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Abstract

A new equation is derived in which the kinetic ener gy ¥=2(E — 11) plays the tole
of a variable with respect to which the differentiation is being made. This equation is
equivalent to the one-dimensional Schrodingder equation. An explicit expression for the
S-matrix is written and its expansion in ever-convergent series is found, In the simplest
case the zero term of expansion of the matrix 8 corresponds to the ahsence of reflection
and coincides with WK 3 approximation. The first term dives superharrier reflection, in par-

ticular, the formula obtained by I. 3oldman and A. 'vﬁgdal”/. 3y means of anoher expan-
sion of §'- matrix the correction to the connection formulae dre found.

The one-dimensional non-relativistic Schrédinger equation

¥'(z)+2[E-U(x)] y(%)=0 / m

is not the best starting-point for calculation of the scattering matrix since the amplitudes of the incident
and reflected waves do not enter explicitly this equation and its structure does not reyeal the fact that
just the roughness of the potential W(®) givesrise to the reflected wave.

In the present paper from Eq. (1) a new matrix equation is derived in which the amplitudes of the inci-
dent and reflected waves play the role of a wave function. The ‘potential’ V=2(E-{) becomes an in-
dependent variable with respect to which the differentiation is being made. The coordinate 2 becomes

an anxiliary variable and transforms into an index of order in which the different parts of the potential ure
arranged. We introduce the notion of Y -product which is similar to T -product in the quantized
field theory. Althongh the equation thus obtained is equivalent to the Schradinger equation (1) the first in
its many properties supplements the Schrodinger equation.

In deriving the matrix equation a hitherto unknown structure of the general solution of £q. (1) is used.
The solution of the matrix equation allows us to find an explicit expression for the § -matrix and repre-
sent the latter in the form of ever-convergent series (different, of course, from those of the perturhation
theorv ). Tt turns out to be possible to obtain fast convergence of these series by means of simple transfor-
mations of the  § -matrix.

In the simplest case the zero term of expansion of the matrix § corresponds to the absence of
reflection and coincides with quasi-classical approximation of Wentzel-Kramers-Trillouin. The first term
of the expansion zives superbarrier reflection, in particular, the formula obtained bv 1. Gioldman and
A, Migdal 1 /. The next terms of the expansion take into account the weakening of the incident wave and
specify the reflected one.

The obtained results lead to a new estimation of the place which is occupied by quasi-classical appro-
ximation in the precise theory. The expansion with respect to the constant A (in fact. with respect to

. A . , . .
the smoothness of the potential AT" ) vields a divergent series the two first terms of which



(the only ones not vanishing at 'ﬁé' +0) give, however, a reasonable approximation. The remaining
terms vanishing at ﬁA——,O have no physical meaning and make the approximation worse. Owing to
the fact that all the terms of the expansion in £ . except the two aforementioned terms, vanish under
the same conditions as for vanishing of reflection, there arises the coincidence of WKRB approximation
with zero terms of expansion for the matrix §

The phenomenon of reflection from the potential roughnesses is related deeply to the phenomenon of
the non-conservation of classical adiabatic invariants in quantum mechafcs. It is possible therefore, that
the approach suggested here will prove expedient in the consideration of these phenomena as well. The mat-
rix equation can also be generalized to the case of the system of coupled one-dimensional Schrédinger

equations.

1. Formulation of the Troblem

The variables 2 and 7 enter essentially unequally the Schrodinger equation

y'(x) + v (2)y(x)-0, .1
where V(%) 'K"(»‘”)‘z(f'u {.’t)) . namely: while the wave function 4 (x) describing the
state of the particle is differentiable twice with respect to 2 for any limited potentials {//2) | the

. -.dy dz . . ay
derivative ﬁ- a—; odv . generally speaking, does not exist. So, for example, o ‘tums
into infinity where . w=const. Dwing to this fact any equation containing the derivative e would
lose its meaning in all the regious where ¥%= const., and would possess a number of other unsnitahle

proper ties. )

The aforementioned consideration does not mean at all that there exists no reasonable equation replac-
ing the Schrodinger equation in which the ‘potential’ 2 would play the‘role of a variable with respect to
which the differentiation is being made. n the contrary, the aim of;the present paper is to constract such
an equation and investigate its properties.

Tet us assume that the state of the particle may be described by a certain f:inction F(x) Adifferenti-
able at least once with respect to %~ for all piecewise continuous UV¢0- (even lor such ones whose
devivative {‘E exists at not a single point ). Hlere and in the following a function is assumed to be dif-
ferentiable if the derivative belongs to the class of piecewise continuons functions. The form of the
function F(az) and its connection with ¥ (2} can be established by means of the following heuristic
considerations. . :

It Fl=) is di'fferentiable in the general case not more than one time, then it may satisfy some

differential equation of the order not higher then the first one. This equation can be simultaneously equi-

valent to £q. (1.1) and linear only in the case the function £ has two components



Fle)=(F /x))'

Fs (x) (1.2)

v

and is associated with y(x) linearly

Y(2)=F.(x) Y,() + Fylx) 3 (%) . (1.3)

In order that the functions @, and (f, be differentiable with respect to X at least once they must not
contain :zexplicitly w(x) in the arguments, but they may contain there, for example, the integrals of the
type f? {'v;x)dx . Taking into account that for 9= const. the function 4 {m) must be a com-
bination of exponents exp [tt (kx + const.)] we get

wz)LFix)e e rme ™) p P

where the phase § (x) equals
x .
t(x)= [k (x)olx . (1.5)
L .

differentiability with respect to 1 is imposed on the functions F;(z) and /'2(3) , then the for-

The separating out of the factor 2 7 will turn out to be convenient later. Since the requirement of the

mula (1.4) is a certain hypotheses about the structure of the general solution of Eq. (1.1).

2. Equations for the Amplitudes

Let us derive the equations for the amplitudes /(%) and Fa (%) . By calculating the derivative p/

w'{x):cvf/:, e“'-w

B[RRI ()]

(2.1)

we see that the existence of ’lﬁ can be garanteed only if the expression in square brackets is zero
i% ( -4 ) Sy (-
s (viR)r e (vig)=0, @2

since in the opposite case the derivative 2*/ the existence of which is not supposed, will enter the expres-

. '
sion for ¥



By calculating (taking into account (2.2) )} the second derivative y’”( x) we have

y'(x) = -»t Fy e”’-v"?fF&e'“#

g [ (i) e ()

(2.3)

In a similar way for the existence of Vl”{x) it is necessary that
: -it
e a (viF)-e 4 (viR)-0. (24)

After elementary transformations the system of equations (2.2), (2.4) aquires a compact form

olF,(x)()_ LF(z)e

(2.5) :
F
o ;(x)) 1 F, (x )ezbg(z) . -

Comparison of the expressions ( 1.4 ) and (2.3) easily shows that satisfies the Schrodinger

-2L8(x)

equation (1.1) as soon as the Eq. (2.2) and (2.4) are satisfied.

It is interesting to note that in deriving the Eq. ( 2.2 Yand (2.4) we have not appeal explicitly to
Eq. (1.1) but used only the existence of the derivatives ly' and yl" . This is connected with the
fact that the Eq. ( 1.1 ) has been used already in writing (%) in the form (1.4 ).

The system of equations (2.2), ( 2.4) can be easily derived in a more obvious but less rigorous
way, by breaking down the potential U(2) into a great number of thin right-angled barriers, writing
down the coaditions of the continuity of ¢ and f/' at each boundary, and then By letting the

thickness of these barriers tend to zero.

3. Solution of Equations for the Amplitudes

We write ( 2.5) in a matrix form

dF=g(2)Fd nv (31)



where

-2it(x)
0 fe
X/ = .
’( / ﬂ.ez‘z(”) (3.2)
The matrices (3) for various 2 don‘t commute.

The solution of equation (3.1) can be writtan in the form .of the X -exponent * 2’
Xy
F(x)=X @'f’ f g(x)d&m(z})/-’ (x.) (3.3)
X

where the simbol of X -product implies that the matrices ? {x) are to be arranged in the order of
increase of their arguments from the left to the right (or in the order of decrease if 1,( x, )

The matrix

(3.4)

X, ’
S (x%) =X (omp [ ga)d o via)
x,
transforming (x.) into F{J?,) is unimodular and possesses elements

PR TY ¥ S
> S”:{-pf 7‘/'31 £ f‘t’,‘ ezctl )d&tv,(x7d&1f(x7+m’

Zo

X, _
Se* f ,-} el v+

x, "

x

2, =z’ _ "
e [fers f € Ydluviz)dtnv(z)dln v (x T+ .,
e % % | (3.5)

SulSulyg ) SulSal gy .

From (3.4 ) it follows that the power series of ( 3.5 ) converge provided only the integral ( in the sence
v

of Stieltjes )

* The notion of tha

~
x-nxponen', coincides with that of the multiplicative integral f {[}/(zﬂt
Introduced in 1887 by vO"e"a/z/ . We retain the first term as closer to the physical terreinology,



X4

_/etuﬁx}o{&av’fx} | (3.6)

%,

exists. Thus, the formula
-
F(x) =S (,%,)F (x,) (3.7)

yields a general solution of the Schrédinger equation. Ine can see it immediatley by inserting ( 3. 7),

(3.4),(1.4)into (1.1).

We emphasize that the convergence of the series (3.5) is not connected with the smallness of any
constant, From this point of view these series differ advantageously from many other series in terms of

which the solution of the Schrodinger equation may be written, for example, from perturbation series.

The matrix §  can be easily found in the explicit form if two independent solutions ,;0 {2) and

%z)(z)()f Eq. (1.1 ) are known. We introduce the matrices

Yy ¥ it yie

S R o T
% ‘f’(',, ur“'e"" -Lve F Fan /-

Fio Fin (3.8)

From (1.4) and (2.1) it follows
w(e)=2Z(x) F(x). (3.9)

From (3.7), (3.9) we obtain an explicit expression for the § -matrix

\Y( x,t,) =Z'4{x} w(r) w"(x‘) E(x,). (3.10)

By inserting (3.10), (3.7) into (2.5) we can show that this system is satisfied as soon as
Eq. (1.1) satisfies - Thus, the system ( 2.5 ) is equivalent to the Schrédinger equation ( 1) in the
sense that to any solution of Eq (1.1 ) there corresponds the solution of the system ( 2.5) and vice

versa. 'lence, the general solution of Eq. ( 1.1) has, in fact, the structure ( 1.4 ).

The phase g (%) plays the same role in Eq. ( 2.5) as the potential v{x) in Eq. ( l 1). The

wave function F(z) » generally speaking, is not differentiable with respect to 2 what is evident at



least from the fact that it is expressed in terms of Stieltjes integrals. Thus. there is a certain supplemen-

. tarity in the properties of the system ( 2.5) and the Schrddinger equation ( 1.1).

4. Turning Points

The direct application of the formulae ( 3.3)-(3.5) to the segment [x;, x.] which contains
the turning point ¥%= () * is not convenient because the rate of convergence of series { 3.5) is unsatis-
factory in this case. In order to get rid of the singularity at the turning point in the -X - exponent we

single out from the matrix S(x‘, x,) some principal part P(x,,x,,).

We make use of the idenvtrity

y [wcp (f x})(x)dd(xﬁ f é{x)d,ﬂ(x))]=P/x,,x,)8 (x,,2,), (41)
x, Xo

where

(4.2)

P(x,x,)=X (exp jxpdd),

E(x,52,)=X (exp ]x}"?x,x.)e{x)P(x,xo)dﬁfx)), (43)
x,
and which is easily proved by writing the exponent as an infinite product. We put
P=9(%), e=9(x)-9(%), du =dp=d tn v, (4.4)
where 2 is the tuming point #(£)=0 . Then instead of (3.7) we get

F(x,)=P(x,,x)€(x,,2,)F(x,). (45)

The integral appearing in the ) - exponent (4.3) is now regular and small for small m -2, , so
that the matrix 'ﬁ is close to the unit one. We can write for the elements of the matrix E expan-

sion similar to ( 3.5) which converges fast. The matrix P is calculated explicitly

-

»
The integrals in Eq. (8.8), (3.3 ) can be understood in this nase in the following sense:

J{dtns 2, {9 c1f (sgnvsgn) [¢8(z-2)lz,

where x 4s the turning point, the symbol t denotes omitting during Integration the segment whora/f/‘t;t—yo;
'”" are the values of ¥~ at the right and the left end of the omitted segment.
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hi e p i

(4.6)

Pf?n‘”vf e“;(i)iﬁi&t% ot 1

=|
Sis

)

" and describes the principle part of the F(x) - wave function transformation, when passing through the

]
turning point. -

The singling out of the principle part of (4.6) from the S - matrix is always possible and doesn’t
assume the smoothness and the small curvature of the potential in the vicinity of the turning point. Thus,

the turning point doesn’t prevent from obtaining the § -matrix in the form of fast convergent series.

In a similar way we can single out the main part of the S -matrix not only in small neighbourhood of

the turning point, but on any segment [34, X,] if on this segment there is the potential 27'%23) which
is close to 1)‘(.‘2) and for which the exact solution of Eq. (1.1 ) is known.

Neverting to the P-matrix it should be mentioned that the matrix ( 4.6) is a scattering matrix on the

right-angled jump from # to 7 atthepoint @ ( 2% and ¢¥ may have any signs ).

5. Turaing Point in the Juasi-Classical Case

The method of singling out the principle part of the S -matrix may be applied for obtaining correc-
tions to usual connection formulae* for quasi-classical solutions inside and outside the potential barrier.
These corrections, which arise due to the potential curvature in the neighbourhood of the turning point, are

not always small and can change considerably, for example, the possibility of a particle penetration through

the potential barrier.

Let the potential V(x) be close to the linear one in the neighbourhood of the turning point. Then in
(4.1) (4.3) it is natural to put

pre=g(z), dat-dbn(7F 4gn2), da- -dln vy 0,
7% (x)-5 00

. 87/
* or detailed deduction and the treatment of the usual connection formulae sar paper of R, Langcr, 3
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7in ( 3.1) the turning point is taken for the origin of coordinates 1!’/0)=0 and the potential barrier is
assumed to be at the left sign 2 = sign £ /. Apparently, for the linear potential =22 , the

differential d/ﬂ’f 0 and P = S .
The main part P(m x,) of (4.3) is easily obtained from the formula (3.10) where as solutions

Yo and Yy Wemay take ( cf.” 4/
L i[Jj () Jg (7,)] at x>0 (5.2)
_ZS%UJ} (y) f’“I-g (7)] ot 2<0

( 7, I are Bessel functions ). Taking into account that jd_x_,-_-/ 5%./ . sign .’L‘-.L

and performing some linear transformation of the matriceg W and Z , Z

o
. o g
P(x,z)-% () W () 7~(,) E[x.):G/é)G"(x,), (53)

where Z and (¥ are the Vronsky's matrices with respect to Z(’ = ? )

‘F-) 5. 2 et e at 250
A Yg(ez,e'q')wt x<0 (5.4)

Welw, =Lz, L=

w=nids (4, )p o

det W-—-E_ sign L .

X
~L L -
The factor* r =V ¥ /-2/'»" /::e L%— . Ty inserting (5. 4) into (4.3) we obtain

4 (x,,)=6(z.) X [e2p f W) ( ; S ) w(x)ds |6, (5.3)

AN
—t(: _Y+‘f-

40

W = ILJ AF ign do%
It can be shown that for

*  Such a choice correspounds to the formula ( 4.1 a ).
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<,/ (5.6)

z a/
d—'_%-,<<f I[ f—u
h I j o 0//5 0/'& (fi d dz (f?
0’/;9-“23-%0//6 sgn =, (5.7)
in the expansionof the X exponent in ( 5.5) we can restrict ourselves to the first term from which
e foe wh)
Stz,z.) zP(nc,ac.)d;(ac)fa(-‘i/— a/p 12 '(x)
U\-ef g

x

o

n the first term in the right hand side P(x’ x,) yields usual connection formulae and

(5.8)

In this expressio
the second one yields a correction to these formulae

it is more convenient to express the matrices P/x, ;tu) and

For large values of the argument Z
and ‘-f4 but in terms of their combinations /% y T , t -

—4(.2 .) not in terms of functions Lf: 4
having simple asymptotic expansions ( see, for ex., /5/ )
. m + . =
e e 7S ()
oo o -\ .
R t -,% (Z'L)M 2 ’ Tj—_ £ (2’2)"’ 7 ;

o2 (£im)(§sm) = [(V+m+$) 5.9
LA L

Then for X >0 ., X, <0 we have (; Z{x), Z Z(x))
(e R)[Tekit, To4t.e’t

_L,’
0 ﬂ+
P(xix‘) y ) eo? .z;f,k R )
-ie"R. + [\-Tet-kt, -T;ft_eizi (5.10)
: p ‘t+ t..'e-zz
6 (x)=1V2% |_2
3 -2 T oM
ﬁT_e %TL (5.11)

R denotes a function complex conjugated with R )



In most considerations only those elements of the matrices £ . P_I . SI .,S’-l which have a
finite limit for p—=o00  make sence. \leanwhile. the matrices P . Ry (as well as the matrices

P’4 . S"’ ) contain exponentially increasing elements. If we exclude these elements from the con-
sideration then we obtain connection formulae which can be used either in passing from the region 2*< 0

to the region W>0 . orin the inverse transition only.

‘Yhen using the increasing elements of the matrices S and S-l il shonld be remembered that as
follows from ( 5.8 ) these elements are very sensitive even to small non-linearity of the form of the peten-

tial.
6. Superbarrier Reflection

The superbarrier reflection has no analogue in the classical mechanics and consists in that a particle
with positive kinetic energy can be reflected from the potential roughnesses.owever. if pits and bumpa of
the potential have rather smooth slopes, then the reflection turns ont to be, generally speaking, very small

even for large ratio of Wimppe 10 Viin - Vhen the ratio Viam [ Vimin 13 considerable the usual
methods of approximate solution of the Schrodinger equation (1.1). for example, perturbation theory. lose

efficiency - Then, the reflection coefficient is evaluated much simpler if one starts from the matrix Eq.

(3.1)

The amplitude of the reflected wave ( for given total current) is determined obviously by non-diagonal

elements of the matrix S (oo,—oo) . So. if the current of particles fall from the left, then

F; (_”),SSO (—o-o,oo) F; (°°)=‘SM(°",’°°)F1 ("") (6.1)

fn order to calculate approximate calculation of the § -matrix it is convenient to break down the region

where the pofential is not constant into segments ["‘M ' X0 ] of such lengths that the elements of

each of the matrix S(x‘.’“ ’-x'u) would be well approximated by the first terms of series of (3.5)

Loy
f 6_2"';‘74-0///1
x;

S (mid ) 3"..) g b Y] £ zﬁxm)x&)( 6.2)
i

and then find product of matrices N,
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S(°°,’°°) V‘L(’b) xn'l)'t(xn-l’xn-z)‘ ces -’L(x,,—oa), (6.3)

An error of the non-diagonal elements of the matrices 4 is easily calculated,

i

2 x
Iszf—"uls ([ %/a/&w/ -{ mar I!e"‘%d&ey

(6.4)

2
E Y

where Z;, €€ < L;,; - Thus, when the number of segments is moderate, the approximation (6.3 )

will be good. if for all chosen segments

(6.3)

l ffe‘ﬂ:z,-"-i bnv

Ziv 2 r
: >>( [t v]] fras [ eHalhy|.

Li (%

The number of segments M, which is necessary to reach desirable relative accuracy € can be roughly

estimated by formula

v gzco'_&(//d&"z’/)& (6.6) =

l'or example, for one-bumped potential with ”;,“/% = .r and for the accuracy £ = 0.05= 3%
we get n-= 6.

1f the condition ( 6.5 ) holds for the interval [00 ’— 09) . then for the superbarrier reflection am-

plitude we get an estimate

. —Su(oo,—oo)‘*—'-feu"-,’;d&" ¥, (6.7)

which coincides up to notations and normalization with the formula (9) 1 . It should be stressed that
expressions (6.5), (6.7) give a total solution of the problem of the superbarrier reflection and are

not connected neither with perturbation theory nor with quasi-classical approximation.

7. Superbarrier Rteflection in the Quasi-Classical Case

A high smoothness of the potential



e[t [t

which takes place in the quasi-classical case allows to achieve by means of a simple transformation of

4. ( 1.1) the fulfilment of the condition ( 6.5) in the interval (M,-OO) even for the potentials

with large ratio V0 /Vm . We make use of one of the Langer transformations 3 We put

yek b7, x=hly), =5, BEPY

where %/ is a function inverse to the phase g . Then %q. ( 1.1 ) takes the form

+V/(1 111 o ”)=0, | (7.5)

where the prime / denotes the derivative with respect to & . Accordingto (7.1)

” ~
p-1]=[3 7 - 4 5 4,

so that for the transformed potential 7 '/’/al&l- 'If”/<<1 and the condition of applicability of the
formula (6.7 ) holds.

\

6/
As an example we take a particular case considered by Pokrovsky et al = in which Zz"/l)

is of the form

v(x)=(x-i0)§(=),

(7.5)

where (8 (x) is the analytical function having neither zeros nor singularities in the stripe

-OC<YmX <6+, C>A. (7:6)

7

‘6 L —
The direct calculation” ~~ shows that V(y} has the form

#ly)=1+% Lo 8(y), 8(:5)-1, (1)

where (8 KY) has no singularities on the stripe
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_5'<’.%n%< 6+é, 0'5"“5([”)’ E=¥lic). (7.8)

From (7.4) it follows that in the quasi-classical case 6’»1 .

v inserting (7.7 ) into (6.7) and integrating over the contour closed in the upper half-plane we
see that the singularities of the function Q {y) give an exponentially small contribution which may be
neglected if these singularities are not too numerous. By substituting a unit for § {I) for the amplitude

A
of the superbarrier reftection we have

R=-8u (°°7'°o) -
"':/m:p {Z Lj?p%{;-ci‘fﬂ%/z}%a’&[h&(}—ﬂif‘z 6% (199

( the calculation of the integral ( 7.9) is discussed in the Appendix ).

/6

4 .
The same estimate for K has been obtained in’°’ by means of the complicated summation of persar-

bation series and the comparison of the result with the known exact solution ( for V:/%c‘-z/at,z)).
. g #
It should be mentioned that the papers by V. Pokrovsky et al”’67/ contain a wrong assertion . /.

i

o

that the formula (6.7) derived first by 1.Goldman and A.‘digdal/l"/coincides with the first term of the per- O
turbation series. In fact substitution of the Pokrovsky potential ( 7.7 ) into the integral (6.7) of GoBm;'r;

and Migdal leads to the exact result ( 7.9 ), while the first term of the perturbation series for discussed

/6/
Ra-ifr we*0a-i 05727

example gives

In conclusion the author would like to express its deep gratitude to Ja.A. Smorodinsky for multiple

Jiscussions. S.S. Gerstein for the constant assistance during the work and L.D. Zastavenko for friendly

encouragement at the early stage of work.

Appendix

The integral ( 7.9) can be easily calculated by eipanding entering exponent square root in power

series in /e
a2 A (2 i F)? - L a* ’ (A1)
B(2-i0)=4 (2-08)7, Vig=Aeip-f i fpn,
and integrating this series term by term. In the lower half-plane ( for any 6 ) there is always a line ,

on which the series
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Z,z, B(y bdv)—"/ﬁalz i//é‘za’z #939/2" (1.2)

converges everywhere absolutely so that such a procedure is valid. Further we expand in power series

exp B=1+8+ ... . Calculating explicitlyy—‘;: ZIL/‘{‘!‘/G) , we have

/ N/

20y 2 4

=-[e ( B+ )( . (A3
t it g7 v—»(m-*f) 7))

The expression (A.3) alldws the integration term by term. Making the substitution / -LF =2

we have e =:/7l’ff{;2&) , where JO doesn’t depend on 5:

e 1 Y, 1,
[ lieBwr ) i ¢ ) e

N is easy to obtain a numerical value of the constantf which turns out to be equal to L . So,the
\\\flrst four terms of the series in 0, ﬁ give:

S [l (A 1) = o
'l/o f&oz( /a/&t[ﬁ/g)_ L0997
_/ /ezox( ) (Z )olfn/h/@) £-0,9998

L= =(-99999%8.
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