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Summary 

An universal inequality is obtained to determine the 
minimum number of partial waves participating in a reac­
tion with more than two particles in the final state. 

1. Introduction 

The minimum number of partiafwaves participating in the high energy collisions L,..;., has been 

discussed by several authors. Rarita and Schwed/11 showed- a onethod to determine L""i"' for elastic 

scattering by using the total interaction cross section. Recently, Grishin and OgievetskJ2/ proved an ine­

quality, which is very effective to determine the minimum number of partial waves in two body collisions 

once the total elastic cross section and the differential cross section at some angles are known. 

As is well known in the high energy physics that most of the high energy collision processes ate mul­

tiple production processes with more than two particles in the final state. So a questi<?n rises, how to de­

termine the minimume number of partial waves in such collisions ? Such a question has its experimental 

significance, since L tn; tt is related to the minimum interaction radius. 

In the present paper, the inequality obtained by Grishin and Ogievetski for two par tide reactions is 

--4 generalized to cases with more than two particles in the final states. In relates the angular distribution of 

one of the final particles, the total partied cross section with L tnit~ , the minimum number of partial 

waves paticipating the reaction. 

In section 2, the choise of independent variables for the description of the three particles final states 

is discussed in detail. 

In section 3 the inequality is obtained for the spinless particle cases 0 + o ~ 0 + 0 + 0 

In section 4 it is shown that the inequality obtained in sec. 3 can be extended to the cases 

0 + X ~ 0 + 0 + f ' f -t f -+ 0 + f + f" and f 1" f - 0 -t- 0 -t- 0 
without any change. 

In sec. 5 the inequality is generdlized to the ccrse with "h, particles in the final state. 

Js sec. 6 some remarks of the application of the inequality are made. 

In the appendix, a proof is given to show that the phase volume integral can be separated in terms of a 

suitable choosen set of independent variables. This result is used in the proof of the inequality. 
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D. Kinematics or the 3 -Particles System 

For the description of the states of a 3-particles system, we introduce the following nine qtlllntities 

instead of the three morn:!tum .;;: , ~ , ;;; of the three particles. The first three are the moment• 

tum of the mass center , • 1\ -t -Jt -t ~ • At the center of mass system of the three particles ( later 

on we will call it as the 3 - C system for simplicity ) fP - 0. Next, we choose a vector 
":"+ .... -1'1c (11'acl, .n.JC. ) , the momentum of one oi the particles in the 3-C. system, which can be in-

dentified experimentally ( for instance, the recoil nucleon, the J< - meson or the hyperon ). In the system 

where the rest two particles as a whole are at rest ( later on, we wiT! call it as the. 2- C. system ), -these two particles move in opposite direction, then the last three variables can be chosen as n.K 
the direction of the relative momentum of these two particles in the 2- C. System and m.2C. 1 the 

energy of these two particles in the 2 - C system. 

Such a choice_ of independent variables has two advantages. First, the phase volume integration can be 

separated into two parts 

.... .... .... 
JJJ dp1 ttp1 fl.~ I ( ~"t-;, -t;,- ~) $ (E,t-E~ "tEJ- Ei) = 

. I Ef Ez E3 ro a • 

( 1 ) 

J "' J - J - % l. "' ct 1llu d .llsc tlJlzc <:r ( I)RJc' ?'llac) 
y--

Where m 3C represents the total energy Of the three particles in the 3 - C. System. ~ ( m:c 
1 
m!c) 

is a function independent on the angles. The integration over angles and over energy is then separated. 

The proof of ( 1 ) can be found in the appendix. 

Second, starting from the paper of Chou andShirokov/3/, it can be shown that the total angular momen­

tum of the three particles can be obtained by suming ~zc. , the relative angular momentum of the two 

particles in the 2 - C system with 1 3, , the relative angular momentum of the distinguished 

particle and the rest two particles as a whole in the 3 - C system by the usual sum rule. 

m. Interaction or Case 0-to-o+o-+o 

Consider first the simplest case where all particles are spinless. When the variables was chosen as 

pointed out in sec. 2, the general form of the Feynmann amplitude of the process is 

I= • L P! .... ,t,c 
LMI l L oc JC 
..- ... P1c 

Y * -+ ( fu • Jl•c; I.Jc' ~... Y. (A l Y ( Jl ) 
LA4 ( .Jl4) L,_.. .la.c,}'u. ac .tfc,l'-•c lc: ( 2 ) 

~=--==---------·---·-----=--~------~--------- ~ 
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where R ~c' .eJC. is a function depend on L , the total angular momentum of the three particles sys­

tem, ~z.c. and .1.
3

, , the angular momentum mentioned at the end of sec. 2. The arguments of 

R1L .... t,c are invariants. C. t ••. ,...'-4, R,. · ~"'• is the usual Clebsch-Gordan coefficient. 
L,M -y.t is the spherical harmonic function. .n...4 is the direction of the incident particle in the 3 - C. ,,.. 

system. 

Choosing the z axis along the direction A:c. , then ( 2 ) becomes 

F= .L. 
lz.c, M; J.,., o 

"'(_L.,M 

Then, the angular distribution of the identified particle is 

and the cross section for this channel (total partial cross section ) is 

( 3 ) 

( 5) 

If it is assumed that the summation over L in expressions ( 4 ) and ( 5 ) can be confined by a finite 

number of partial waves L . then using the Cauchy's inequality t Ia; I.; 12 ~ ~ la,l
2 
~II.; 1~ from 

h'lll'l) I lo I I . 

( 4 ) and ( 5 ) we obtain 

= 21..+·1 

47T 

( 6 ) 



l 

=--! 

=i 
~ 

'I 
) 

6 

Therefore, the inequality required is 

~ 4H~{~' (L~.+t). 
cr3 

·( 7) 

It is to be pointed out that after the summation over M is carried out, the right side of ( 6 ) is 

independent of 8 . This differs from the two particle case, where has no summation over M , and 

then the right side of the inequality does depend on 8 /2/. .. 
IV • Interaction of the Case o-t:t-o+o+f 

Consider the case O+i---') o+o-tf the Feynmann amplitude for this process is 

J' LL' M 

R.fzc,lK l:M-~;t,. l,c,JfJc;lac,Jfac CL,M-•,"t,ct.. Y • (Ji.) • 
:TLJ: c 1M c. ... , M-· ' "' L, "' , ( 8 ) F = L. 

fac.lac14ac/"Jc 

\ <~&c) YD ci'u) 
ac,,...c -te•f'Jc 

where J is the total angular momentum of the three particles system in the 3 -C. system, Lv 

and L' _ are the total orbital angular :nomentum of the initial and final states in the 3 - G system 

respectively, g(. and (3 are the spin orientation of the spin particle in the initial and the final 

state, respectively, the .::>ther notations are the same as in sec. 3. 

1\s in the above section, we choose the Z - axis along the direction -.n.. Jc. 1 so we have 

F= L .tlc,lJC L', M-J'I; l ,(& £JC, 0; lac 1 M-(J l, ""-"'; t. do 

G:T,M 

JLL'M 
R,.LL cJ',M c.L',M-fJ 

lu ,tJC 

~ . ....., 
· ::~C.!. Y cJl) YL C.JZ..:) 

4 "11' .t,., • "'1-f' •c • M 

the angular distribution of the identified particle is 

<T ( e) = L J G- ( m:, I ')n :e) d m:c d A:c \ F \
1 

= 
d..(j 

( 9 ) 
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the total partial cross section is 

or 

. 4TT cr(e> 
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JT!Jc+f y .. (8) 12 
"""' L,M 

( lO) 

( 12 ) 

( 13 ) 

Therefore, the inequality required is just the same as in the spinless case. Moreover, it can easily be 

shown in a similar way that the result for the cases !_ ~ i __.. 0 + 0 + o , 0 + i - t + i -t f. 
1 o -to- i: -t 1:-+ o is also the same· us m the spinless case. 

V . Interaction with l'\. Particles in the Final state 

As an example, we consider first the case 

the momentum of the mass center of the 

, the variables for such 

rt. particles. In the case can be chosen as follows:.._~ 
center of mass system of the n: 
- .,..., -+ 

~ 

particles ( l1. -c. syste'll ) , = o • Next, we choose 

'f'u. ( I f'Jr.l , .41, ) , the momentu'll of the identified particle fro:n the n oarticles in the 3- c. 
syste'll. In the system where the rest l'\.-1 particles as a whole are at rest (the ('n.-t)-G system), 

the n.ext variables can be chosen as m,..,_,,t. the total energy of these l'l-1 particles in the 
_, -

( 1l ;- q- c. system and 11. ,..,_ t) c , the unit vector along the direction of J'l,,_, Jc ,the relative momentum of 

one of these l1-1 particles in the ( lt- t)- c system. Continuing such a consideration, we can 
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-choose the other independent variables as m( .fl. ... .,_&\ (. I '"·~) ( j -m'"'• .n'", 

The advantages of such a choice of independent variables are the same as mentioned in sec. 2, The 

phase space integration is now separated in the following form: 

J _,...... .... s -a P, · · · d fn !. :a. .. '- • • · :a. - ..... • • • = ~11l: Jm' ···Jm ~em~. ,mz,> d.ll.~cd.Jt~e J..fl .. c 
1 .. E j' zc .. '"J, ,.,_,,, I ····e,. 

( 14) 

G; is a function only depends on energies but not on angles. 
• 

Using the above mentioned set of independent variables the Feynmann amplitude for this process is 

F == L 
" l,M, LJc··· Lcn-o)c 

.t. ••• ~. ....... , e., .. 
R L, L ....... L,.,_I)C 

(. 
lze, f'ac; .t,., flu 

L 1c, M1c 

L,._ MJC; .t.,. P.,c. 
CL M•c ••• 

lzc ···.t"••l"•c···JAtoc 
..... . .. "'!,,._,,. t,, .. ,.,Mu,.,>c,.e ... ,r ... * ....,)Y ;; )··· y <1'( 15) 

.. c . y (Jl; ( zc l .u ~} 
L,M LM f.:u;J'-u n•r'l< 

where L and M are the total angular momentum of the l'L particles system in the n-c system 

and their Z. components respectively; .t;c and JA;c are the relative angular momentum with res!'~· 

pect to ~c in the <.-c system and their ~ components respectively; L,·c. and M;c are 

the total angular momentum and their z components in the i-c. system. 

-Choosing the Z axis along the .Q "" direction, then the angular distribution of the identified par-

ticle is 

J 1 l. L) Z . :1. - ...... 
cf""'(9)• IF=., I GtOn.,.,···, m&C dm._.··· Hn,.,.,,. d.lla.c -·· dltc .. -I)C 

and the total partial cross section is 

O"l'L= J <T)\.(9) d..ii 
) 

as in the above sections, using the Cauchy s inequiality, from ( 16 ) and () 7 ), we obtain 

41T 0"")\.(8") 

CT"n. 
-" (L.,.;.,-ti).t 

which is again just the same as that in the spinless case. 

( 16) 

( 17 ) 

( 18 ) 

-

' 
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For the general cases in which some of the particles are spin particles, it can he shown in a similar 

way that the result is also the same as in the spinless case. 

V 1. Discussion 

We have obtained an wtiversal inequality ( 18 ), which is useful to determine L ..,;" and for the high 

energy analysis. In order to use this inequality, it is necessary to measure the total partial cross section 

of a channel of reaction with definite number of particles in the final state and the angular distribution of 

an identified particle ( K - meson, hyperon, recoil nucleon or anti-baryon ) in the final state with respect 

to the incident direction in the center of mass system. 

Since the right side of ( 18) does not depend on 9 , the ineqUality ( 18) is in fact 

!f.JT [cr"ut>J-. :a. ( L ...,;., + f ) • 

It should he pointed out that if we choose the orientation of the ~ 

( 19 ) 

-axis on the direction .12 ; then 

between the angular distribution of an identified particle from the particles in the ;, - e system 

<r" cej> .. f JF>~I 1 f=r(m~.,,--· m:C> d'm~ --- <~m~: 

· dil ... ,r.. d..... ~~ 
&c Jltj•I)C Jt lj+I)C ••• oJtiiC 

( 20 ) 

and the total partial cross section there is an inequality 

( 21 ) 

From inequality ( 21 ) one can determine the minimum number of partial waves, participating in the 

subsystem J -c. . 

The authors are indebted to Chou Kuang Chao and V.I. Ogievetski for stimulating discussions • 

• 
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Appendix• 

The. phase volume integration for the 11,.. particles case is 

.... -
I = J J p, .•• Jp" 

.z" e, ... e,. 
..... -- ..... .... I ( ,, '~' P,. ...... · + P~ - P,· ) S ( e, .... e ... -t- .. • ....,ih- E; ) 

(A.l) can be written down in an obviously invariant form: ~ 

I= Jd .. , .... d''r,. Ht:-tmn···SCP;tll1:> S"Cr, ...... ·tr,.-r;). 

Introducing the following transformation 

p, .... l' ... • "ac 

P,-P&• 2 7&e 

then· ( A.2 ) becomes 

I = f J"-ltac d•fac cl"r• ... 4 4 r., 5 ( C ~·· "'f.~ t .... t~ot,1 ) S ( C ~ac- fae ) ... +t~ot: ) • 

· HrJa.+ "'a")··· scr,: t ""t!') s • c ~t..e +- P5 "' •.• t- P~- ,,. ) 

noticing that 

d'7:tc =- tJ'/,.~+1,.:. dTaco df,.~ dJtac. 

and we can carry out the integration ove.- d'?ac. in the 2-c system, where 
.,_.. 1. 

Ka.c. • - 1taco 

(kzc' ~at)"' - kzco faco 

then ( A.4) becomes 
.&. 

L .... L ...., L I.) I. ] 1. '1.:::; .!. I J4'n& J.il J., J",. ... rJ"r, [ 1- .l ~ .. ( I-........ . 
2 JJlae LC &C r1 'a. m:. 'l:JlL 

&c 

. s c .... ~ ... m~) S<r, .. t-.rr, ... ) ... s (p, .. ttrt:)&"(t.u1'PJ't"·'tf..,-P;) 

( A. 1 ) 

( A.2) 

( A.3) 

( A.4) 

( A.S) 

( A.6) 

(It 7) 

* After this work Is finished, Shlrokov M.I. kindly Informed us that a similar method of treating the phase space 
Integration was proposed before by Kopylov, (of. JETF, !i• 1091 ( 1960) ) 

L 

·'!;.-;::"" 

' 
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where 

( A.8) 

It is not difficult to see that m&~ is just the total energy of the two particles in the 2 ~ c system. 

Continuing the above procedure, putting 

"'-•·c. 't ~•"+ f = i Ci+t) C 

i.. -
I C. P;., = ( A.9) 

and integrating 

tegration 

in the <i+t )~c system finnally we obtain the phase volume in~ 

where 
..LJ\oh1- 2.. .lft'I.L 'h1.l. 
If ""' ic - ? tc + JIL (i-o)c-+ i 

4. j '= .z.. I 3, • •• 'J'l. 

-~ 
and 

Er em .. ~ ... 'm'-)::: (.J..)"'"' n'l'l. [1- z17l:,~ .. ,.t m,~ (1\1'1." ,.., .. ) .. ] t. 
t J .. C 2. L -t "' (i·I)C. : i 

i"'t m(. m.-. 

References 

1. W. Rarita and P. Schwed • Phys.Rev. ill• 271 (1958). 

2. V. Grishin and V. Ogievetski. Nucl.Phys. 1§, 516, (1960). 

3. Chou Kuang-chao and M.I. Shirokov. JETP 34, 1230 (1958). 

Received by Puhlisbi11• Deflart1fle11t 

011 February 21, 1961. 

( A.lO) 

( A.ll ) 

( A.l2) 


