

K-14

Лаборатория ядерных проблем Лаборатория теоретической физики

Ю.М. Казаринов, В.С. Киселев И.Н. Силин, С.Н. Соколов

D-658

определение константы п-мезон-нуклонного взаимодействия по дифференциальным сечениям упругого p-p -рассеяния МСЭТФ, 1964, ТЧІ, 61, с/97. Ю.М. Казаринов, В.С. Киселев И.Н. Силин, С.Н. Соколов

D-658

.

920/6 yp.

ОПРЕДЕЛЕНИЕ КОНСТАНТЫ П-МЕЗОН-НУКЛОННОГО ВЗАИМОДЕЙСТВИЯ ПО ДИФФЕРЕНЦИАЛЬНЫМ СЕЧЕНИЯМ УПРУГОГО p-p -РАССЕЯНИЯ

e 162 (S. 14) BELLE AL AL LA

Аннотация

С целью определения f^2 обработаны данные $\mathfrak{S}_{pp}(\vartheta)$ при энергиях 147, 330 и 380 Мэв. Найденные значения f^2 при E = 147 и 380 Мэв не противоречат величине $f^2 = 0.08$. $\mathfrak{S}_{pp}(\vartheta)$ при энергии 330 Мэв удовлетворительно согласовать со значением $f^2 = 0.08$ не удается. Анализ экспериментальных данных по рассеянию нейтронов протонами /1/ показал, что дифференциальное сечение $\mathfrak{S}_{np}(\vartheta)$ в широком интервале энер гий от 90 до 630 Мэв в пределах ошибок эксперимента, по-видимому, не противоречит величине перенормированной константы П-мезон-нуклонного взаимодействия f^2 = 0,08. В связи с тем, что подобное исследование данных о рассеянии протонов протонами может дать интересные результаты, была проведена аналогичная обработка $\mathfrak{S}_{pp}(\vartheta)$ при энергиях $147^{2/2}$, $330^{13/2}$ и $380^{14/2}$ Мэв. Следует заметить, однако, что использование $\mathfrak{S}_{pp}(\vartheta)$ для определения

f² способом, примененным в ^{/1/}, сильно затруднено благодаря необходимости учитывать кулоновское рассеяние. Введение же поправок на кулоновское рассеяние заметно понижает точность экспериментальных данных ,особенно в области малых углов, и, кроме того, возможно только после проведения фазового анализа. В настоящее время необходимые сведения о фазовых сдвигах в упругом /p-p/ рассеянии известны только для энергий 310^{/5/} и 150^{/6/} Мэв. Это обстоятельство и определило выбор данных для обработки.

Учет кулоновских эффектов проводился методом, предложенным в ^{/5/}. Для этого **R** - матрица представляется в виде:

$$\overline{R} = \overline{S} - 1 = \overline{S} - S_{e}' + S_{e} - 1 = \overline{z} + R_{e}$$

-матрица, элементы которой выражаются через полные фазовые сдвиги б
 / "total Bar shifts" / и фазовые сдвиги чисто кулоновского рассеяния Фе,
 Re - матрица кулоновского рассеяния.

Матричные элементы **«**, определяющие амплитуду рассеяния, записывались в виде:

$$\mathcal{L}_{\ell} = e^{2i\delta_{\ell}} - e^{2i\Phi_{\ell}} \simeq (1+2i\Phi_{\ell})(e^{2i\delta_{\ell}} - 1)$$

для синглетного рассеяния; для триплетного рассеяния

$$de_j = e^{2i\delta e_j} - e^{2i\Phi e} = (1 + 2i\Phi e)(e^{2i\delta e_j} - 1)$$

 $\Pi p_H l = j_H$

$$\begin{split} M_{11} &= \int_{-\infty}^{2} m \left[\frac{4-x}{x_{*}-x} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1+x}{x_{0}+x} \right] + \sum_{NDZE[M,K} \chi_{K}^{11} P_{K}(x) , \\ M_{00} &= \int_{-\infty}^{2} m \left[\frac{x}{x_{*}-x} - \frac{x}{x_{*}+x} \right] + \sum_{NZE[M,K} \chi_{K}^{00} P_{K}(x) , \\ M_{1-1} &= \int_{-\infty}^{2} m \left[\frac{1}{2} \cdot \frac{1+x}{x_{0}-x} + \frac{1}{2} \cdot \frac{1-x}{x_{0}+x} \right] + e^{-2i\varphi} \sum_{KUZ[M,K} \chi_{K}^{1-1} P_{K}^{(2)}(x) , \\ M_{1-1} &= \int_{-\infty}^{2} m \left[\frac{1}{2} \cdot \frac{1+x}{x_{0}-x} + \frac{1}{2} \cdot \frac{1-x}{x_{0}+x} \right] + e^{-2i\varphi} \sum_{KUZ[M,K} \chi_{K}^{1-1} P_{K}^{(2)}(x) , \\ M_{55} &= \int_{-\infty}^{2} m \left[-\frac{1}{2} \cdot \frac{1+x}{x_{0}-x} + \frac{1}{2} \cdot \frac{1-x}{x_{0}+x} \right] + e^{-i\varphi} \sum_{KUZ[M,K} \chi_{K}^{1-1} P_{K}^{(2)}(x) , \\ M_{10} &= \int_{-\infty}^{2} m \left[-\frac{\sqrt{2}}{2} \cdot \frac{\sin\vartheta}{x_{0}-x} + \frac{\sqrt{2}}{2} \cdot \frac{\sin\vartheta}{x_{0}+x} \right] + e^{-i\varphi} \sum_{KDZ[M,K} \chi_{K}^{10} P_{K}^{(0)}(x) , \\ M_{01} &= \int_{-\infty}^{2} m \left[-\frac{\sqrt{2}}{2} \cdot \frac{\sin\vartheta}{x_{0}-x} + \frac{\sqrt{2}}{2} \cdot \frac{\sin\vartheta}{x_{0}+x} \right] + e^{i\varphi} \sum_{KDZ[M,K} \chi_{K}^{0-1} P_{K}^{(0)}(x) , \\ M_{01} &= \int_{-\infty}^{2} m \left[-\frac{\sqrt{2}}{2} \cdot \frac{\sin\vartheta}{x_{0}-x} + \frac{\sqrt{2}}{2} \cdot \frac{\sin\vartheta}{x_{0}+x} \right] + e^{i\varphi} \sum_{KDZ[M,K} \chi_{K}^{0-1} P_{K}^{(0)}(x) , \\ M_{01} &= \int_{-\infty}^{2} m \left[-\frac{\sqrt{2}}{2} \cdot \frac{\sin\vartheta}{x_{0}-x} + \frac{\sqrt{2}}{2} \cdot \frac{\sin\vartheta}{x_{0}+x} \right] + e^{i\varphi} \sum_{KDZ[M,K} \chi_{K}^{0-1} P_{K}^{(0)}(x) , \\ M_{01} &= \int_{-\infty}^{2} m \left[-\frac{\sqrt{2}}{2} \cdot \frac{\sin\vartheta}{x_{0}-x} + \frac{\sqrt{2}}{2} \cdot \frac{\sin\vartheta}{x_{0}+x} \right] + e^{i\varphi} \sum_{KDZ[M,K} \chi_{K}^{0-1} P_{K}^{(0)}(x) , \\ M_{01} &= \int_{-\infty}^{2} m \left[-\frac{\sqrt{2}}{2} \cdot \frac{\sin\vartheta}{x_{0}-x} + \frac{\sqrt{2}}{2} \cdot \frac{\sin\vartheta}{x_{0}+x} \right] + e^{i\varphi} \sum_{KDZ[M,K} \chi_{K}^{0-1} P_{K}^{(0)}(x) , \\ M_{01} &= \int_{-\infty}^{2} m \left[-\frac{\sqrt{2}}{2} \cdot \frac{\sin\vartheta}{x_{0}-x} + \frac{\sqrt{2}}{2} \cdot \frac{\sin\vartheta}{x_{0}+x} \right] + e^{i\varphi} \sum_{KDZ[M,K} \chi_{K}^{0-1} P_{K}^{(0)}(x) , \\ M_{01} &= \int_{-\infty}^{2} m \left[-\frac{\sqrt{2}}{2} \cdot \frac{\sin\vartheta}{x_{0}-x} + \frac{\sqrt{2}}{2} \cdot \frac{\sin\vartheta}{x_{0}+x} \right] + e^{i\varphi} \sum_{KDZ[M,K} \chi_{K}^{0-1} P_{K}^{(0)}(x) , \\ M_{01} &= \int_{-\infty}^{2} m \left[-\frac{\sqrt{2}}{2} \cdot \frac{\sin\vartheta}{x_{0}+x} + \frac{\sqrt{2}}{2} \cdot \frac{\sin\vartheta}{x_{0}+x} \right] + e^{i\varphi} \sum_{KDZ[M,K} \chi_{K}^{0-1} P_{K}^{(0)}(x) , \\ M_{01} &= \int_{-\infty}^{2} m \left[-\frac{\sqrt{2}}{2} \cdot \frac{\sin\vartheta}{x_{0}+x} + \frac{\sqrt{2}}{2} \cdot \frac{\sin\vartheta}{x_{0}+x} \right] + e^{i\varphi} \sum_{KDZ[M,K} \chi_{K}^{0-1} P_{K}^{(0)}(x) , \\ M_{01} &=$$

$$P(\vartheta) \, 6_{pp}(\vartheta) = \sin \vartheta \sum_{n=1}^{n_{max}} c_n \, \chi^{2n-1} , \qquad (4)$$

$$G_{pp}(\vartheta) = f^{4} \beta^{2} \left[\frac{1}{(x_{o} - x)^{2}} + \frac{1}{(x_{o} + x)^{2}} \right] + \alpha_{2} \left[\frac{1}{x_{o} - x} + \frac{1}{x_{o} + x} \right] + \sum_{h=0}^{h_{max}} A_{h} x^{2h}$$
 (5)

/нормировка та же, что и в /1/ /.

Таким образом, вклад в $P(\vartheta) \cdot G_{pp}(\vartheta)$ от членов, имеющих особенности при $x = \pm x_o$, действительно отсутствует, а из сравнения /4/, /5/ видно, что максимальные степени x в $G_{pp}(\vartheta)$ и $P(\vartheta) \cdot G_{pp}(\vartheta)$ отличаются на единицу^{X/}. Следовательно, зная угловую зависимость поляризации, можно установить, начиная с каких орбитальных моментов основной вклад в сечение рассеяния дает полюсный член, содержащийся в одномезонной диаграмме. Данные об угловой зависимости $P(\vartheta) \cdot G_{pp}(\vartheta)$, приведенные в работе $\frac{2}{2}$, указывают на то, что при энергии 147 М эв n_{max} в выражении /1/ для $\mathcal{G}_{pp}(\vartheta)$, по-видимому, не превышает двух. С ростом энергии до 315 М эв на характере $P(\vartheta) \cdot \mathcal{G}_{pp}(\vartheta)$ все более и более явно сказывается ${}^{3}P_{2} - {}^{3}F_{2}$ - интерференция /8/, и следовательно, n_{max} в этом случае равно трем. Следует заметить, правда, что поляризация $P(\vartheta) \cdot \mathcal{G}_{pp}(\vartheta)$ определяется перекрестными произведениями амплитуд M_{ik} и в связи с этим малые добавки волн с большими ℓ могут проявляться в угловом распределении $P(\vartheta) \cdot \mathcal{G}_{pp}(\vartheta)$ более отчетливо, чем в $\mathcal{G}_{pp}(\vartheta)$.

Результаты

Результаты обработки представлены в таблице 1. Коэффициенты a_1 , найденные приэнергиях 380 и 147 Мэв, дают для f^3 значения 0,066 $\stackrel{+}{-}$ 0,014 и 0,070 $\stackrel{+}{-}$ 0,015 при $v^2 = r^2/r^2$ = 0,6 и 1,6 и v_{max} = 1 и 0, соответственно. Эти значения хорошо согласуются с результатами, полученными при обработке $\mathcal{G}_{np}(v)$ /¹/, и не противоречат f^2 = 0,08. Увеличение n_{max} на единицу в обоих случаях меняет a_1 незначительно. Быстро возрастающие с увеличением n_{max} ошибки коэффициентов α и A, однако, не дают возможности провести обработку данных при больших n_{max} . Для E = 330 Мэв коэффициент a_1 получается примерно на порядок большим и f^2 = 0,19 $\stackrel{+}{-}$ 0,02 / n_{max} = 2/. Изменение числа членов в выражении для $\mathcal{F}_{pp}(v)$ в этом случае также слабо влияет не величину первого коэффициента.

x/ Такая же связь существует и в /п-р/ -рассеянии.

Критерий согласия остается постоянным и неудовлетворительным при изменении

 n_{max} в /1/ от двух до четырех / $v^2 = \chi^2 / \chi^2 \approx 3/.$ Попытка удовлетворить экспериментальным данным при фиксированном коэффициенте . $\alpha_1 = 4^4 = 0,064$ увеличивает v^2 до 3,9 и кроме того, дает $A_{max}^{<0}$. Все это, по-видимому, указывает на то, что в экспериментальных данных

б_{рр} (У) имеются заметные неучтенные ошибки. В самом деле, из сравнения рис.2 и рис.3 видно, что экспериментальные точки при Е = 330 Мэв имеют значительно больший разброс относительно расчетной кривой, чем при $E_p = 380$ Мэв. Следует указать, однако, что при обсуждении полученных результатов Л.И. Лапидусом было замечено, что резкое изменение коэффициента

О₁ при Е_р = 330 Мэв может быть вызвано также вкладом в действительную часть амплитуды /p-p/ -рассеяния, происходящим от резкого возрастания сечения образования П-мезонов в p-p -столкновении вблизи порога реакции /9/.

		- Land -		and Managers' and the same submitted	Street and			
L	a10 ² =	e		4 ⁿ	102			.r2 72
Mev	= \$4.10%	az 10	V = V	n = 1	n = 2	n= 3	h = 4	EX = D
	3, 45 <u>+</u> 0, 49 (418)	-0,48 <u>+</u> 0,16 (2021)	I,8I <u>+</u> 0,I6 (5I25)	-0,18 <u>+</u> 0,15 (737)	I,23 <u>+</u> 0,30 (I44I)			2,95
330/3/	3,72 <u>+</u> 0,89 (1349)	-0,30 <u>+</u> 0,I0 (22917)	I,00 <u>+</u> 0,I7 (4638)	0,26 <u>+</u> 0,23 (1844)	0,51 <u>+</u> 0,9 (2667)	0,6 <u>+</u> 0,7 (4934)		3,0
	2,4 <u>6+2</u> ,02 (7.10 ³)	-0,13 <u>+</u> 0,26 (169.10 ³)	0,74 <u>+</u> 0,47 (35.10 ³)	$0, 12\pm 0, 31$ $(3, 2.10^3)$	0,51 <u>+</u> 0,4 (2267)	0,60 <u>+</u> 0,70 (4934)	-2,00 <u>+</u> 3,00 (64.10 ³)	3,0
	0,64 фиксирован	0,027 <u>+</u> 0,012 (360)	0,45 <u>+</u> 0,22 (78)	-0,48+_0,I0 (348)	I,42 <u>+</u> 0,3I (I526)	I, 53 <u>+</u> 0, 32 (1036)		3,9
14/vac	0,44 <u>+</u> 0,16 (98)	-0,006 <u>+</u> 0,07 (535)	0,51 <u>+</u> 0,013 (63)	0,72 <u>+</u> 0,002 (68)				0,6
000	0,35 <u>+</u> 0,33 (420)	-0,0005 <u>+</u> 0,02 (4046)	0,5 <u>+</u> 0,04 (54I)	0,07 <u>4</u> 0,03 (71,0)	-0,03 <u>+</u> 0,10 ['] (728)			0,62
I47/2/	0,50 <u>+</u> 0,20 (61)	-0,01 <u>+</u> 0,03 (202)	0,51 <u>+</u> 0,05 (61)					I,6
	0,76 <u>+</u> 0,54 (454)	-0,07 <u>+</u> 0,I0r (3489)	0,56 <u>+</u> 0,16 (787)	0,09 <u>+</u> 0,I7 (224)				
	В скобках указ	аны факторы корре	еляции 111.					

Таблица І.

·

В таблице 2 представлены величины 4 , полученные при обработке Бро (9) и Бло (9) /1/ описанным способом.

Таблица 2

Тип взаи- модейств	пр.	pp	qq	pp	пр	пр		
Энергия Мэв	E 90	147	330	380	380-400	630		
	0,060 [±] 0,006 0,070 [±] 0,015			0,19 [±] 0,02 0,066 [±] 0,014 0,065 [±] 0,007 0,044 [±] 0,012				

Из таблицы 2 видно, что во всем интервале энергий от 90 до 630 Мэв /исилючая $E_p = 330$ Мэв/ полученные значения, по-видимому, не противоречат величине 0,08, хотя систематически лежат ниже этой величины.

Литература

- 1. Н.С. Амаглобели, Ю.М. Казаринов, С.Н. Соколов, И.Н. Силин, ЖЭТФ 39, 948 /1960/.
- 2. I.N. Palmieri, A.M. Cormack, N.F. Ramsey, R.Wilson. Ann. Phys. 5, 299 (1958).
- **3.** N. Hess. Rev. Mod. Phys. 30, 368 (c 8, F 4) (1958).
- 4. I.R. Holt, I.C. Kluyver, I.A. Mopr, Proc. Phys.Soc. 71, 758 (1958).
- 5. H.P. Stapp, T.I. Ipsilantis, N. Metropolis . Phys.Rev. 105, 302 (1957).
- 6. И.М. Гельфанд, А.Ф. Грашин, Л.Н. Иванова, ИТЭФ АН СССР, препринт /1960/.
- 7. M. Cini, S. Fubini, A. Stanghelini. Phys.Rev. 114, 1633 (1959).
- 8 O. Chamberlain, E. Segre, R.D. Tripp, Wiegand, T. Ipsilantis. Phys.Rev. 105, 288 (1957).
- 9. Л.И. Лапидус, Чжоу Гуан-чжао, ЖЭТФ, 39, 112.

Работа получена 20 января 1961 г.

