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Summary

An universal inequality is obtained to determine the
minimum number of partial waves participating in a reac-
tion with more than two particles in the final state.

1. Introduction

The minimum number of partiuf(waves participating in the high energy collisions L min  has been
discussed by several authors. Rarita and Schwed”l” showed a method to determine | win for elastic
scattering by using the total interaction cross section. Recently, Grishin and Ogievetski/ 2/ proved an ine-
quality, which is very effective to determine the minimum number of partial waves in two body collisions

once the total elastic cross section and the differential cross section at some angles are known.

As is well known in the high energy physics that most of the high energy collision processes are mul-
tiple production processes with more than two particles in the final state. So a question rises, how to de-
termine the minimume number of partial waves in such collisions ? Such a question has its experimental

significance, since L min isrelated to the minimum interaction radius.

In the present paper, the inequality obtained by Grishin and Ogievetski for two particle reactions is
~* generalized to cases with more than two particles in the final states. In relates the angular distribution of
one of the final particles, the total partial cross section with | min the minimum number of partial

waves paticipating the reaction.

In section 2, the choise of independent variables for the description of the three particles final states
is discussed in detail.

In section 3 the inequality is obtained for the spinless particle cases O04+0 —> O+ O+ O

In section 4 it is shown that the inequality obtained in sec. 3 can be extended to the cases

1
o+1_’°+°+i,é+}1‘—’°+i+% and ‘_Z,Lf’zt_—’o*O-tO

without any change.
In sec. 5 the inequality is generdlized to the case with P, particles in the final state.
|
Ta sec. 6 some remarks of the application of the inequality are made.

In the appendix, a proof is given to show that the phase volume integral can be separated in terms of a

suitable choosen set of independent variables. This result is used in the proof of the inequality.



II. Kinematics of the 3 -Particles System

For the description of the states of a 3-particles system, we introduce the following nine quantities
instead of the three morne_rltum E , F; , E of the three particles. The first three are the moment~
tum of the mass center y - «'ﬁ + E 4 ;; . At the center of mass system of the three particles ( later
on we will call it asthe 3-C system for simplicity ) 9 s (). Next, we choose a vector

‘F;c ( l_ﬁcl , J-l’, ¢ ) , the momentum of one of the particles in the  3-¢ system, which can be in-
dentified experimentally ( for instance, the recoil nucleon, the K - meson or the hyperon ). In the system
where the rest two particles as a whole are at rest ( later on, we w1Tl call itasthe 2-¢ system ),
these two pcn'tlcles move in opposite direction, then the last three variables can be chosen as Il e
the direction of the relative momentum of these two particles in the 2-C  system and 9% 2c o the

energy of these two particles inthe 2-¢ = system.

Such a choice of independent variables has two advantages. First, the phase volume integration can be
separated into two parts
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where 0t ;. represents the total energy of the three particles in the 3-C  system. G (Mt m,.)
is a function independent on the angles. The integration over angles and over energy is then separated.

The proof of (1) can be found in the appendix.

Second, starting from the paper of Chou and Shirokov/3/, it can be shown that the total angular momen-
tum of the three particles can be obtained by suming .C“_ , the relative angular momentum of the two
particles in the 2-C system with ‘(,,_ , the relative angular momentum of the distinguished

particle and the rest two particles as a whole inthe 3 - C system by the usual sum rule.

. InteractionofCase O+ O —> O +0+ O

Consider first the simplest case where all particles are spinless. When the variables was chosen as

pointed out in sec. 2, the general form of the Feynmann amplitude of the process is

(L Y

helye C'u./‘-c; e, My Y =
Lie, Mac ™ ¢ 3¢, Pae (15.) (2)

Fe«X R,L' Y (n;)Cem

LM, 8, m
Hae Mye



be, 85

where R L is a function depend on L , the total anqular momentum of the three particles sys-

tem, ,(’,u and £, , the angular momentum mentioned at the end of sec. 2. The arguments of
llc. e ] < N
R‘L‘" B gre invariamts. G ol e /e is the usual Clebsch-Gordan coefficient.
Y, " is the spherical harmonic function. 7)_:. is the direction of the incident particle in the 3-C

’

system.

Choosingthe Z  axis along the direction _TL’“_ , then (2) becomes

lu llc l,_ M~‘J: o
Fe = RS fhar et he 2yt (7 (3)
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Then, the angular distribution of the identified particle is
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and the cross section for this channel (total partial cross section ) is

o= JooraR
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If it is assumed that the summation over L in expressions (4) and (5) canbe confined by a finite

number of partial waves then, using the Cauchy’s inequality )3 la;s; 1* & 'I 'a-"zf: Ib; §? from
1Y

Lm;h)

(4) and (5) we obtain
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Therefore, the inequality required is

Uyo(e)

2
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It is to be pointed out that after the summation over M is carried out, the right side of (6) is

. This differs from the two particle case, where has no summation over ™M, and

72/,

independent of 6
then the right side of the inequality does depend on @

IV . Interaction of the Case °"-"}.'—"°"'°'*i

Consider the case 0 + % — O+ o0 t é the Feynmann amplitude for this process is
y

Lot ym
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where J  is the total angular momentum of the three particles system inthe 3 -C  system, L.
m of the initial and final states in the 3-c¢ system

and L' . are the total orbital angular momentu
spin particle in the initial and the final

respectively, of and @ are the spin orientation of the

state, respectively, the  other notations are the same as in sec. 3.

. . -
As in the above section, we choose the Z - axis along the direction N, 15O we have

’
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the angular distribution of the identified particle is

T(e)= ¥ JG<m§c,m:¢)dmic da \F I
48
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the total partial cross section is
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Therefore, the inequality required is just the same as in the spinless case. Mareover, it can easily be
shown in a similar way that the result for the cases .i*.:x:_, 0+o+0, O+4—>++%4+% .

04+0— 5 +4+ 0 is also the same us in the spinless case.

V. Interaction with v\ Particles in the Final State

. n
—— e,
As an example, we consider first the case O+ 0 —> O+ O+---+ O , the variables for such-

case can be chosen as follows: '—(P. the momentum of the mass center of the WM particles. In the
center of mass system of the wn’ particles ( n-c system ) $= o . Next, we choose

‘f’-,: ( |?’;J ) J-l"g ) , the momentum of the identified particle from the W particles in the 3-c¢
system. In the system where the rest M-1 particles as a whole are at rest (the (m-1)-¢ system),
the mext variables can be chosen as ‘M (e the total energy of these M-1 particles in the
(n-4)-¢  system and .n.m -4y¢ , the unit vector along the direction of 73:“ ye the relative momentum of

one of these w-1 particles inthe (m-4)-¢ system. Continuing such a consideration, we can
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choose the other independent variables as m(n-nc. Dpaye . - m“' a,, .

The advantages of such a choice of independent variables are the same as mentioned in sec. 2v The

phase space integration is now separated in the following form:

jdpt dl’n \J.dm“dm’ l G(m:cl'.',mtc)jd;{lc d"-{it‘.“d'E:C ( 14)
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G ~ is a function only depends on energies but not on angles.

Using the above mentioned set of independent variables the Feynmann amplitude for this process is

Z Lae, ye, -, Re la.c, Mie, fu’ M Lye My, Z‘“ M
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where L and M are the total angular momentum of the M particles system in the n-¢ system
and their 2 components respectively; £;. and M;. are the relative angular momentum with res® "
pect to 'f:?.c inthe {-¢ systemand their Z  components respectively: L;e and Mye are

the total angular momentum and their 2  components in the i-c¢ system.

—-
Choosing the Z  axis along the £, direction, then the angular distribution of the identified par-

ticle is

(@)= [ IFul GO - T ) AT, A 4T - dPneire (16)

and the total partial cross section is

fan(e) d-ﬁ: - (17)

3
as in the above sections, using the Cauchy s inequiality, from ( 16 ) and (17 ), we obtain

4 on(e)
e —————

£ (L, +1)* (18)
Tn

~which is again just the same as that in the spinless case.



For the general cases in which some of the particles are spin particles, it can be shown in a similar

way that the result is also the same as in the spinless case.

VI Discussion

We have obtained an universal inequality (18 ), which is useful to determine L min and for the high
energy analysis. In order to use this inequality, it is necessary to measure the total partial cross section
of a channel of reaction witl{sdefinite number of particles in the final state and the angular distribution of

an identified particle ( K - meson, hyperon, recoil nucleon or anti-baryon ) in the final state with resp;ect

to the incident direction in the center of mass system.

Since the right sideof (18) doesnot dependon © , the inequality (18) is in fact

4w [6,00)] nan
.x

ey € (Lumin+4)% (19)

It should be pointed out that if we choose the orientation of the Z  axis on the direction -f-T. then
between the angular distribution of an identified particle from the particles in the { =€ system

(0= J IF 1*G(Mee -~ ML) dM. - dM .0
n '
- - - (20)

-
daL 42, IR e o 4,

and the total partial cross section there is an inequality
4n o, (8 i)
6.

[ gy +1 1% (21)

From inequality (21 ) one can determine the minimum number of partial waves, participating in the

subsystem  j.¢

The authors are indebted to Chou Kuang Chao and V.I. Ogievetski for stimulating discussions.
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Appendix*

The phase volume integration for the n particles case is

-
dP: .- d;:

1= 2"E.---E.l I(F:f-P:.’”.*-P:l--’:)s(El*E;‘f""’Eu‘Et') (A1)
(A.1) can be written down in an obviously invariant form: -
1= J‘“"- o d¥ S rmI) S (P em2) S (R4 tpy -0 ). (A2)

Introducing the following transformation

Pi+ Py = i,.c

R-Re 29, (A.3)

then' (A.2 ) becomes
s s 4 a, § i \ &
L= fd&“d foc 4705 d%p, ((3'*7u)*"f)s(‘33‘?uf+m:)' (A4)
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noticing that

L 4 = 4 I 2
d ?“ T2 ?z.cl"’ruo d 70 d 7:: J';?a.; (A5)
and we can carry out the integration over & 7‘ ¢ in the 2-¢ system, where
'S .
hxe = - ﬁuo (A.6)

(hzc‘ ?t() = - klco P2co
then ( A.4) becomes

= L 2 - et x 1y2 1%
1= zfdm,-‘dnu 4“‘&“”&---4"!’1["1’%:‘—‘*('%’3 ]z_
. S( z 2 a 2 ¥ e (A°7)

k&e"’ m:c) S(P; 'fm"‘)... £ Y (f«), fM: )S (h“-f Ps""’f»*".‘)

* After this work is finished, Shirokov M.IL. kindly informed uas that a similar method of treating the phase space
integration was proposed before by Kopylov, (cf. JETF; 39, 1091 (1960))



where

1 2 2 mremtr
‘I‘mu-qu"'%“ (AB)

It is not difficult to see that Mtse  is just the total energy of the two particles in the 2-€  system.
Continuing the above procedure, putting

Reet P, = %k

Civg) e
- - (A9)
kle Pl'q-‘ 2 7“.")6
and inteqrating df ? civye 1D the (¢r+¢)-¢ system finnally we obtain the phase volume in-
teqration
— - 2
I=f&(m:°. m:e) d"lgc"'anne dm:e --- d mtn-nc ( A.10)
wher e .
1 2 : 2
n m‘ = .l m Pet ¢+ Ml‘
4 ic ?:c + 4 )2— i 2.3..n (AL}
S 5 mlc = Ml
and
2 2 n-i iy m"’ 1+ s i i
G (MY mEY s (F) N [1- 2 Rewet ™ (Mhne =iy 1 (A12)
H m:.‘ —Le ) .
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