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<\bstraet 

A new equation is <ierit•erl in which the kinetic ener ~Y V• 2( I';- '') plays the role 
of a varia~le with respect to which the differentiation is IJein_g made. This <"1Uation is 
e7ui wilent to the one-di71ensional Schrodinger equation. An explicit expression for the 
S·matrix is written an</ its expansion in ever-<"onverJ?ent series is found. In the simplest 
case the zero term of expansion of the matrix 8 corresponds to the aiJsenC'e of ref/eC'tion 
and coinci<Jes with WT('J approxi7ration. The first term ~ives superiJarrier reflection, in par· 

ticular, the formula o'>tained by 1. :Zoldman an</ A. \figdal 1 1 I. ~Y means of ano.lter expan­
sion of 8-· matrix the correction to the connection formulae are found. 

The one-dimensional non-relati\'istic Schr.odinger equation 

(l} 

i~ not the best starting-point for calculation of the scattering matrix since the amplitudes of the incident 

and reflected waves do not enter explicitly this equation and its structure does not re'l{eal the fact that 

just the roughness of the potential U(~) givenise to the reflected wave. 

In the present paper from Eq. (l) a new "latrix equation is derived in which the amplitudes of the inci­

dent and reflected waves play the role of a wave function. The 'potential' 'IY•t(E-tJ) beco'lles an in­

dependent variable with respect to which the differentiation is being "lade. The coordinate z becornes 

an auxiliarv Yariahle and transfof'lls into an index of order in which the different parts of the potential •• re 

arranged. We introduce the notion of X -product which is si'llilar to T -product in the quantized 

field theory. Althmtgh the equation thus obtained is equivalent to the Schrodinger equatiop (i) the first in 

its 'llanr properties supple'llents the Schrodinger equation. 

In deriving the "latrix equation a hitherto unknown structure of the general solution of Eq. (1) is use,J. 

The solution of the matrix equation allows us to find an explicit expression for the $ -matrix and repre­

sent the latter in the form of ever-convergent series ( dilferent, of course, from those of the perturbation 

theory). It turns out to be possible to obtain fast convergence of these series by "leans of si'llple tran,.for-

"lations of the S -"latrix. 

In the simplest case the zero ter'll of expansion of the matrix S correspnnds to the absence of 

reflection and coincides with quasi-classical approxi'llation of Wentzel-l<ramers- 'Jrillouin. The first term 

of the expansion gives superbarrier reflection, in particular, the for'llula obtained b,- I. ~;ol<lman and 

-\. '.li gdal "l •• The next ter'lls of,.!he expansion take into account the weakening of the incident wave an,! 

specify the reflected one. 

The obtained results lead to a new estimation of the place which is occupied by quasi-classical appro­

xi'llation in the precise theory. The expansion with respect to the constant L (in fact, with respect to 
AA 

the smoothness of the potential A" rields a divergent series the two fi~st terms of which 
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(the onlr ones not vanishing at -¥- +0 ) give, however, a reasonable approximation. The remaining 

terms vanishing at .4}--o have no physical meaning and make the approximation worse. Owing to 

the fact that all the terms of the expansion in l , except the two aforementioned terms, vanish under 

the same conditions as for vanishing of reflection, there arises the coincidence of WJ(ll approxi'llation 

with zero terms of expansion for the 'llatrix S 

The phenomenon of reflection fro'll the Jl<ltential rouglmesses is related deeply to the phenomenon of 

the non-conservation of classical adiabatic in\·ariants in quantum 'l!echan1cs. It is possible therefore, that 

the approach suggested here will prove expedient in the consideration of these pheno>ilena as well. The mat­

rix equation can also be generalized to the case of the system of coupled one-dimensional Schroilinger 

equations. 

1. Formulation !)f the l'roblem 

The variables ~ and 11' enter essentially unequally the Schrodinger equation 

'f'"(~) +11'{%)1f{X):=O, (l.l) 

where 11'{~}•K.Z(:Jf!}::: 2{£- U {~}} . na'llely: while the wave function 'f. { :x!) describing the 

state of the particle is differentiable twice vdth respect to :Je for any li'llited potentials IJ ( :k"- I , the 

derivative - e = i! c~~ • generally speaking. does not exist. So, for exa'l!ple, ~If turns 

into infinity where 11'• const. 1wing to this fact any equation contahting the derivative g. would 

lose its meaning in all the regious where V• canst., and would possess a number of other uns•titahle 

proper ties. 

The aforeme!)tioned consideration does not mean at all that there exists no reasonable equation replac­

ing the Schrodinger e1•tation in which the 'potential' 11" would play the·role of a variable with respect to 

which the differentiation is being made. '1n the contrary, the aim of the present paper is to constract sue~ 
an equation and investigate its properties. 

Let us assume that the state of the particle may be described by a certain f~nction F (z) differe•tti-

able at least once with respect to 1" for all piecewise continuous 11'</&().- ( even for such ones whose 

derivative g. exists at not a single point). Here and in t~e following a function is assumed to be dif­

ferentiable if the derivative belongs to the class of piecewise continumts functions. The form of the 

function F{z) and its connection with tf{X) can he establisl-ted by means of the following heuristic 

considerations. 

If P { %) is differentiable in the general case not more than one time, then it may satisfy some 

differential equation of the order not higher then the first one. This equation can be simultaneously equi­

,·alent to Eq. (l.l) and linear only in the case the function F has two components 
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F (:J:.) = ( F, (%-)) 
lFt(r)j 

lind is associated with r ( :x!) linearly 

(1.2) 

(1.3) 

In order that the functions lf., and cp,_ be di££erentiahle with respect to % at least once they must not 

contain explicitly lr{:r) in the arguments, but they may contain there, for example, the integrals of the 
% 

type J ~ (7t;%)t/x . Taking into account that for 11"• const. the function f {:»} must be a com~ 
bination of exponents exp [! i (kx + const.)] we get 

l ~(~} -l({r) _ _1 
'#'(~) =[F1(%.)e .-F,{2)e ] 11' If (1.4) 

where the phase ~ {z) equals 

z 
"E,(:r-)= J k {~)o/:1!. (1.5) 

The separating out of the factor 1Y -f will tum out to be convenient later. Since the requirement of the 

dtlterentiability with respect to 11" is imposed on the functions F,(2} and Fj,(:ll} , then the for­

mula (1.4) is a certain hypotheses about the structure of the general solution of Eq. (1.1). 

2. Equations for the Amplitudes 

Let us derive the equations for the amplitudes Ft{z) and Fi, {%) . By calculating th,e derivative¥'' 

(2.1) 

we see that the existence of 1/'Wf can be garanteed only if the expression in squsre brackets is zero 

;,f,_d__ ( -lr..) -i.~ cl ( -l ) e 'J1i v- , + e '"Ttl 11' fi, = 0 , (2.2) 

since in the opposite case the derivative V'1 the existence of which is not supposed, will enter the expre8-

s ion for 'I' 1 
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By calculating ( taking into account ( 2.2) ) the second derivative 'f 11 
{ %} we have 

.l. i.~ '3 -if, 
lf'r~J=-V'.,F.,e -~vF~,e +-

• •df [et~-Jv:(vAF,)-e-t4fi (vArJ} 
( 2.3) 

-· 
In a si'Tiilar way for the existence of If 11 (X) it is necessary that 

eLf,fv (v-Ii~)- e-;,1,-fv {v-~ Fz)=O. ( 2.4) 

After elementary transforlllations the system of equations ( 2.2 ), ( 2.4 ) aquires a compact forlll 

( 2.5) 

-1'---

Comparison of the expressions ( 1.4 ) and ( 2.3 ) easily shows that If 
equation ( 1.1 ) as soon as the Eq. ( 2.2) and ( 2.4) are satisfied. 

satisfies the Schrodinger 

It is interesting to note that in deriving the Eq. ( 2. 2 ) and ( 2.4 ) we have not appeal explicitly to 

Eq. ( 1.1 ) but used only the existence of the derivatives 'II 1 
and 

fact that the Eq. ( 1.1 ) has been used already in writing If {%} 

'f" . This is connected with the 

in the forlll ( 1.4 ). 

The system of equations ( 2.2 ), ( 2.4) can be easily derived in a more obvious but less rigorous 

way, by breaking down the potential U ( :Jt.} into a great number of thin right-attgled barriers, writing 

down the conditions of the continuity of If 
thickness of these barriers tend to zero. 

and 1/1 I at eat<h boundary, and then by letting the 

3. Solution of Equations for the Arnplitudes 

We write ( 2.5 ) in a matrix forlll 

rJ F =9 (1J) F olen, v- ( 3.1 ) 

• 



t 

where 

1 -u,~:z:.J ,e 

0 . 

The matrices 'r~J for various z don't commute. 

The solution of equation ( 3.1 ) can be written in the form of the '2' X -exponent • -

( 3.2) 

~ 

Ff:x:J~X (-to f gfz)ti&.1!'{fi!1F(z.) < 3.3 > 

~ 
where the simbol of Y -product implies that the matrices 9 {:X:) are to be arranged in the order of 

increase of their arguments from the left to the right ( or in the order of decrease if ;r
1 

<: :Jt, ). 

The matrix 

fi1 r "'" x. J ~ x ( llrf' j9 r (e) ci. en 1rr~;), 
( 3.4) 

:~:. 

transforming F {z,) into F (:1!1} is unimodular and possesses elements 

~, ·~f. 1 x' • 
S,=l +j 1;e'" z J ~ e.ai~ta~ rJ !A 'II'(~Jd l!itv-{,")+ ... , 

z, 31!, 

s rl. -ti( /) ,,= II e D/cn, V'+ 

z. I " 
~ a ~ .,. J J;e-'''J te'''J e-z.i.1,tl&v(:e:Jo/!AtJ{z'Jd&tu{z"J+ ... , 

"· %, ~ ( 3.5) 

From ( 3.4 ) it follows that the power series of ( 3.5 ) converge provided only the integral ( in the sence 
If< 

of Stieltjes ) 
--------- ·- ---- -----------

• The notion or thn X -A>cponent coincides with th~t of the multipl iratlve int .. gral f (1 ,., {:f:jd,:Je, 
Introduced In 1887 by Volterra/

2
/ . We retain th" rlr•t tPrm as olos.-r to th" physlral tPrnolnology. 
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~f J ej: u~ ('11!) Dl e, ?Y(~) ( 3.6) 

~~~ 

exists. Thus, the formula 
-4 

F (:x.) = S ( ~, x.) F f~o) ( 3. 7) 

yields a general solution o£ the Schrodinger equation. floe can see it immediatley by inserting ( 3. 7 ); 

( 3.~ ), ( 1.4) into ( 1.1 ). 

We emphasize that the convergence of the series ( 3.5 ) is not connected with the smallness of any 

constant. From this point o£ view these series differ advantageously £rom many other series in terrns of 

whic~ the solution of the Schrodinger equation may be written, for example, from perturbation series. 

The matrix S can be easily found in the explicit forrn if two independent solutions '1/1) (!Jef and 

'f. {%)of Eq. ( l.l ) are known. We introduce the matrices ,, 

( ) t 
-i ~i _, -i~ ~4' 'l'c~, V' e v e 

W= ; l= ; 
'1'~, "';~ iV'-4-e~~ -l.v•e-'' 

F= 

From ( 1.4) and ( 2.1 ) it follows 

w(z):Z (tr.J F (x). 
From ( 3. 7 ), ( 3.9 ) we obtain an explicit expression £or the 

~
F,(.,, 

F,(IJ 

F.,(Z) 

Fit£) . 

S -matrix 

S (~,x.)=l-1(%}w(~J w·Y:~t.)~{:r.). 

( 3.8) 

( 3.9) 

( 3. 10 ) 

~y inserting ( 3.10 ), ( 3.7) into ( 2.5) we can show that this syste~is satisfied as soon as 

Eq. (1.1) satisfies • Thus, the system ( 2.5) is equivalent to the Schrodinger equation ( 1:} ) in the 

sense that to any solution of Eq. ( 1.1 ) there corresponds the solution of the system ( 2.5 ) and vice 

versa. qence, the general solution of Eq. ( 1.1 ) has, in fact, the structure ( 1.4 ). 

The phase ~ ( :Je) plays the same role in Eq. ( 2. 5 ) as the potential 1J{ tz.} in Eq. ( 1.1 ). The 

wave function f {x) , generally speaking, is not differentiable with respect to % what is evident at 

• 

l 
I 
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least from the fact that it is expressed in terms of Stieltjes integrals. Thus, there is a certain snpplc•nen­

tarity in the properties of the system ( 2.5) and the Schrodinger equation ( 1.1 ). 

4. Turning Points 

The direct application of the formulae ( 3.3 ) - ( 3.5 ) to the segment [ 31!,
1 

at.] which contains 

the turning point V':= 0 * is not convenient because the rate of convergence of series ( 3.5 ) is unsatis-

factory in this case. In order to get rid of the singularity at the turning point in the ·X - exponent we 

single out from the matrix S { %1 , X,) some principal part P{z 
1

, X
0

), 

We make use of the identity 

xf :Jf., 
1
17 

X [~(J p(%)c/ot(~)+j e(xldj9(:Jt);J•Pfr1 ,%.)E (z1,:r,), 
:t. x. 

( 4.1 ) 

where z 
Pf:~r,%,)=X ( tAf' [ fcld-), 

• 
( 4.2) 

:Jll I 

G (%1 ,X,)=X( e«p J P-.(:;e,-z.)e(%}P(x,xo)cl~(:r)}, ( 4.3 ) 
~. 

and which is easily proved by writing the exponent as an infinite product. We put 

( 4.4) 

where ~ is the turning point 11' {%.}:: 0 . Then instead of ( 3. 7 ) we get 

( 4.5 ) 

The integral appearing in the X -exponent ( 4.3 ) is now regular and small for small :r;
1

.:.. ~. , so 

that the matrix t is close to the unit one. We can write for the elements of the matrix ! an expan­

sion sim'ilar to ( 3.5 ) which converges fast. The matrix P is calculated explicitly 

* The Integrals In Eq. (8.8), (s.a ) can he understood In this oase In the following sense: 

J (rJ&11'=P, Jf ":.,. L9lf ( Ji~11'--Sif",r) j 1/{z-~)rJ%, <
4
.ta> 

where £. 1s the turning point, th1> symbol P 'II' denotes omitting during Integration the segment where /r/<l ;'4 ->{}j 
fY~, ,- are the values of 'I)' at the right. and the left end of the omitted segment. ' 
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-2-L 'f,(~) ~ i ln, ~ ) e , v; 

~t fit,~) 
( 4.6 ) 

and describes the principle part of the F { :Ja} -wave function transformation, when passing through the .,. 
turning point. 

The singling out of the principle part of ( 4.6 ) from the 
S -matrix is always possible and doestt't 

assume the smoothness and the small curvature of the potential in the vicinity of the turning point. Thus. 

the turning point doesn't prevent fro'll obtaining the S -matrix in the form of fast convergent series. 

ln a si'llilar way we can singl,e out the main part of the S -matrix not only in small neighbourhood of 

the turning point, hut on any segtnent l zl, .r.] if on this segment there is the potential if~} which 

ia close to 11' {3!) and for which the exact solution of Eq. ( 1.1 ) is known. 

Reverting to the P-matrix it should be mentioned that the matrix ( 4.6 ) is a scattering matrix on the 

right-angled jump fro'll V, to .11' at the point ~ ( Z1; and I)' 'lla}" have any signs ). 
--

~..0.·-

5. TUI"'ing Point in the 1uasi-Classieal case 

The method of singling out the principle part of the 
S -matrix may he applied f~r obtaining correc-

tions to usual connection formulae* for quasi-classical solutions inside and outside the potential harrier. 

These corrections. wlticlt arise due to the potential curvature in the neighbourltood of the turning point, are 

not always small and can change considerably, for example, the possibility of a particle penetration through 

the potential barrier. 

Let the potential 11'(%} he close to the linear one in the neighbourhood of the turning point. Then in 

( 4.1 )- ( 4. 'l ) it is natural to put 

p~e =9f~»J, o&.·titn(zl Jlf'- z), dl .;&fv(lf' ( 5.1 ) 

't == / ~ (~)-~ (o)/ 

* F<>r •l••tail~rl dPduction and the trAatment of the usual connertlon formulae sAP paper of R. Langc/
3
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i in ( 3.1 ) tl-.e turning point is taken for the origin of coordinates 1/"(0}:= 0 and the potential harrier is 

assumed to be at the left sign 1Y .= sign :C /. Apparently, for the linear potential 1)''11: C:;r! , the 

differential rlf = 0 and P :: S . 

The main part P{x,x.) of ( 4.3) is easily obtained from the formula ( 3.10) where as solution~ 
'4/ 

'fa) and 'Yet.} we may take ( cf.l ) 

b
'Lt t [J:J.L ('l) :;: J_l ( '[) 1 ai :%>0 .J ( 5.2 ) 

lp!::: f! f [I i r t J ±·I -1 ( 'l)] at :e < o 

( ':J, [ are Bessel functions ). Taking into account that ji!l! =I H-I • 
and performing so'lle linear transformation of the matricet · W and z 

W=Lw, l•Li!, L= (t ,/J/f"z) 
we obtain 

( 5.'l) 

where 

( 5.4) 

det W =- - '{3 sign X . 
Z7C 

The factor* j ""' 1J' -1; l V' {;'/ = e -L~ . 'ly inserting ( 5. 4) into ( 4.3 ) we obtain 

u .. , "'-). ~ r ... ) x £..., [ o:r•r"' J (~ :) ~>{:r:J at] c -y :P,), < 5.5 1 

-1~1 v "' -J.!. 9 q" • ol ( Lft ((_ 'f! ) ,..,. w - - 'L ~ .Pfl~t- --w 0-{ - '{3 a rlfJ ,ol 
c. - l + - 'f+ 'f_ . 

It can be sl-.own that for 

* 'such a choice corresponds to the formula ( 4.1 a). 
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:l!o 
where 

J. 

rlf = -l3 'fv.s. "~ ~r :e, 
( 5.7) 

in the expansion of the· X- exponent in ( 5.5) we can restric"7 ourselves to the first term fro'll which 

( 
2.) ~ ~ Cf_ . Cf_ ~ 

Sr3!,:x:.,)~Prl!,x.)t-'(:eJf f , rlfG-- r1r.). 
X0 ~ -Iff" - 't tf_ 

( 5.8) 

ln this expression tl,e first term in the right hand side P { :t, ,:o) yields usual connection for'llulae and 

the second one yields a correction to these formulae. 

For large values of the argu'llent ~ it is 'IIO~e convenient to express the matrices P {z., X,) and 

G._.,(~ ,) not in term~ or functions 'f'! and lft. but in terms of their combinations !l , T . t .... 
'· . . I . . { f /5/) navtng stmp e asymptotic expanstons see, or ex., 

li + ~!:: L ri,•J!{f,m) 
- "'30 {2-1), 2, ; 

Tt-~L (-i)"' (j,m)! (~m} 
- msO ( :l,~)'" 2. ;J ; 

~::;;...-

( ) 
. f{.;+!lf+/;) v m-' - m!r{v-m+f) 

t+c-o f. (-f,m)!(t,m) 
- mso f-·(t'L)m ; 

{ 5.9) 

Then for ~ >0 , ~0 < 0 we have ( ~,. ~{-:r:}, t:: '[ {:X!,)} 

__ (e-Lf 0~(/l,+. i,e·Uf,-(-T..e2lttt+ r .. -it_e-1.~ 
p {%,~.)- y i-f . 2.£~ - • • 

o e _,e /l_ R,+ -T.el.t-it.,. ·Tt+ft_e·tt ( 5.10) 

(

-t+ t_-e-z) 
G -( ~~ ~ f V29i' -~ T e"'l .&.. T. 

Vi- '(J'+ ( 5. ll) 

P., denotes a function complex conjugated with R. ) . 

--- -~--·· 

Sl 

tia\. 

• 
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( 5.6) 

( 5.7) 

fro"' which 

( 5.8) 

or'llulae and 

,z,) and 

.T t 

( 5.Q} 

( 5.10} 

( 5. 11 ) 

P-1 ,., .s-l tJ which han a 
ln nJost considerations onh· those elements <If the matrice" P . 

finite lilllit [or 'L .._ t:/'0 make sence. \1eanwhile. the matrices P . S (as well as the matrices 

p- -4 . s-~ ) contain exponentially increasing elentents. lf we exclude thes<" elentents fro'll the con-

sicleration then we obtain connection form.ulae which can he used either in passiny, fro'll the region 1!'< 0 

to the region V > 0 . or in tl1e in\·erse transition only. 

and s-l 11 sho•Jld he renJembered that as 
'Nhen usin~ the increasing elements of the n1atri.ces S 

follows from ( 5.8 } these elements are very sensitive even to s•nall non-linearity of the form of the poten· 

tial. 

6. Superbarrler Refteetion 

The superbarrier reflection has no analogue in the classical mechanics ~tnd consists in that a particle 

with posith·e kinetic energy can be reflected from the potential roughnesses.~lowever. if pits and bumps of 

the potential have rather smooth slopes, then the reflection tnrns o•1t to be, generally speaking, very small 

even for large ratio of ?r MJUe to V"~ . When the ratio 1J"~ j'IJ",.,U., is considerable the usual 

methods of approximate solution of the Schrodinger equation ( ).1 ). for example. perturbation theory. lose 

efficiency . Then. the reflection coefficient is evaluated much simpler if one starts from the matrix Eq. 

( 3.1 ). 

The amplitude of the reflected wave ( for given total current) is determined obviously bv non-diagonal 

. So. if the current of particles fall from the left, then 
elements of the matrix S ( oo,- ex:>) 

( 6.1 ) 

ln order to calculate approxintate calculation of the S -n1atrix it is convenient to break down the region 

where the potential is not constant into segments [ :11!;..4 ' :I!;.,] of such lengths that the e lernents of 

each of the •natrix S {2i.•~ , ·31!;,) would be well approximated by the first terms of series of ( 3.5) 

~ t.~. %-)( 6.2 ) 
t• u1J " 

and then find product of matrices ~ 
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S (oo,-oo) ~ t.{oo, x,..-4). t.(~~~.-oa!~~.-z)- ... ·t,{:x!o-ocJ. ( 6.3 ) 

\n error of the non-diagonal elements of the matrices '*C.. is easily calculated, 

( 
Z;..,, yt I X I 

/ Su-t~.,J~ f f/J~~r/·flltM! J ez,;,~~tl~v 
~ ~ ' 

( 6.4) 

.. 
where .::e.:,~ :J! ~ iei-+-1 . Thus, when the number of sewnents is moderate, the approximation ( 6.3) 

will be good. if for all chosen segments 

.r,t' I 

I I eMt.L f..~! 
:x.. 

' 
{ 

%.:.-tl .J )t I X I 
» /. ffrit..ll'~ ·i-£. e"''ftl&w . 

( 6.5 ) 

The number of segn1ents n, which is necessary to reach desirable relative accuracy C. can be roughly 

esti.,lated b,- formula 

IV~ Ozt!J if/afA,fl'j)~ ( 6.6) ~ 

For example, for one-bumped potential with ~U /11"'/H.Ut,:::: F and for the accuracv C == 0.05 = ')'C 

we get fl.,"' 6 . 

If the condition ( 6.5) holds for the interval (e-o '- 00) . then for the superbarrier reflection a'l1-

plitude we get an estimate 

-- S~,~ ( e>o,-oo) ~-f e""~t ol ~ ~~ ( 6. 7 ) 

--
which coincides up to notations and normalization with the formula ( 9) 'I '. It should be stre,;;seJ that 

expressions ( 6.5 ), ( 6. 7 ) give a total solution of the proble•n of the-superharrier rdlection anJ are 

not connected neither with perturbation theory nor with q•Jasi-classical approxi•nat1nn. 

'7. SUperbarrter aefiectlon in the !)uasi-Classical Case 

-\ l,igh smoothness nf the potential 

• 

which tal 

Eq. ( l. 

with lar 

where 

where th 

so that f, 

for'llula 

As a 

is of the 

where ~ 

The ul 

where ~ 



• 

( 6.3) 

.~) 

be roughly 

6.6) 

0.05= 'i'C 
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6.7) 

etl that 

15 

1¥-/~JA'/= f~j«t ) « 7.l ~ 

which takes place in the quasi-classical case allows to achieve by means of a simple transfor"lation of 

Eq. ( l.l ) the fulfilment of the condition ( 6.5 ) in the interval {-, -oo} even for the potentials 
'3; 

with large ratio 11"' JH.Il1l: / ~ ~ . We make use of one of the Langer transfor01ations · . We put 

'f=/(-f, If·; II!= I,[ f)' 1 = ~ {~), ( 7.2) 

where k is a function inverse to the phase ~ . Then F:q. ( 1.1 ) takes the form 

( 7.3 ) 

where the pri'Tle 1 denotes the derivative with respect to :x!- . \ceording to ( 7.1 ) 

1
- I 13 1'

1

2. .i. K "! ( 7.4) tr-1 = 7j "'i<Y - ~ f(J <~ 1., 
so that for the transfor01ed potential iJ" j/dln v--/<<f and the condition of applicability of the 

for"lula ( 6. 7 ) holds. 

\s an exa'Tlple we take a particular case co.nsidered by Pokrovsky et 

is of the form 

/6/ 
a! · in which 

where ~ {~) is the analytical function having neither zeros nor singularities in the stripe 

The direct calculation/
6

/ show: that iffy} has the forn1 

- .£. I -1J-f~) ~f+ 3C (y-t, ~JL ~lf)' ~(ii)-1, 

where ~ { y} has no singularities on the stripe 
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- 5' < tfm 'j < 5' -r8' t~-;S~(ur), a-~fte}. ( 7.8 ) 

From ( 7.4) it follows that in the quasi-classical case 1f»i. 
fk inserting ( 7.7) into ( 6.7) and integrating over the contour closed in the upper half-plane we 

see that the singularities of the function Q { y} give an exponentially small co~tribution which may be 

neglected if these singularities are not too numerous, Ry substituting a unit for {f {y} for the amplitude 
.'<II 

of the superbarrier reftection we have 

£ :-$~,1 (oo1-oo),.. 

~-J ~ { z, /[t•M ~ _ ,,. r2.]""o1l] ftt&.B4i ~-·o-J-lj--te_z, ( 7.9) 

( the calculation of the integral ( 7.9 ) is discussed in the <\.ppendix ). 

The same estimate for /l has been obtained in 16/ by means of the complicated summation of pert'ftr­

bation series and the comparison of the result with the known exact solu~ion 
1 

( for 1Y:{j'&t!l-"(o~.,,~) }; , 
It should be mentioned that the papers by \'. Pokrovsky et al 1 6• 71 contain a wrong assertion _',:. 

n~ • 
that the formula (6. 7) derived first by I. Goldman and A. \1igdal· 1 coincides with the £irst term o£ the per- 01· _. 

turbation series. In fact substitution of the 'Pokrovsky potential ( 7.7) into the integral ( 6.7) of Goldm~~ 
and \1igdal leads to the euct result ( 7.9 ), while the £irst term of the perturbation series for discussed 

' . /6/ 
example gtves 

_£. tr. -2.1' • "' -t i IL ~ - ;., 11 ;,ve ::tl-t, D,l e . 

In C'onclusion the author would like to express its deep gratitude to Ja . .<\. Smorodinsky £or multiple 

disc~ssions, S.S. Gerstein for the constant assistance during the work and L. 0. Zastavenko for friendly 

encour.;gement at the early stage of work. 

Appendix 

The integral ( 7. 9 ) can be easily calculated by expanding entering exponent square root in power 

series in ,8 

~ (1-tf J=-li (1-~8'r2, Vi+/J =l+t~-f~,+fi-;6'-... , ( -\, 1 ) 

and integrating tl-tis series term by term. In the lower half-plane ( for any 6' ) there is always • lille 

on which the series 
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( o\.2 ) 

converges everywhere absolutely so that such a procedure is valid. Further we expand in power series 

exp B:: 1 t B + . . . . Calculating explicitly d~ £n- {I-t~} , we have 

--f 2,i,'l I )(- 1i ~ 0t . ) /l- e 11-tB+ .. , ~-~5- +y-;,(f+'Jf).,.!-t(5--if-)Jtlf· (A. 3) 

The expression ( o\.3) altows the integration terrn by term. \laking the substitution 

we have fl =:f t4!f' {-z~) , where f doesn't depend on lf : 

'% (- ~2. #,- -1/'1 -) ~ _t=jez" {1+13(-:x;)+.)- 'F + :x:.-tYf + ~+~ Yf-) ~. 

y-tf =/:e 

( o\.4 )' 

~ is easy to ortain a nurnerical value of the constant/ which turns out to be equal to t, . So, the 

~first four terms of the series in B, ~ give: 

~ J: =je2,iZ ol~(lr/Jf:x!J)=lr(d~-1 = i·0,91 

J:: .J. +jeu"(-~~~-} r16t-{1+~) ~ £. 4m 
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