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Abstract 

It has been shown that the.ory of the neutral vector field 
with the non-zero rest mass may be formulated in a gauge-invariant 
form without introducing auxiliary fields. _The gauge invarian· 
ce in such a theory has a trivial physical meaning: the zero 
spin quanta described by a lour-vector A,. interact with 
nothing. f)nly the quanta with spin 1 interact. 

1. Introduction 

There is a widespread opinionll-10/ that in contrast to. electrodynamics the theory of the neutral vec­

tor field A t' ~) with the non-zero rest mass cannot be formulated in a gauge invariant form without resort­

ing to auxiliary fields. This is considered as a serious obstacle in the recent attempts to draw an analogy 

between the baryonic and electric charges or between the hypercharge and electric charge by introducing the 

corresponding vector fields (Lee and Yang, Sakurai and others/5•6•7•9•101· 

In the usual formulation of the theory of a neutral vector field the equation 

( 1 ) 

-is used (see, e.g.,/11,12/ ). It is also equivalent to the equation 

( 2 ) 

with a supplementary condition 

( 3 ) 

Neither Eq. (1), nor Eq.(2) with the supplementary condition (3) are gauge-invariant. 

A necessity in the supplementary condition (3) is usually explained by a desire to eliminate spin 0 

and to quarantee the positive definiteness of the energy. 

Note, that at the cost of the introduction of a certain auxiliary scalar field B~) besides th~ four-

.vector f>... r ~) , Stueckelberg /3/ succeeded in constructing the gauge invariant formalism of the vector field 

with a supplementary condition/1,4,8,11/, However, the meaning of the gauge invariance in such a theory is 

considerably veiled. 

It will be shown below that the theory of the neutral vector field with the non-zero rest mass may be for-
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mulated in a gauge-invariant form without resorting to any auxiliary fields. To do this, it is necessary to give 

up a supplementary condition at all. In the theory under consideration A}' (,c) obeys only the gauge ·invariant 

equatlon (2) (§ 2). it turns out that only a part of Ar(x) with spin 0 is subject to the gau?e transfor­

mations.From the physical point of view the gauge invariance implies here that the zero spin quanta of the 

vector field do not interact with other fields and with. each other. ( § 3 ). Therefore, the supplementary 

condition turns out to be superfluous for the elimination of zero spin. Nor is it necessary for the energy to 

be positively definite. (§3 ). Such a theory is wholly equivalent to the conventional theory of a neutral mas­

sive vector field based on Eqs. ( 1 ), or ( 2 ), ( 3 ). ( § 4 ). 

~ 

It may be said that in the case under consideration the gauge invariance plays the same role as the 

supplementary conditions do in the theory of higher spins. In contrast to usual supplementary conditions 

the gauge invariance does not exclude the undesirable spin quanta, but makes it harmless. 

2. Basic Equations 

The Lagrangian density describing the neutral vector field Ar 
't' * is chosen, as is done very often,/12/ to be 

interacting with the spinor field 

-' r'1-) = _ .!__ ~ af\v - m'- f\ (\ + \ A_ - ~ (" ~~ + M\'t' 
.,(,.~ t. 'llx.r ')X,. i. r r Jt' t' r o r lJ 

/ jr: ia \V )r'f /. 
The Lagrangian and the equations of motion which follow from it 

(o -m9..)Ar =- ~r 

6r~lC.r + M) ~ = i~ "r \f f\t' 

as well as equal-time ( x 0 = 'j-o ) commutation relations analogous to electrodynamic ohes** 

t ~(_){~) '\'(~)j =0 

[f\r~\f\'Vl~~] =0 

\. '~' 0<\ ~ c~) 1 = "'(it~ ct-·~n 

[At'lx),~~ (~)] ==<ti~v 'b (x-lJ) 

( 4 ) 

"1-o-

( 5 ) 

( 6 )_ 

( 7) 

* Similarly one can describe the Interaction with several fields, as well as the Interaction of type one due to the 
anomalous magnetic moment. 

** The equal-time commutation relations may be chosen In this form since the supplementary condition on the field 
operators 1\ !" Is not Imposed. 

,;, 
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( 7) 

are invariant* with respect to the gauge transfoJ,"mations 

( 8) 

~ ~)= f\;~) + ~1\(x) 
r r oxr ( 9) 

with an arbitrary f\ (x.) satisfying the equation 

L (o-m'")J\ = 0. 
'lllr 

( lO) 

So, the gauge invariance takes place far rn:/:0 just as it holds for m=O in ( 4 ), ( 5 ), and ( lO) {quan-

tum electrodynamics ). 

Note, that in contrast to/5,6, 7,9/ , where A(')(.') were assumed to be quite arbitrary, in the transforma­

tions ( 8 ), ( 9) /\(-1..) are restricted here by condition ( lO ). The restriction of /\~) take place also 

in the quantum electrodynamics in contrast to the classical one. 

From the gauge invariance of the Lagrangian or the equation follows the conservation law** 

This equality must be fulfilled for any 1\(x.) satisfying Eq. (10 ). In particular, for 

get 

'djr = 0 
1 y.t' 

what is the law of current conservation. 

By differentiating ( 5 ) and taking into account ( 12 ), we obtain 
!P 

lo -mt.\oAr = 0 
~ J •')(.r 

which we shall be in need of farther. 

{11) 

f\ = const we 

( 12 ) 

( 13 ). 

* The Lagrangian density ( 4 ) Is Invariant up to an unessential divergence, (see Appendix I ). 

** The derivation of this conservation law and the discussion of the operator of the transformation of the state 

vectors see In Appendix I. 

-
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3. Spin 0 QUanta do not Interact 

The four-vector f\t'{y.) is used in order to describe particles with spin 1. In the framework qf a homo­

geneous Lerentz group there are no quantities describing only spin 1. In consistence with this, Ar ~) 
describes the quanta with spin 0, besides the quanta with spin 1: A. r ~) may be decomposed into 

two parts 

A -fA. -~~--of\..,\ + _!__ l__ 'dA., 
t" - \; t' m'- '\~ '0 ~~ ) m2. oJ'.r a~"" 

where the first part 

,.., i 0 -ot\.., 
t'\t'- mi.oXt' oXv 

describes the quanta with spin 1, while the second one 

1. d 0~)/_ 
Wl!.o"r ox., 

( 14) 

( 15 ) 

( 16) 

- the zero spin quanta. This can be shown by means of the invariant operator of the square of the spin 

momentum for the field f\ t' ~) ( see Appendix II ): 

)t. ) (r1
) t'" = 2.lb rv D- oX~Y.y 

( 17) 

with the eigenvalues &~+l)O for spin & • Indeed, by \.\Sing Eq. (13 ), it is easy to verify that 

lf\v (f\,- ~.~}~~~ = 9. oQ\ - ~. ~.,. ~~~~ 

rr") 1.' ~-o \: r" Wit '))l.'i o)C." - . 

Naturally, that the same quanta of zero spin are described by the scalar 
oA.v 
ll "'" 

itself. 

( 18 ) 

( 19) 

It should be emphasized that under condition (10) the gauge invariance ( 9) changes only the 

part of f\ t' with spin 0 

.1.. L 1& _ 2:... l-. o~w +of\ 
mt. ~~t' ~X\1 - mt. o~\' 0~\1 oXr 

( 20 ) 

~---

~ . 



while the part with spin I remains unaltered 
I 

(\ 1 ~ D () ~v _ (\ 
t\t'- h'ti. oX.t' o Xv - t'-
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( 21 ) 

If we wish to consider the quanta with spin 1 orrlY,it would seem necessary to eliminate the quanta 
with zero spin. 

Our st~ement is that no speci~l measures (for instance, the imposition of the supplementary condition) 

should be taken in the case of non-zero rest mass of the vector field. It follows from the gauge-invariant 

field equations (5) and (6) that the quanta with spin 0 do not interact with other fields and with each other: 

the part of A~ describing them obeys the free equation 

( 0 - t.\ .!_ }__ 
0 

"" ::. 0 ~ \'\'\ ) tn'- ox.t' ox." ( 22) 

(a trivial consequence of Eq. (10) ). 

Hence, the part of At' with spin I obeys the equation with interaction (5) 

( 23) 

Thus, the quanta with spin 0 do not affect the physical aspect of the problem: if a certain 

assembly of these quanta is present in the initial state, then the same one will be in the 

finite state • Otherwise, the matrix element- of the S-matrix is zero. 

This statement may be formulated in terms of the conservation laws. The conservation laws of the total 
P <.o) M(.o) ~ 'dfl\y 

four-momentum t' and of the angular momentum t'V of the scalar field tn 
0 
~v follow 

from free equation ( 13 ). Moreover, from this equation follows the conservation law of the number of 

quanta with every value of the momenta. Thereby, the S-matrix is diagonal with respect to all the quantum 
numbers of the spin 0 quanta. 

The imposition of the supplementary condition of the form 

( 24) 

or 

( 25) 

* This oondltlon fixes the gauge In this theory and signifies the absenoe of the spin 0 quanta In the physloal 
statea ~ 
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is superfluous for the elimination of spin 0, since it concerns only that part of Ar-l~ which desqibes 

the free zero spin quanta interacting with nothing. 

One more reason, sometimes the main one/1,2/ for imposing condition (24) is that otherwise the ope­

rator of the total energy a is not positive-definte.However, the operator of the energy Po(.o) of al­

ways free quanta with spin 0 is conserved. Therefore, the operator* 

p 'P\.'1'~ = P. - p (.o) 
0 .. 0 

(26) 

-4 

may be taken as the physical operator of the energy. This operator is conserved, it is gauge-invariant and 

its spectrum is positive-definite. Such a subtraction might not essentially have been done. Then the energy 

would have been counted off not from zero but from a certain negative level dependent on the gauge. Thus, 

from this point of view there is no necessity in supplementary condition (24 ) either • 

4. The Equivalence with the Conventional Theory with 

the supplementary condition 

Although the scalar field ~ ~~ turned out to be free, it is not yet eliminated from Dirac equation 

( 6 ). Let us now decompose the operator "' multiplicatively into the gctuge dependent and gauge in-
"t 

dependent parts 

\t'tx~=- Q.~f [i~ ~ ;~1 'f~) ( 27) 

where 

'Jl~) = L~f t-i~ ~ .. ;~1 ~~) (28) 

is the gauge independent** part of the ~ . Then in terms ot the variables i the Lagrangian ( 4 ) 

and Dirac equation ( 6) are written as 

i..C:t-)- -l ""'bf,..v o~ m._ ft... k ~- ( l 1\ l•"' t...t'"~ ~ -C '") \~ 
- - i. 11'1lr 11~r - T r "r + ~ "'t'\'f n'" + '"'r 'i J- 'f ~r )~r + l¥Y~ 

(, o lA\ i1.. {. 1\ l•) 1\ (•) :\ 
('r)~r + 'v'J"~ = 11. "" \..'i t\r + 1"'\r ~) 

P
pbys. 

* An explicit form of the operator 0 
lor the free field 1\t" see In Appendix III. 

** Up to the constant phase factor: after the transformation ( 8 ), ( 9 ), ( 10 ). 

'f1 = t.Y.{I \:.- ~(p-"''-)/\1": U~l- ~CO"'-~}! 

----

( 29) 

( 30) 

up 

•• 
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where 

( 31 ) 

Note further, that the Lagrangian density ( 29) may be put as 

.t <.x) = _ !..p~) F.(1) _ mt. f\(1) ~·) + .!.. fl. .:!.. aAv').t.+ m'L r t dA~+ 
ft rv rv 4i. I'" t"' 1. \Jl~r m rJ'I.v-) ~ \...m o"'.~} ( 

32
) 

+ it \:f '6 t' (~A~ + f\ ~1 'j) - 'f ( "\ r ~ "r + M) 'f 
up to the four-dimensional divergence. Here 

( 33 ) 

This Lagrangian corresponds to the conventional theor/17 I of the interaction of the spinor 'f 
vector /\~ fields, i.e., to the theory with the supplementary condition 

and the 

') f\(1) 
~-+t'=--=0. 
'() )( t' 

i DA.v 
t3esides, Lagrangian (32) describes the free scalar field m 0 'l.v 

( 34) 

1\ {1) 
The commutation relations for the fields i and t\t' are the same as in the conventional vector 

theory with the supplementary condition* . At the same time the interacting fields 'f and f\~1 

commute with the scalar field ~ ;~: and with all its derivatives. Therefore, the scalar field ~ ~~~ 
is dynamically quite independent. Thus, the theory under consideration is completely equivalent to the 

conventional theory of the neutral vector field with the supplementary condition. The equivalence of both 

theories may be established in another manner, by means of the unitary Dyson transformation/18,11/, which 

also •switch of£11 the vector interaction of the scalar field. · 

Let 'us emphasize that the imposition of the supplementary condition does not only give the non-gauge 

invariant form to. the theory, but also causes some other troubles. For instance, the use of the propagators 
"" corresponding to such a theory in the perturbation theory makes the renormalizability not quite evident 

(see/12/, page 343 ). 

* They may be obtained from the commutation relations (1) and the equations of motion (II), (tl). 
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5. Conclusion 

Let us rmke a renmk on the rmss renonmlizatlon. Onlv that part of At" is subject to the ga~ge trans­

formations which describes the quanta with spin 0. Therefore, only for these quanta one can expect 

that their mass must not be renormalized. Indeed, this is so, since they interact with nothing. As for the 

quanta with spin 1, their mass is.,naturally, renormalized owing to the interaction. With account of the mass 

remormalization of the quanta with spin 1, Eq. (5) may be, e.g., put as 

(o-w.'-) J\ =- i _ ~ rn t. r A _ _!_ ~ 4AoJ\ 
r J r ~ r tnt. li'T o "'"-J 

( 35) 

Finally, note, that in the considered theory of the massive vector field the Green functions obey the 

same gauge transformation laws as in the electrodynamics/19-23/. These laws connect the expectation 

values of the products of operators written in two gauges. It is implied the ~xpectation values are taken 

for the same state which is the vacuum in both gauges for the spin 1 quanta , but only from the point of 

view of one of them this state does not contain the spin 0 quanta. (Appendix 1). From the above-men-

tioned laws just as in electrodynamics follow the Ward's identities. 

The authors express their deep gratitude to M.A. t-.1arkov and B.N. Valuev for general remarks, 

A.A.Logunov and M.L Shirokov for the discussion of the questions concerning the operator of the square "' 

of the spin momentum. The authors are especially grateful to L.G. Zastavenko, J .A. Smorodinski and 

Chou Huang-chao for stimulating discussions of many points of the paper. 
~ 

Appendix I 

nte Conservation Law Followtnr from the Gauge lnvartance 

The Lagrangian density ( 4) after the gauge transformation ( 8 ), ( 9 ) with account of condition (10) 

differs from the original one by the divergence 

I () (A. bt..(\ ~ i. ') (JI\ el-f\ \ 
-i. (,c.) =;!_(?c.) - o~ \!: v liXra~;J- "i:" ~"r \_"aY-v ox..o)t~) ( 1.1 ) 

or infinitesimally 

') (A '")t.(\ ) 
<l) -f_ = - o'l<~ \. t\v ),y.r))l.\1 ( 1.2 ) 

Calculating the variation ;l_ ~) in the usual manner by using the Euler equations we are lead to the con­

servation law ( 11 ) 

--------------------
----- --------------

' 
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( 1.3) 

Any functions f\(y.) restricted only by Eq .. (10) may be substituted into this conservation law. There­

fore, 1 1.3 ) is the continuum of the conservation laws in consistence with the continium of the parame­
ters of the gauge group. 

One can easily verify that Eq.j 1.3 ) is equivalent to Eq. (S). 

Note, that the conservation law ( 1.3 ) may be also written as 

( 1.4 ) 

The conserving operator in the quantum field theory is the infinitesimal operator of the state vectors 

transformation which connects the eigen vectors with the identical eigenvalues in two different frames of 
reference, gauges etc. In passing from one gauge to another one such a transformation is 

( 1.5) 

vvhere 

( 1.6) 

( l. 7) 

Now the law of the gauge transformations of the field operators ( 8 ) and ( 9 ) may be written also 

( 1.8) 

( 1.9) 

what can be easily verified by means of the commutation relations ( 7 ). 
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From the point of view of different gauges the same state posses different assemblies of non-interact­

ing spin 0 quanta. 

We demonstrate this by the transformation of the vaccum. Here we restrict ourselves to f<(x) satisfy-

ing to 

what allows to represent 

~-m~i\(~) = 0 

1\ (x) in the form 

( 1.10 ) 

_. 

f\(x)= ( Jy [~l"f)~if"' + X'(f)i~rxl 
) ~Q.1t)!t :lpo j 

/ro=-~"f .. +w1-/ ( 1.11) 

Besides, owing to free equation (13 ) it is possible to write down '"""'b A.r as 
'l"r 

) ~r : i { ~ r «-rtr.4~.:tv" -~"" e-i.px1 I Po=~r+~l( 1.12) 
~ "-l' ) ~~~Y"ifo L 

where ClrPr and 
+ a.rfr are the creation and annihilation operators* of the spin 0 quanta with the 

commutation relations ** 

[ o..rlf~)r~", Cl.~l'ft1~tv1 = -mt. ~(fcft) ( uYr 

consistent with ( 7 ) .. 

Substituting ( 1.11 ) and ( 1.12 ) into ( 1. 7 ) , we get 

1f = "-'f ~-i \Ai l"-rfr}{(f)+.,_+rPr-}..(y)11. ( 1.14 ) 

If we determine the vacua in two different gauges according to *** 

Cl;fr "io=O a...'"' '1 .• ' f' fr ~o=-0 ( 1.15) 

then the transformation 1J 
I 

( 1.14)· connecting 'to and "'io >·yields 

* See Appendix III. 

* * We may consider thiiJil as a consequence of more 11eneral commutation relations 

[ A-.-rr~), Cllt(r .. n = s"" 'b<.v;-v~.) 
which are meanin11ful only in the free case. 

'~~~** We do not write the conditions that the spin 
invariant. 

I 

1 quanta are absent In ".1!0 and 'lio . These conditione are 11au11e 

~ 

I 
~ 

f 

.t 

' 
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gauge 

13 

( 1.16) 

I 
The latter expression shows the expansion of the vacuum of the new gauge \io over the old states which 

are created of the old creation operators Cl.rPr from the old vacuum lt0 

Thus, the vacuum from the point of view of one gauge is not a vacuum from the point of view of another. 

This is understandable since condition ( 1.15 ) as well as a more general condition ( 25 ) are not 

gauge-invariant for they are the conditions which fix the gauge. 

Appendix D. 

The Operator of the Square of the Spin Momentum for the Field f\ t' . 

A general definition has been given for the operator of the square of the spin momentum (one of the 

invariants of an inhomogeneous Lorentz group ) for arbitrary many-component functions transforming 

according to the representations of the inhomogeneous of the Lorentz grouJl3-16/, This definition is/16/ 

( 11. 1) 

where 

( 11. 2) 

( 11.3 ) 

are the infinitesimal operators of the translation and 4-rotation for the given function. The matrices S.f45 

are the infinitesimal operators of a rotation of its components. 

Since for the vector function 

ls96)t'"=-\ (\r,t'~Gv-b!"~'rl ( 11.4) 

then the substitution ( 11.2 ), ( 11.3) and ( 11.4) in (11.1) gives just expression ( 17) 

.. ~ ---..,.'L ) rTr---" Q 0 a (11.5) 
\! J~v = 4 E;t'" - o~o)(.v ' 
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The law of the vector function A. ... lx) transformation, is independent if 1\1'~) obeys some e~uation or 

not. Therefore, the same is valid for the infinitesimal operators p,._ and l'Yly6 and the operat9r of the 

square of the spin momentum ( 11.1 ) or ( 11. 5 ) constructed of them. I\. t'{;8 may be decomposed into inde­

pendent parts with spins 0 and 1 when there is no interaction. However, this might be not so if there is 

any interaction. 

In our case, as we saw ( 13 3 ), f\.t'l(r.) decomposes into dynamically independent parts with spins 0 

and 1 even in the presence of the interaction. .. 

Appendix m 

Nonnal Product of the vector Field Operators and the Definition of 

Physical Operator of Energy tn the Free 

case 

In the free case it is conveitient to determine all the operators as normal products, i.e., in such a man­

ner, that the creation operators would be in the left-hand side from the annihilation operators. 

For instance, in such a sense we should like to understand the 4-momentwri operator 

pr ~~ cl"f fr 

what is denoted by colons. 

~ 11.~ O..y ~ I P·:. ~ 7'"+~'- I 
I P\.=-VY\9.. I 

The operators Cl.v and Cl~ obey the commutation relations 

l «-r (fi.) , "'-~ \f~.)] = b r" ~ C:t ~ -1~.) · 

.,. 

-·Jp~ 

(11U) 

( 111.2) 

It is clear from these relations that Cl-. and Cl.! are the annihilation operators, while a.!. and 

d-
0 

are, the creation operators. However, the writing of the normal product in ( 111.1 ) in the form 

• "+ • - rr + ,. ,.., ,.,+ • -v Cl.v • - ....,tot "'WI- ""-o'""o 
( 111.3) 

is not acceptable, at least, because of the non-covariance. The covariant definition can be given if we 

decompose the operators Cll" and 0..~ into the parts with spin 0 and l. 

t 

t 

t 

l-

I ,. 

J 
! 

\ 
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or Annihilation Creation Operators 
Operators 

is 

0 

·········································· ································ ·············································· 
S= i 

··········································· ································· ·················································· 
~=0 

The spin of these parts may be determined by means of the invariant operator of the square of the spin 

momentum ( 17 )*, written in the momentum representation. The meaning of them as the annihilation and 
creation operators follows from ( 111. 2 ) . 

Now the normal products are written as, e.g. , 

( lll.S) 

( 111.6) 

In the mixing products with ~ =-1. and ~ = 0 the order is not essential due to the commutation. 

The normal product in ( 111.1 ) may be now expanded as 

( 111.7) 

The first term in the curved brackets is a positive-definite operator of the number of quanta with spin 1, 

whereas the second one is a negative-definite operator of the number of quanta with spin 0. Accordingly, 

the energy of quanta with spin I is positive-definite, and the quanta with spin 0 is negative-definite. 

If we subtract from Pt' a four-vector of the energy-momentum of the spin 0 quanta, we get the opera­
tor of the energy- momentum of the spin 1 (physical) qu!IIlta 

( 111.8 ) 

with the positive-definite energy. 

* See Appendix II. 



----

lb 

References 

1. W. Pauli, Rev. Mod. Phys., U· 3, 203 (1941). 

2. G. Wentzel, Quantum Theory of Fields, lnterscience Publishers, New York, 1949. 

3. :E.C.G.Stueckelberg. Helv. Phys.,A.cta, ll• 225, 229 (1938). 

4. R.J. Glauber. Prog.Theor.Phys._2, 295 (1953.):. 

5. T.D. f...ee, C.N. Yang.Phys.Rev. ~. 1501 (1955). 

6. :R. Utiyama. f>hys.Rev .. :!.Q!, 1597 (1956). 

7. M.E. Mayer. Preprint 0 H.H H P-212 (1958 ). 

8. Y. Fujii. Prog.Theor.Phys. 21, 232 (1959). 

9. H. Nakamura. Prog. Theor.?hys. 21, 827 (1959). 

10. :J.J. Sakurai. Annals of Physics, ll• 1 (1960). 

... 

11. H. Umezawa, Quantum Field Theory, North-Holland Publishing Company, Amsterdam 1956. 

12. H.H. Boroni0.6oa, J].B. lliKpKOB. Bae.aeHlle a TeopKIO KB&HTODbiX noneA. 
M ., 1957. 

(Translation: N.N. j3ogoliubov and D. y, Shirkov, Introduction to the Theory of Quantized 
Fields, Interscience Publishers, New York, London, 1959). 

13. M.H.I;.. Pryce. Proc.Roy.Soc. 150A, 166 (1935). Proc. Roy.Soc. 195A, 62 (1948). 

14. W. Pauli, see J.K. Lubanski. Physica IX, 310 (1942). 

15. V. Bargman and E.P. Wigner. Proc.Nat.Acad.Sci. USA,~,N 5, 211 (1948). 

16. IO.M. llillpOKOB, )K3T~. a!· 748, /1951/. 

17. C.N. Yang, D.f'eldman. Phys.I~ev. 79, 972 (1950). 

18. f.J.Dyson. Phys.Rev.ll, 929 (1948) .. 

,..-

19. n.J]. naH.aay J( H .M. XanaTHIIKOB, )K3T~. 29, 89 (1955) (translation: L.D. Landau and 

I.M.Khalatnikov, Soviet Phys. JETP,.l,. 69 (1956)/. 

20. E.C. ¢>pa.auH. )K3T¢>, 29, 258 (1955). (translation: E.S. Fradkin, Soviet Phys. 

JETP, 1t 361 (1~). 

21. S. Okubo. Nuovo Cimento, .!.§., 949 (1960). 

22. L. Evans, G. Feldman,P. T.Matthews. Preprint (1960). 

23. :V.l. Oqievetski, I.V. Polubarinov. Preprint JINR, D-618 (1960). 

------

R•c•i.,•d 6y Pdlisbmg o.,.,, ... , 
oa F•briiiii'Y J4, J96J, 


