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Abstract

The equations for the partial waves of the KK -pair production in the A% -col
lisions have been obtained by means of the Mandelstam representations. The solu-
tions of these equations are given in the deneral form. It is shown that the presence
of the resonance in the P -phase shift of the XT -scattering does not contradict
the requirements of the existence and uniqueness of the solutions obtained.

1. Introduction

In investigating the scattering of K -mesons by nucleons by means of the Mandelstam representations it
is necessary to know the amplitude of the KK -pair production process in the & A -collisions.

Up to the present the reaction A + X —= K+ i(- was considered in numerous papers /1,2,3/ . In ref./ L/
one has obtained the S -wave of the process X +% — K+ E in rough approximation, and in ref./3/
one has obtained a general form of the solution for the P -wave. In ref./ 2/ one has used the pole ideology
which is not being considered in the present paper. -

In this paper the integral equations for the partial waves of the process #+% — K+ K are derived with
the aid of the double Mandelstam representations. These equations contain the dependence on the #-X -scat-
tering phase shifts and the X- K -scattering partial waves. The requirement of the existence and uniqueness
of solutions we are considering leads to certain requirements impossed on the AA -scattering phdse shifts

and the T’( -scattering partial waves.
It is impossible for the time being to mean to obtain good quantitative results. Depending on various beha-

viours of the AN -scattering phase shifts at infinity we can obtain various solutions for the KK -pair
production partial waves. In addition no use can be made for the present of the X-A -scattering amplitudes
( Ty" =T % ) obtained in ref./4,5/, because the solutions of Ty" = T’/L are roughly approximate.
In the given paper we restrict ourselves, therefore, to obtaining solutions for the lowest order partial waves

in a general form.
The further progress in the investigation of the #ZJ -scattering process will enable us to obtain solu-
tion of the integral equations for the T A -scattering partial waves as well as for the partial waves of the

process under consideration.

II. Xinematics and the analytical vroperties of the X+l — /\/ + K

orocess amolitude

We introduce the following invariant variables:



=-(P+q,)*
Sa= - (h+9a)*
Sy= ~ (P + Pz)i

where P,

and Pz_ are the four-momenta of the K and /( -mesons, respect wely, and ¢, and £, are
the four-momenta of & -mesons. In the c.m.s. of the reaction J¢JF - K+ K
be denoted as reaction III) the variables

(in the following it wiil
Si, Si and S3 are of the form
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where M and /u. are the masses of the /( and A mesons, respectively,
of the A/ and

— —
p and $ are moments
-mesons, respectively
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The isotopic structure of the process F+F + K+ © has the for'n
T/, A(S' Sa, 53)5.4/6 +2[Td Tﬁ]ﬁ(.fl.ﬁ S;)

The amplitudes of the T and T -states with the isotopic spin zero and unit, correspondingly are connected
with the functions A ( $1,S2, 53 ) and 3 $+,52,5) by the simple relations:

T A T 2B 2

The functions A $,92,53 ) and A S, S2, 53) satisfy the following conditions of the crossing symmetry
A(5,54,5) = A(ss, s, 5,) ; B(susys)= - B(sys,ss) /3/

Ve shall consider the functions A $1,51,83) and 8 ( $1,52,5) in the c.m.s. of the reaction III as functions of
: 2 .

the variable 4~ for fixed value of 2 = Const. We assume that the functions A (S4,51,53) and B 51,51 53)
cemely with the Mandelstam representations. Then we obtain the following cuts in the plane

g* :
1. From the reactionl ( X+ K- &'+ K’ ) the cut is in the interval [~o=, xl"':l
2. From the reaction Il (&'« K = & + K’ ) the cut is in the interval [-
3. From the reaction III — the cut is in the interval

oo, X;h‘]
[ o =]
Xim = - M+/u

25 [Mope+ -2) (- #) - 2 Ylep) =2 ) |
e = 30 Kot [ Mo puv o290 M)« 2 Yl (129 ) ]




Besides there is one more cut — the kinematic one, which lies-in the interval O € 4«" $ M- u i

We remove this cut by the method suggested in ref/6/, For this purpose we shall consider the symmetrical

and antisymmetrical in root K(4Y= VQ"(‘}"f/u‘- MY’ combinations of the functions A ($1,51,53 ) and

B (S sl, S3) i
P (3%2) - P(9,2+ 1 (G D3 (452, - k(9)

S ’ z
$ (q‘;) _ $(st2,+kay) ~ B(342,-kish)

2k(sY)
where ‘i denotes the functisns A and B . From the conditions /3/ and relations 74/ it follows

$s(3v2) = A(9°2)

B(32) 7~/
%a (qt; 2) _E_(:;)_.

/4/

By writting now the Cduchy theorem for the functions A ( Q",} ) and %}T; , we obtain the following
relations oo X2
Al 2
ReA(‘i‘ﬂFLp J:-:l(;,) ’P/—%%‘}J"' *}/P/%xi( “
Xim T Xga,
P 7 B(1,2) kG, P W8y Gy, P [ PmB42) MeY ,  /6/
R B(q }) X— gt i TX-9%  kix dx + o~ X-4* K
-o. —o

In Egs. /6/ the amplitudes 7'" A ) 2) and e B("/*) are continued analytically throughout the region
0¢qte M-ut

1II. Integral equations for the partial waves and
their solution

We use further the connection of the coefficients A (1,52, 53) and B (s, Sz, S;)with the amplitudes
T ( 81,51,y ) and TA( S, Sz $3) (for the first and second channels ):
A ATHe TH
B 3 /1/
ThH - T™
B« —5—
and we restrict ourselves in the cosideration to the small values of the orbital momentum f (0 or 1)

By making use of the relations /2/ and /7/ we write the equations /6/ in the fcllowing form:



o J/‘
Re T°(3%2) - ip ]‘": (":) o /_1 / B LT by - TG, 2] —LL)? /“’J
$ Al 2s) ~ g2 /8a/

| I [.?,T 2 « T, z.)] Q(‘ n) }

zl.(# l;) - QL

(/o T‘&!) T/xza
L : J 4y /8b/

T4(g 7»-T (iz) 89 .
Re ( 2) = X-9 K(x) * (r f (¥,24 ~ - gt /([(("1‘]
, o
) w(wa 4+ = [T %3~ T 2] kg b %),
7 fleay - g2 Klhsm)
where pi()(,!i) = */«L - 1’(_(’" 25,) , (i =4,4) and 24 and 2, are the cosines

of angles between & -mesons in the reactions I and II respectively,

By using the unitarity condition in the form:

(?) x“,( T(") (¢L} /9/

where W(¢‘] = VI?, and /7 ¢ s the X -F -scattering amplitude, we get from the Egs. /8/ the following

equation for partial waves of the process we are considering

- o T n: (=) X
Re T.(9* 7\«(,4) gz F (3% /10a/

P [ Ti). nt L) K@Y /10b/
Re T. (3 = i /M L0) 216 KOY s £ (5

where +! 3 4
T 1(‘)21.) + T l("/zt)] ?/
T.(99= + &j,/}. /{7"'[ . i (n2y)
5 E P / (",21) N ?1 > AxX +

P [ATH002) + TA030] 94, 14, 3,,)‘“}
+ ov frlx,2:) - 71 "
Oy A (LN TV VT
bilx,2q) - o;z- Y /z[l,tx,:u)]

h [T 2(3.) - T4 1)] K@Y 1 (%, 24) }
f 4 2) ~ g2 KLhkay] ?x
One of the most essential approx1mat10ns in obtaining Egs. /10/ is the fact that we restrict ourselves

+

only to two & -meson intermediate state in the unitarity condition /9/.
Egs. /10a/ and /10b/ together with Egs. /2%, /26/ from/4/ form an approximate system of equations for
the ®- K interaction (for the set ¢= 0.1 ). We suggest to carry out one subtraction in the Fq. /10a/. The

presence of the factor -f—ZT, provides the convergence of the integrals in the Eq. /10b/.
We shall seek first the solution of the equation /10b/.

If we assume that in the low energy region the solution for the first and second processes



% ( Q/V = 4{ ?«’j is written as a strict equality then the unique solution for the state T: [fy
is zero (identically) and the KK -pair production amplitude does not depend on the angle 2 , i.e. wehave
the isotropy in the KK ~distribution {in the c.m.s.).

However, the requirement that the solutions T% and TZ be equal strictly (in the low-energy region)
is too strong. It is more natural to assume that T Vo T,/"'. In this case the quantity Fz("l/ will be differ-
ent from zero, although it might appear rather small (in comparison with Re 72(19<md the integral term).

If F1(4Yis a small quantity, then, by omitting it, we get the Eq. /10b/ in the form

[ CTae) NI kst
0

We shall find first the solution of Eq. /11/, and then take into account the case ~ Fg (¢Y # ©

Ta (3Y * Ixwi) -ibt) o .
Let us introduce the notation ¥{(%Y = .-;_‘-%;, .Since My(&)= ~ ¢ ' Sin 54(‘1 then the equation

/11/ takes the form g
! Sin 1 (%)
yf(q,‘j = F/ Py Ver) ¢

/12/

Note that WQH decreases ~ 74‘,, at infinity. Let us introduce the function of the complex variable ‘f as

’ me—l‘ ‘(l‘) sl, 6 (l
%i(‘f) = _2“-/ - .fn L V6w /13/

follows

From where one can see that
VY - 204 (39 /14/

+

where % i denotes the limiting value of the function ii(ﬂon the upper edge of the cut. The problem
of finding the function %, (4) is solved by reducing it to the adge Riemann problem/7/: from /13/ it follows
that on the contour [ 2, ] there is the relation:

. 28,039 -
.fi (‘V’J: ) (04 (9 %1(‘;‘) | sy

We supplement the integration®contour up to the total real axis [~ee, +ee]) , by determining the phase shift
54(99 on the negative semi-axis [ ©,-e7 so that bs(¢4Y =0 for gtso.
Once the index of the problem is equal to zero, i.e. if

b, w)

—_
-_—

/16/

(it is obvious that in this case the XX -scattering phase shift equals zero at infinity), then there exists
only the trivial zero solution of the problem. However, if we shall demand that there exist the unique solution
of the problem within the accuracy up to the constant multiplier (but not a trivial one), then it is necessary to



demand, that the index of the problem /16/ be unit. Then‘the Frxr -scattering phase shift at infinity must

equal £ and P -phase shift must have at least one maximum. In this case the solution is of the form

Feipr a
where & is a certain constant defined from the comparison with the experiment
recg)
+
X ()= ¢ /18/
h 2o . . . ]
| / X+iud eluﬁm] 4
C (%) = T n| Xl = /19/
~co
From /14/, /17/—/19/ we find that 0o
. . £ 54,(,«.) J
l//‘(¢4= 2(0 aeLp ["[1(9'1.'} + 5 ,(..7'1.‘(‘ 720/
—0Ov
Since 51(“) = ¥ then in order that the integral convergence in /20/ it is necessary _t_o make one sub-
traction.

The account of the negative cut (as well as the highest states in the unitarity condition) leads to the ap-

- pearence of the inhomogeneous term F, 1 (9*) . In this case the relation /14- will take the form

Visy = 2id(sY + AL | /21/

K sY
and the relation /15/ will be of the form:

$. (39 = exp (2is.0)F, + %% esp (i6,69) Sin b (39 /2/

pACY) . .
We assume that in the relation /22/ the free term of the Riemann problem 'ﬁij "‘P(‘sg“ﬂ) $in Sg,(ﬁscrtisfies
the Hélder condition. If, as before, the index of the Riemann problem is believed to be equal to { 1 ),
the general solution of Eq. /10b/ has the form:

$'(9)=X () [ATQ + @‘?Z;Ty ] /23/

then

where

A*’ («g) = 1.'-1 7”5(1‘) exp (i8400)) SinSotx) ”

Ke) - X ($)(<-4)
However, if the inhomogeneous term is present the requirement of the existen

is also satsfied in the case when the index of the problem is zero. Then L (‘)= 5,-’-_“ x—4 dy |, the quantity

11911 should be assumed to be equal to zero, and the unique solution of Eq. /10b/ is written in the form (see
formulae /8/, /21/, /23/)

g of a non-zero solution
7 (-}



K

E(sY
IS + Y 1+
yf(q’} LXHAGY + - sy /24/
Before to proceed to the solution of Eq. /10a/ it is necessary to make one subtraction, After this subtrac-
tion has been done at the point 4," the equation /10a/ is written in the form

qt-¢t X Toi) n’e) 1,1
Re'[;(:;ljz 9 o P W (%) (143')(14‘)0“ v P (333 %/

where

E(34542) = Re To(a) + T (39 - B (s

The Eq. /25/ coincides with Eq. /10b/ up to the change

T, T . P Fo(%3Y
~q% K(x) X~ gt
k(‘) % , /26/
(,(, ° l[o(l-) .
By supposing as earlier that the free term of the Riemann problem rary fzn[, x) satis-

fies the H3lder condition, and the index of the problem is equal to (+1), then analogically to the foredoing

-solution of the problem for the P -wave, we obtain a general solution of the Riemann problem in the form

(5L (1) [8(%) + o=

/21/
(g +out)*

where

XS (%) = exp [ *(9)]

r,@G) =5 7& [ ;‘~/{‘— exp (.zzs,(,,)];’—;

+o

+ P> (¥,¢2) e,(p(l.f.(n)-gz'h §o(x)
B (1) 1'.‘ X — inl' ) x°+(’() . (,(_..’)

- o

dx

L 2
The constant b’ is determined from the comparison with the experimental data.

If the index of the Riemann problem is equal to zero, then in /28/ we have to assume
5,
r Cf } — / )
.T‘

and the quantity "’b’! is assumed to be equal to zero. Then the unique solution of Eq. /25/ will be of the form

$°(4) = (%) 8*(9) 29/
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% 3/

/3

Let us note that even if the solutions T and T7* are equal strictly, the free term of Eq. /25/ turns out
to be different from zero. This leads to the fact that we obtain the unique solution, non-trivial for the S-wave
too in the case when the index of the Riemann problem equals zero.

Conclusion

Eq. /10a/ and /10b/ contain the following essential approximations: R
a) the consideration of the problem is restricted only to the lowest waves (8 and p )*
b) the unitarity condition /11/ does not take into account the contribution of highest states. Strictly
speaking, the unitarity condition /11/ can be used only in the region 0 £ ¢t ¢ 3.t '

In the low-energy region under consideration the approximation b) will not introduce, apparently, large er-
rors. The approximation a) is more rough ( see footnote™). The solutions /20/ and /24/ for the amplitude T¢*
and analogically /27/ and /29/ for the amplitude T.‘, are very different, which is connected with the beha-
viour of the X -scattering phase shift at infinity. The choice of the index of the problem was related to the
requirementof the existence and uniqueness of the solution . Since the inhomogeneous term in Eq. /10/ exists,
in principle, it is not obligatory to require that the index of the problem be equal to (¢1).

However, in the case, when the index of the problem is equal to unit the X -scattering phase shift has -«
at least oneresonance and the solution has one indefinite constant; when the index is zero, there are no direct
indications that the resonance exist, although the possibility of its existence is not denied. e

At present there are indications that the resonance in the P -phase shift of the X & -scattering
exists/9/. As it follows from the consideration we have been undertaken the presence of such a resonance
does not contradict the conditions of the existence and uniqueness of our problem.

We can also obtain other solutions depending on various behaviour of the XX -scattering phase shift at
infinity. These solutions will contain a larger number of indefinite constants when the index of the problem is
positive, or require additional conditions to be imposed when the index is negative. However, we have no rea-
son to choose the values of the index different from zero.

In conclusion we express our deep gratitude to professor H.T.Tzu, A.V.Efremov and L.D.Soloviev for

useful discussions.

The method for obtaining Integral equations for partial waves by using the ortogonality properties of the Legendre
polynomials leads to large errora in the unphysioal angle region ({€es8f> 4 ).Therefore, to obtain more strict quantita-
tive results it {s advisable to use the amplitude of the R+X-» k+ T process at the point Coil,_i/ﬁl.
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