В.С.Барашенков, Э.К. Михул, Хуан Цзу-чжань

СЕЧЕНИЯ ОБРАЗОВАНИЯ СТРАННЫХ ЧАСТИЦ

40.

6

999/

Направлено в Acta Physica Polonica

Д - 673

Объединенный институт ядерных исследований БИБЛИОТЕКА

Анногация

. بري

-

4

Рассмотрено множественное рождение странных частиц. Учитываются резонансные взаимодействия странных частиц, более точно учтен закон сохранения странности. На примере аннигиляции медленных антинуклонов и пион-нуклонных столкновений при энергии 1,7 Бэв показано, что теоретические сечения образования странных частиц можно согласовать с экспериментальными данными.

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Лаборатория теоретической физики

В.С. Барашенков, Э.К. Михул, Хуан Цзу-чжань

Д - 673

Экз. чнт. sana

СЕЧЕНИЯ ОБРАЗОВАНИЯ СТРАННЫХ ЧАСТИЦ Acta phys. Polonica 1961, 20, N8, p657-662.

1. Введение

Рождение странных частиц при больших энергиях и при аннигиляции медленных антинуклонов рассматривалось во многих работах (см. $^{(1-3)}$, где приведена библиография). Было показано, что соответствующим выбором пространственных объемов, в которых рождаются странные частицы, в случае (TN)-и (MA)взаимодействий можно получить значения полного сечения рождения странных частиц O_{54} , близкие к экспериментальным. Введение различных объемов является в этом случае способом феноменологического учета различий в величине взаимодействия частиц различных сортов $^{(1-4)}$. Однако в настоящее время накопились экспериментальные факты, которые количественно уже трудно объяснить с помощью такой грубой модели $^{(5)-/9)}$. Наиболее важным результатом в этом отношении является то, что экспериментальное сечение рождения \tilde{K} -частиц приблизительно на порядок превосходит теоретическое. Это особенно ярко видно на примере аннигиляции медленных антинуклонов, где сечение O_{54} совпадает с сечением рождения \tilde{K} -мезонов:

$$\sigma_{st}^{\text{theor.}}/\sigma_{in} \simeq 0, 2^{\circ}/_{\circ} \qquad (3)^{(4)}, \quad \sigma_{st}^{\text{exper.}}/\sigma_{in} = (3 \div 5)^{\circ}/_{\circ} \qquad (s)$$

(С, полное сечение всех неупругих процессов).

2. Сохранение странности

Математически различие теоретических и экспериментальных сечений G_{k} обусловлено тем, что в статистических весах реакций с K-мезонами степень параметра, определяющего отношение пространственных объемов для K- и \mathfrak{T} мезонов, $\mathfrak{f} = V_k / V_{\mathfrak{T}} \prec 1$, оказывается большей, чем для реакций с гиперонами. С физической точки эрения это эквизалентно предположению, что странные частицы, так же как \mathfrak{T} -мезоны и нуклоны, могут рождаться поодиночке; сохранение странности требуется лишь после установления статистического равновесия.

Чтобы согласовать экспериментальные и теоретические данные, откажемся от этого предположения и будем считать, что странные частицы каждый раз рождаются парами. Каждый акт рождения пары странных частиц будем характеризовать "постсянной взаимодействия" λ . Пространственный фактор в выражении для статистического веса в этом случае можно записать в виде:

$$V = \frac{\lambda^{5/2}}{G} \left(\frac{\kappa}{\epsilon+\kappa}\right) V_{\kappa}^{\kappa-i} V_{\pi}^{\epsilon} + \frac{\lambda^{5/2}}{G} \left(\frac{\epsilon}{\epsilon+\kappa}\right) V_{\kappa}^{\kappa} V_{\pi}^{\epsilon-i} = \lambda^{5/2} \xi^{\kappa-i} \frac{\kappa+\epsilon}{G(\kappa+\epsilon)} V_{\pi}^{\kappa+\epsilon-i}$$
(1)

гле К – число К– и К–мезонов; S – число всех вновь образовавшихся странных частиц; $(\kappa + e)$ – полное число родившихся частиц; G – фактор, учитываюший тождественность частиц; V_{π} – фермиевский объем (так же, как в ^{/1/}, здесь учтен закон сохранения центра инерции).

3. Вторичные взаимодействия

В настоящее время имеется ряд экспериментальных данных, которые указывают на существование заметного взаимодействия К-и **Г**-мезонов. Наиболее важными из них являются следующие:

 Анализ корреляций К- и Л -мезонов, рождающихся в (Л Р)-столкновениях при энергии Е=7 Бэв, приводит к заключению о резонансном взаимодействии К- и Л -мезонов с массой "изобары" М_к ≈ 0,82 Бэв^{/10/}.

2. Асимметрию угловых распределений странных частиц, рождающихся при столкновениях \mathfrak{T} -мезонов с нуклонами (см.,например, $^{/7/}$), можно понять, если учесть "периферические столкновения" первичного \mathfrak{T} -мезона с К-мезонным облаком нуклона (ср. § 5 в $^{/11/}$). Рассмотрение, основанное на теории полюсов, дает для сечения ($\kappa \mathfrak{T}$) - взаимодействия оценку $\mathfrak{T}_{\kappa \mathfrak{T}} \sim \mathfrak{G}_{\mathfrak{R}}$.

3. Оптический анализ упругого (КР)-рассеяния указывает на значительную вероятность (КР)-взаимодействий при больших параметрах удара. Для сечения (кП)-взаимодействия отсюда также следует оценка - $\sigma_{KT} \sim \sigma_{TM}^{\prime 12/}$.

Следует также отметить, что " 50 - образные" случан (**TN**)-взаимодействий, наблюдавшиеся в Дубне и в других лабораториях, могут быть также истолкованы как результат взаимодействия К- и **Л**-мезонов.

4

Взаимодействие К-мезонов с \mathcal{T} -мезонами должно приводить к увеличению объема V_{κ} . Так как известных в настоящее время экспериментальных данных еще недостаточно для однозначного выбора двух параметров λ и ξ , мы будем приближенно считать, что $V_{\kappa} = V_{\overline{T}}$. Кроме того, учет резонанса в ($\kappa \overline{T}$) - взаимодействии математически эквивалентен введению в статистическую теорию новой частицы - " ($\kappa \overline{T}$) - изобары", которая в последующем снова распадается на исходные частицы.

Кроме резонансного (**КТ**)-взаимодействия и обычно учитываемого резонансного взаимодействия \mathcal{T} -мезонов с нуклонами следует учитывать также резонансы во взаимодействиях \mathcal{T} -мезонов с \mathcal{T} -мезонами¹⁾ и гиперонами, а также, возможно, резонансное (КК)-взаимодействие. В таблице 1 указаны параметры соответствующих "изобар". Следует отметить, что в большинстве случаев численные данные в таблице 1 являются ориентировочными, а данные для ($\mathfrak{T} \Sigma$) - взаимодействий вообще являются предположительными - экспериментально такое взаимодействие в настоящее время еще не наблюдалось, хотя и является весьма вероятным с теоретической точки зрения.

4. Рождение странных частиц в (NN)-и (TN)-столкновениях

Рассмотрим теперь к каким численным результатам приводит учет всех вышеизложенных соображений. В качестве примера рассмотрим аннигиляцию медленных антипротонов на протонах и (**л**-р)-столкновения при энергии E=1,7 Бэв.

На рис. 1 приведены значения σ_{st}/σ_{in} , вычисленные для этих случаев при различных значениях параметра λ . Известных в настоящее время экспериментальных данных еще недостаточно для однозначных заключений; согласие с экспериментальным значением $\sigma_{st}^{exper}/\sigma_{in} \simeq (3 \div 5) ^{o}/_{o}$ в обоих случаях можно получить в интервале значений $\lambda = 0, 1 \div 0, 2$. Аннигиляция медленных антинуклонов является наиболее удобным видом взаимодействия для исследования множественного рождения частиц. В этом случае рождаются всего лишь три сорта частиц и нет периферических взаимодействий, что значи-

5

¹⁾ О том, к каким результатам приводит учет резонансного ($\Im \widehat{\pi}$) - взаимодействия см. подробнее /2/-/4/.

тельно упрощает анализ экспериментальных данных. Дополнительные сведения могут быть получены из измерений сечений различных каналов рождения К-мезонов. В частности, на опыте наблюдается один случай рождения пары (K; \vec{K}) приблизительно на тысячу случаев аннигиляции ^{/13/}, т.е. $\mathcal{O}(p+\vec{p}\rightarrow K+\vec{k})/\mathcal{O}_{st} \sim (2 \div 4)\%$ если учесть, что $\mathcal{O}_{st}/\mathcal{O}_{ik} \simeq (3 \div 5)\%$. Теоретические значения сечений различных каналов ($p\vec{p}$)- аннигиляции приведены в таблице $\vec{\Pi}$) (в %% по отношению к \mathcal{O}_{st}). Как видно, в случаях, когда учитываются резонансные взаимодействия К-мезонов, канал с рождением пары ($\kappa;\vec{k}$) заметно подавлен.

В таблице III для (π -p)-столкновений при E=1,7 Бэв приведены теоретические отношения сечений рождения \overline{K} -мезонов к сечениям рождения Λ - и Σ гиперонов ($\sigma_{\overline{K}\overline{K}} + \sigma_{\overline{K}\overline{K}} + \sigma_{\overline{K}\overline{K}} = \sigma_{\overline{S}\overline{L}}$) . Экспериментальная величина этих отношений при E=1,7 Бэв нам неизвестна²). Однако в работах /7/, /8/ показано, что $\sigma_{\overline{K}\overline{K}} / \sigma_{\overline{K}\Lambda}$ быстро возрастает с энергией (от 0,5 при E=3 Бэв до 1,5 при E=7 Бэв). Следует ожидать, что при E=1,7 Бэв $\sigma_{\overline{K}\overline{K}} / \sigma_{\overline{K}\Lambda} < 0,5$.

Таким образом, более точный учет закона сохранения страьности и учет вторичных взаимодействий странных частиц значительно улучшают согласие теоретических и экспериментальных сечений рождения странных частиц. (О сравнении опытом теоретических характеристик рождающихся при этом нуклонов и *Э*-мезонов см., например, работы /1/-/4/).

Мы благодарны Д.И.Блохинцеву и А.К. Михул за обсуждения и стимули-

2) Расчеты для больших энергий выполняются.

6

Взаимодействующие частицы		Масса изобары /масса нуклона M=1/	Изотопический спин		Спин
кП	у П (ЕП)	0,6 0,82 ^{/10/}	1 3/2		1 Оили 1
	ЯN	1,32	3	/2	3/2
	<u></u> ፓ ሊ	· 1,46 ^{/10/}		1	3/2
	ም Σ 1,54		1		3/2
		Табли	ица <u>11</u>		
$\overline{\backslash}$	продукты реакции			_	
вторич- ные взаимоде ствия	-k-	к к	<u>к</u> к ያ	K R 2 J	KR 31
Учтены н действия	все взаимо-	· .			
	спин S(КЛ	() = 0 6	32	54	7
	спин 5 (к	π)=1 3	21	61	15
учтено (ПП)-	только взаимодейст	вие 10	40	46	4
		Табл	ица <u>111</u>		
Вторичные взаимодействия		Учтены все взаимодействия		только	
		\$ (κπ)=0	\$(KT)=1	(NR) 4 (TTT)
$\sigma_{\kappa\bar{\kappa}}/\sigma_{\kappa\bar{\kappa}}$		0,174	0,148		0,280
OKK OKE		0,162	0,118	3	0,320

Сплошными кривыми указаны значения $\sigma_{st} / \sigma_{in}$ для случая $(\rho + \overline{\rho})$; пунктирными кривыми – значения $\sigma_{st} / \sigma_{in}$ для случая $(\pi - + \rho)$. При вычислении кривых А учитывались все резонансные взаимодействия ;

При вычислении кривых А учитывались все резонанские тем спин ($\kappa \pi$)-изобары $S(\kappa \pi) = 1$;

Кривые В - то же самое, но спин $S(\kappa \pi) = 0$.

При вычислении кривых С не учитывались резонансные взаимодействия странных частиц (т.е. в случае $(p + \vec{p})$ учтен лишь резонанс (πn) ; а в случае $(\pi + p)$ - резонансы (πN) и (πn)).

Литература

- 1.V.S.Barashenkov, B.M.Barbashov, E.G.Bubelev, V.M.Maksimenko. Nucl.Phys. <u>5,</u>17 (1958). V.S.Barashenkov. Nucl.Phys. <u>7</u>,146 (1958), ※ЭТФ, <u>34</u>, 1016, (1958).
- 2. R.Hagendom. Nuovo Cimento, 15, 246, 434 (1960).
- E. Eberle. Nuovo Cimento, <u>8</u>, 610 (1958).
 F.Cerulus. Nuovo Cimento, <u>14</u>, 827 (1959).
 В.И.Руськин,ЖЭТФ 36, 164/1959/.
- 4. V.S.Barashenkov. Fortschritte der Phys. /в печати/.
- 5. Е.Segre. Доклад на 9 международной конференции по физике высоких энергий. L.Agnew, T.Elioff, W.B.Fowler et al. Proc. Amer.Phys.Soc. 4, 357 (1959).
- 6. В.А.Беляков, В.В.Глаголев, Л.Ф.Кириллова и др. Препринт ЛВЭ ОИЯИ, Р-434 /1959/.
- 7. Ван Ган-чан, Ван Цу-цзен, В.И.Векслер и др. Препринт ЛВЭ ОИЯИ, Д-594 /1960/.
- 8. И.Ивановская, Е.Кузнецов, А. Прокиш, И.Чувило (будет опубликовано).
- 9. F.Eisler, R.Plano, A.Prodell at al. Nuovo Cimento 10, 468, 1958.
- 10. Ван Ган-чан, А.К. Махул и др. (будет опубликовано).
- 11. V.S.Barashenkov. Nucl. Phys. 15, 468 (1960), XOTO, 37, 1464 (1959).
- 12.В.С.ВБарашенков, Э.К. Михул/будет опубликовано/.
- 13. Материалы 10-й международной конференции по физике высоких энергий. Рочестер, 1960 г.
- 14. R.C.Whitten, M.M.Block. Phys.Rev. <u>111</u>, 1676 (1958).
- G.Maenchen, W.B.Fowler, W.N.Powell, R.W.Wright. Phys.Rev. <u>108</u>, 850 (1957), W.D.Walker, J.Crussard. Phys.Rev. <u>98</u>, 1416 (1955).

Рукопись поступила в издательский отдел 13 февраля 1961 года.