 1 +OJ (l,v)+ccj(v, s) •·OJ ( l,v) +e~~t(v,s)+2'v.-o4. . (22) 

In order to estimate the-total degree of growth of the right hand side, not&. that it would seem quite un-
' I . .- . / . . . . . 

natural tp llliaiJlne them~ degrHs of momenta,of the different terms of the sum comptl!lsating one 
r ' I ' " ' •· 

'aaotM; without' \my p~y$1t:al.feaaon. ~uch a compell_aatlon might be effected only by 'the exist~e of some 

QI'QUPI aa'bt,~,Well~ ex4mple-of_etf!~~cs Yf_here the compensation ladue to the gauge ()rOuP· 
- . 

Fotthe sale otsimpliclty the theory will be assumed no.t to permit any group*. Then it follows as ~ 

· consequence of EgiS. (16) that the degree of growttr of the matrix element in th~ left hand side should be 

at any rate-not less than _that, of the any term in the right hand side, eq. (22) •. Thus, _we arrive at the two 

·sets .of lllequalltles 

* A -.eotal la:"eirU•aU- Ia aeoeaaal)' for tla• - whea aaoh a aro11P exlata •. 
'.-. ,_ ---------------------------, ~ 

c.JU +l, s )~OJ ( l,vl+•<-v, s} +2v- 4 ·. . ~ ·, . 

cu( t, s+ \)~OJ( 1;.,) + cu(v, s) +2v - 4 

·· _They .are tO be valid for all the ·1, v,s, obeYing the conditions 

v_!l: t+.s.~l: v+t~2: v+s~2. 

.,. 

:, (23.1) 

(23.2) 

(24) 

· • . · • I · ' I 

It the same manner the eq. '(19) allows to estimate ·the degrees of growth of the out of the ~ergy ·shell 
. , 

matrix elements I ( ... ) : 
'!., 

OJ ( llf 1 S ) ~ CU. (f 1 V ) + OJ ( V 1 S ) +. 2 V - 4 (25) 

I • 

··,. ,. 

.-· 

,
' 

. -' 
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.'' _ . ..,.. 
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' It ts ecls.fly seen that the de9rees o~ 'Jt'Owth should not depend upop the numbers t , s separat~ly but 

only theJi swn (1.~. upoh the whole number of leqs of tM graph). Thus 

- Ci) ( f, s ) .. 0 (f + s ) • 

Th1s z.duces iM two ·sets (23) to a sirtole- one. ,; 

Q {t+ s + 1) ~ Q (t +v) + (S+v)+2v- 4, 

(261' 

( 27) 

~ 

I 

which holds under the same cOnditions (24) • It is seen, that replaCing ~ _the inequalities by equalitles . 
- I ,. - ; 

the.set ( 27) admits a I'Ort;fcular solution 

0 0 (n) = 3- n. 
·~ 

( 28) 

Hence, 1t is convenient to seek the qeneral solution in the form of swn of thiS Parucuiar solu~ and 

some unknown function N (n) : 

·Q (n) =. 0 o ( n) + N ( n) = 3 - n + N (n). 
' 

( 29) 

Thereby the -set takes the form 

N(f+ s + 1) ~ N(f+ v) +N(s +v), (~) -Of course~ one may !lOt reqard the ~oning, that led us to the set ( 30 ), as a 2!22! in the strict mathe- 1 

mat!ool -... A mathematician would rather call this heuristie suqqestions, saying perhaps 1¥1 addition ...- · 
. I 

that he could ·blveDt COritJoversial exQmples. Without trying to comple~ here such a rigorous proof, the 

following consid8rauon _will be mentioned. The matrix elements in the·inteqrands in the riqllt hand side 

of eqs. ( 16) involw the counter terms •. Since the counter terms are polynomials with respect to momenta, 

. the whole integrand becomes explicitly lalow and the int~ - its. counter .term part being concemed -

:nay be inveaUqated by elementary means. Anyhow, there is rEKilJY no need in such a treatment for it is . . .. . . . . . ' 

essentially the problem already examined in details in the R-operation theory, c£.11/·Sec. 26. . . 

'· 
Now, we ere <,joinq to solve the set ( 30 ), 

Let us PJC)Ve, £Jist of all, that all the N(n) are non positive; For n odd, it suffices to put in eq.(30) · 
, I . 

v = s + 1 ~2;1 being arb!trcay. Thel.h.s. c:cmcels then with the f.f:st term fn the r.h.s. and we obtain that 
. ' ' 

0 ?:_N(2s+l) ·for s ~ 1. - ( 31 ) 

To establish the sasne for the n even we choose~ 1 , v ~~ , this being permitted by the condi

tions ( 2<& ). · 

Then 
2N(f+v) < N(2t + }) <_0 

c 32) 
'' 

' 

• 

~~-'-~-'- -- ·- .~.- --- - ------ --· ----
~--------
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. Here. we made use of eq. ( 31 ) ·to o.btain-the last inequality. Now, 

O(n)~ 0 0 (n)=3-n for energy n ?:..2. ( 33) 

Thus we see that the particular solution ( 28 ) qives the greatest possible growth in~ees of the matrix 

In particular, it follows therefrom that there can be but a fi-

nite number of matrix elett1$nts with the non-negative growth indices. Henee, our definition of a renorma

c Uzable theory turns out to coincide with the cusual one. -As a second step, w~ have to demonstrate that there is an upper limit for the admissible growth indi

ces as well cp3 the lower one. Let us del;lote the argument of the l.h.s: of eq. ( 30 ) by a single letter" n 

cmd choose for the v the lowest posstple value v = l . Then, · 

N(n)~N(n-s)+N(s+l), ( 34) 

, where n and s are restricted ( ~ eq. {24 ) ) by the conditions 

n~ s + 2; (35) 

New, we can onqe aqain apply the same reasoning (with a new n ) to the first term in the r.h.s. of eq.(34)~ 

Carryinq out this process k. times we obtain a lower limit for N, (n): 

N(n)~N(n-ks)+kN{s+l ). 

In accor4cmce with eq. (35) K .must obey the condition

k < n- 2 • 
s 

(36) 

( .37) 

If we choose in eq. (36) s = 1 cmd k to have the highest possible value k:= n-2 , one ob-

tains that for all n ?:. 2 

N(n)~N(2) + (n-2)N(2) = (n-1) N(2). ( 38) 

Tbe -eq. ( 38 ) qives a strict estimate in tlie sense then .the lower limit ascertained in ~ way may be 

really reached. Indeed, if we substitute for all N (n) in the basic set (.30) their least valu~s allowed . 

by eq. ( 38 ), the set would reduce to the condition v ~ 1 , which holds always in view of eq. ( 24 ). 

The conditions Just obtained, eq. ( 32 ) and ( 38 ), do not exhaust all the restrictions on the admis-

. "' sible N (n). Namely, if for Gny n,.; no ~ 2 N (n} exceeds its low_est value given by eq. ( 38 ), this 

provides futther restriCtions oh the N (n) with n > no • Or}e may derive them from the eq. ( 36 ), by 

putthiq in. s > l . We stiall not· do it. 

Finally, eq. ( 25 ) allows to esU.mate from below the growth index ~f the graph with two out of the 

e~·sheU leqs 

'\ .. 

\ 
__ .;;-
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N(l} ,Q(,l)-2,;,{li-:-}-2~2N(v); v~2. (38a} 
There are no liinitations from above in this case, 

4. Properly renormaHzable theories. 

In the preceding section we treated the theory to be renormalizable and this made it possible to 

extract just a sygtem of inequalities (23). To do this, we appealed to the fact that the drowth index of the 

l.h.e. of ... (16) moy not exceed those of eocll tenn in •.h.s., i.e. it has to be"""'"' equal to the-'
:num of the r.h.s. indices. It would be like to go further an~o replace the inequalities by equalities. ffow· 

. ever, we need a new assumption to be made for sake of this, for as emphasized above there are counter 

terms in the r.h.s. of eq. (16) besides the integral terms written down explicitly. 

We shall call the tl-~ry properly renormcrlizable, if the degrees of polynomials to be added toT-pro

ducts do not exceed the growth indices of the corresponding 'f-products themselves. Assuming now a 

properly renormali;zable theory, the condition eq. (23} can be indeed rewritten in the stronger form: 

6.1 (f + 1, s } = Max ( 6.1 (f, v) + 6.1 ( v, s } + 2v - 4) 
"' 

cu (f,s+l)"' Max (dl(f,v)+cu(v,s)+2v- 4}. 
ll 

(39} 

The strong condition. upon the ~ (n) reads; .... 

N ( f + s + 1 ) "'Max .< N (f + v ) + N ( s + v ) ) , 
.,..-

the maximum bei.ng taken over all the arguments admitted by eq. {24). 

Let us tt>y to solve this set of inequalities. 

We rewrite it in the form 

N(n1 )"' Max (N(n 2 ) + N(n
3
}). 

The maximum is to be taken over all n 2 ,_ n 3 obeying the conditions 

(40} 

(41) 

n2+n3 =n 1-1+2v; n2 >v~l; n3 >v~l. (42) 

Now, in order to solve eq, (41} we arrange the sets of pairs of N ( lf1 over which the maximum is to be 

taken into two tables, the one for the even, the other for the odd n 
1 

. The rows are numbered there by the 

sums n1 + n 2 , ,{]J}d the columns ~ by the differences n
1 

- ri 
2 

• The_ sums _in the cells of tables represent 

all possible divisions of n1- f + 2 into the sum of numbers n 
2 

and n
3

, admitted by eq. (42}. 

~~i"="' rtn¥·}\~r · ., ----------:------
------- - ·- ----~--- --··"'·"- -- -'- . - ~-

-t---·---·---
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Tablel 

5 3~ @ 
1 4+8; 5+2 @ 
9 5+4; 6+8; 7+2 ® 
11 6+5; 7+4; 8+8; 9+2 0 
13 1+6; 8+5; 9+4; 10+3; U+:.l @ 
15 8+7; 9+6; ...... 10+5; 11+4; 12+3; 13+2 
11 9+8; 10+7; 11+6; 12'1:5; 18+4; 14+8; 15+2 
•••••••••• 0 •••••••••••••••••••••••••• , ••••••• ~···· ••••••••• 0 •••••• 0 .......... 

Table 2 

4 2+2 ® 
6 8+3; 4+2 @ 
8 4+4; 5+8; 6+2 G> 
10 5+5; 6+4; 7+3; 8+2 6) 

@ 12 6+6; 7+5; 8+4; 9+3;, 10+2 
14 1+1; 8+6; 9+5; 10+4; 11+8i 1;l+2 

···················································································· 

Evidently they present the sums under the maximum sign in eq. (41) as well. Does any combination of n
2 

and n3obey the inequalities (42), all the combinations down the colunin should clearly do, for the dis

placement dovln the column means merely the increase of v. Putting now v = I, the owe possible value, 

one sees that by the .ffrst of the restrictions ( 42) - only the rows with n 
2 
+ n ~ I + n 

1 
will enter th~ 

domain over which the maximum for any n1 is taken in (41). As to the nu.'llber of columns, jt is to be deter-., .. 
mined from the condition ( n2- n3) ~(n2+nj- 4, this also coming from (42)~ These domains are marked 

on the tables 1,2 with the corresponding n 
1 
encircled. 

Now, the tables 1 and 2 visualize at once that · 

/ 
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N(2) .'S, N(4) • 
(43) 

Really, the domain over which the maximum for N ( 2) is taken is seen to enter completely into that for 
N(4). 

I 
F!Jlther on, the matter becomes more involved, s:lnce not only a new column (the third one 1n the table 

2) is added but also the element 2 + · 2 is striked out, when passing from N ( 3) to N ( 5 ). However, in virtue 

of eq. (43) , N ( 2) + N (2) S. N (2) + N (4), whlle the eombindtion 4 + 2 enters the 9oth domains under 

consideration. TlruS, we can enlist a new inequality ... 
N(3) ~N(5). 

(44) 

· One may see that the situation remains the same in every further step. Namely, the transition from n 

/ 
to n- 2 leads to the partiat reduction of the doma~ over which the maximum is taken. But once the chains' 

of ineqllaiities of·the type (43).;..; (44) are established for any k < n-1 this reduction is of no importance. 

Thus, the complete inq1,1ction iS possible~ and w~ come to infinite chains: 

N(2) < N(4) < N(6) < ... < N(2k) < ... ·- / -;- . - - - (45.1) 
and 

N(3)<N(5)<N(7)< ... <N(2k+l)< ... - - - - - (45.2) 

On the other J,tarui, all the N ( n) are restricted from above by the condition (33). Therefore, both the non-
-

decreastnq seqUences of integers (34) must reach their upper limits, i.e. the 
~ 

MaxN(2k)=-a<O andMaxN(2k+l)--b<·o 
k>l - k~l .-

(46) 

must exist. 

N6w, take account that the domain (42) incltdes arbitrary large numbers n
2 

and n
3 

fer .every~. Then 

we conclude that instead of eq. (41) the equations 

. N(2k) .. Max(-a-bl--a-b; 

N(2k+l );..Max{(-a-a),(-b-b)l (47) 

may be written. Hence, N (2k) and N ( 2 k + 1 ) do not depend upon k. But the~ . . ' ; 

• ,N(~)· -a=-a-b i.e. b.;, 0""'" 

and 

N(2k + 1} ,._b .. Max (-2a, -2b), i.e• ·a·~o. 

Thus the solution of the set {40), has the form 

.i 

• 



N(2k) =-a : N(2k+l) = 0 (48) 

- ' a li&ing an arbitrary noh'"l,leqau.Ye integer. In terms !'f more physical quantities the solutio~ ohtai~ed mimns -. 

· •· that_ the ge~ral f~ for the admissthle growth indi~~ of the matrix elemerits ~ ( ~ •• ) in a properly re~r-, . . . 

0(2k) ... 3 ~2k -d;. 0(2k+l )=2-2k: a~,O; QfN. (49) 
~ 

It~ but to write down the condition ~ the- growth index of the two legs _graph. th1& is: 
' . . ~ .'-"·· . ' ........ . . . . ~ ' 

; 

N < ·n - 2 Mqx N c.,> - o : o ( o-No > + 2 - 2 ·• --
v> 2 - - . · -. . . ~ . . (50) 

\ 

the I110Gt important conclusion, ~ obtained in the pr&cedinq sections, is ttm the admissible gi-owth 
~ate l!n)J.~-- aboVe~ A~ly, the ~n-neoatl~ indices mqy ~_prescrlDed only to the m<Zttix -

. )' . . '\ . . ' 

· •. ";-.:., elements with three or f~l~ (n •_2,3 ), to say nothing of the self-enerqy ~·not entering the.set.£16). ,, -' - . . . .. ' . . . . . . . .. . \ . - ,· 

) . . Thul these are the only' matitx elements that can b8 ae(:Ompanied by counter terms ( the latter cannc;~ have ., .. . . . - . - - . ' ; : -_ . ~ 

' ,M«Jtlflve.lndicea be~ poljnomials in ~nta ) •. Therefore one see the dynainical prtctple to be almost 
,··-. ... . - '. . . . . . 

•liperllueus in the framewctlc of the dispersion approoch - the admisSible interact.tons are detetrQ!ned up ,to , . . -· \' - . . - . . - : 

a Smcdl number of ~tants by the transformation _Propeittes of the fields only. In the cas~ j~t c»nsidere4 
-~- . . . - ; .. :' ' . . ) . . ' 

that o£ the z~q-spin ~cles -ttw. are 6n!v two suqh constants - the constant counter teim of_ the fotJr.i. 

, vertex ( n - 3 ), and tbqt .of the three-vertex (the linear counter t~, fonnally permissible here, 1S proh!hi"' 

i ·fed by Lo~tz covartan~ )~ 
- 'ESJ)eclally JttOng ttte th& re1;1~ions, that oCC:uf in G Properly r~normaliz~le t\tec)ry. It' miqht seem that 

_· t'i ~tlon, ~inctdinci at first s~t with tliat .of pro~r renormalizabllity, js always imposed in the usuat 

' _!)lltl'turbatton tieaunq as well when we choQse for the ~unter tetrru; in momentum representation the pol~o ~ 

J lntaUof the minimal~~le ~ ( ctnl,' Sec. 2G; ot~rW~e !~would ,be impossible to c~ijlrouqh. 
·the "R-operafionl'). Yet the foll'rwinq point sfk>~s an ef;se!ttlal df#erence. In th~ usual,QPPl'riach·o~ 

' \ .:-. • •• ' '-

0 

'._ r" -.- - '*'·· '"" 
deals in·~-with counter terms ( in a broad sense ) of the tWo kinds. Bestdes the ~per counter tenns,{the 

. ·. "', -_, ...,~-"";:- ' .. 

~izatlon constants ) when difining the products of sinqular functlon$~ .t~ a$ also the "charqes ,.

UDder <:OIIStderatlon, these latU!r collllnq from u-~nttlm ~9fCmgidn._l'~~ of eorrespondin<j pol~~ 
f..¥-'OUdailsa&e nat-~~ by~~ ~t ~rit are a~t~d ad·'-~-when spectfying t~ ~heory. ' 
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. . . ,i 
In our approszch we treat all the COWlter terms in a unifleld manner; both the chafoes and .the renormall-

zation constants oome out 9l1 the equal footinq. Both of them play the role of the inhomoqenlties as s~ 
kind of bo~ conditioas for the basic set (l6}; thete are- reasonslO to think that were they absent, this 

\ set: would permit only the trivial zero solutions.· This will surely be the case if we admit any expansion 
\ 

in terms of a small parameter in spirit otf81. 

Now, in this philosophy of minimal qrowth all the logical scheme of the theory comes to be especially 
tilt. 

beautiful: were all the coWlter terms absent, the set (l6} would have but the trivial solutions; we qain non-
. . I 

zero solutions when introducihq COWlter terms; but in doinq so we do not brinq any alien elements into the 
' . 

set; but merely exploit the arbitrariness inherently implied by its :singular character. Were the set of the 

· type (16) regular, there would }?e no intrinsic reasons to (ldd coWltet terms, and we should ~me to a 

~que - the zero - soMion, c£.11 ~/ 
Thus, the 11 minimal qrowth" requirement is to be imposed as Ylell on the col.Ulter terms usually inclt1-

ded in the initial Lagrangian. Naturally, it may give rise to further restrictians on the class of admissible 
. . . / . 

theories - the class of properly renormalizable theories is narrawer than that of the ~ories renormalizable 
·, ., . . ' --
in the conventional sense. In particular, the theory of self-lliteractinq - via 3;-vertex only - scalar field 

(the Hurst -Thirrinq field) drops out of.the. former class. Indeed, tUrning to the 3-vertex·in this theot¥r-ene · 

finds the .simplest three-leq qraph to have the growth index- 2, ~ the·more involved ones - still lower. 

Hence, from the point of view of the minimal. qrowth requirement the ~~X should not be ac~mpanied by 

counter terms, i.e. the chrqe should vanish*. It is of interest, that a properly renormalized theory with two 

Co111pue this obeervatloa with ~be ophltoa exp•••••d/ll/ this tbaoey be a itell-ooauadlotoey ona. 

kinds of scalar intemctions- the 3-fold and the 4-fold ones- presenting simultaneously is allowed. 
.. 

Indeed, whereas the qrowth index of 3-vertex (2) may be taken either equal to zero or neqative ( due to 

·the prnence of cs in eq, (G) ), thc!t of four-vertex must be necesserarUy ~n equal to zero; i.e. the 

~·fold lntercrction must intvoidCibly parttcipCitt ln a theory of zero-spin particlei. 
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