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A}bstract

'

The elastlo‘ nuoleon-nucleon soattering is studied by using
the two dimensional speotral representation of h’{andelstam.k In
this first paper, the oonvergence problem arising fl;om the cmr;bl-
nation of the forward dispersion relation with the unitarity condition

on the physioal out, is solved by use of ‘a conformal transformation.’

1. A system of Integral equations for the elastic scattering of protons on protons in the
singlet state was obtained by using the tw0-dimensional_~ spectral representation of Mandelstam. -

The method is based on the approach recently introduced by Efremov, Meshcheryakov, Shirkov
and TZu ~, We briefly recall their idea. The dispersion relations are written only for such angles
(forward and backward scattering) for which they are simple and at which no spectral functions
are met in the unphysical region. Then, the dispersion relations are differentiated with respect
to cos8 " at these points. In the whole reglon <1< cos@ £ 1 the ampli tude M (1 cos 9)
is represented by a Taylor expansion around these points dnd this series is 1nserted into the
unitarity condition. The partlal waves can also be defined In terms of these Taylor coefﬁcients.

However, as it will be shown, this approach leads, on the physical-cut, to a problem of con-
vergence, due to the fact that the cosine singularities of M( 7,7': cos 9) located at the non-.
physical reglon cos® > 1 restrict the convergence of the Taylor expansion
also in the physical-region . Indeed, the cosine of the nearest smgulanty is 41+ /“/zz and
approaches asymptotically the forward scattering point, when *increases* (see Fia.1). In

the physical region, the expansion around cos@ = 1 converges only for cos O>4- Fyzzz.
- and, consequently, a certain f...,exists
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above which the converqgence circle of the Taylor expansion around cos@ = 1 does not cover-

the whole physical region -l < cos @ = 1. Thus, for ‘i > '“//, the Taylor expansion in cos@ can-
not. be used anymore in the unitarity condltion.
* ) is the length of the center of mass momentum in the reaction N"'N ‘7N+N ,
@ ‘is the c.m. scatterinq angle. M is the so-called causal amplitude defined for
instance, in’ [2] orv;[31 : : ' ‘ :




In the N +N = N+N process, the corfesponding max =1 ‘J 7ng+ Wt
1s extremely small, having the value of 10 MeV in the laboratory system. (If symmetry is taken into
account and an expansion in cos @  Is used, EM'“ccm be shifted up to 434 MeV). But it Is desirable

to ensure the convergence of the Taylor serles at least up to the threshold of the first inelastic process
H*H-" N+H+x (290Me V), for which the simple- unitarity condition still holds.

2. In this purpose, we made a conformdl trmsfofm_cx"don' of ihe complex cosine plane

'i—i-z _ ‘ L E
,W":T;,._—-' , i:—.—CQS@I oc-/f-l—z_i 2$ (1)
(see Fiqg. 2) and we showed thot the serles | :
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converges in the whole interval -laz £ < +1 for (my observable energy. Below 49.4 MeV, where the

power serles in cos 29 also converqes, the series in W’ ylelds a better approximation if the same
number of terms 1s taken. In this way, a quickly ¢onvergent set of Integral equations is obtained.

"The properties-of this conformal transformation.: as well as the reasons which led to this form are
collected in Appendix 1. Some quuntitcxtive estimations are given in Appendix 1.

3 Let us now study the unitarity condition. On the physical cut, it has the following form (in the
c.m, system)

: Im M (1‘,3);—. —-% (_‘ﬁ); V:;i- mt M*{Zt'l‘) M(z;‘*z) 0((3.2 )d}'

where
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At this stage, an expansion of M .into partial waves is frequently performed which allows to write

the unitarity condition for the partial waves. However, in the forward scattering method only the pr_Oper-‘
ties of M nearcos@ = | are used; thus the pdrt-ial wave amplitudes can be defined only by -
integrcxting the Taylor serles. Since ecxch power of W contains an {nfinite number of partial waves,
the similtaneous use of the W" power-series and the partial wave expansion would lead to a reorderlng



problem. Each coefficient of one exp<ms1on would be written as a combination of an infinite number of

coefficients of the other expansfon. In practical calculations, however, one must restrict oneself to a

finite number of terms and thus the transition from one expansion to the other leads to supplementary
errors, For this reason,

.

we avoided the partial wave expansion and used only the power series in W
All lntegrals in (2) are to be performed by direct cqlculation '

Writing now the smglet amplitude - MSS ( q ,i-) as

/m (2 g) Ao -(6, G,_)

we expand m”. (22,.2') in, 4" and take only three terms

rm'ss(?«zlt) = a (iz) + a, (Zl)w- t+ Qa, (Zl) w--". (3

Then, we obtain from (2) and its derivatives with respect to z
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The K,} ~s depend only on the energy (via o(? , See ‘(1))_ and are easily obtained, Their explicit form
is ) '

K,, = 4
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The two-plon contribution to the unphysrcal cut y1e1ds an inhomogeneous term in the mtegrcrl equa -
tions, which will be denoted by - i ”"hrs term, as well as other contributions to the unphysical cut, o

have not been studied by‘us ‘In’detail’ They ¢an be'taken from other works [3 4}which give a complete "
analysis of them. Nevertheless, needing only the forward scattering, we hope to obtain a simpler form of N

them.

4. Writing the integral equations only for the singlet scattering, we take advantcrge of the fact
that’ in the expansion of M into the' physrccrl amplitudes ! - :

'

= o<+(5 (e‘in)(é, n) + J/((G-n} +(G, n)) + S(G m)(é"m)+£(6 l)( 7 -



the dispersion’ relations foro&,pl sand $7 €7 have a simple form in'the: nonrelativistic approxrmatlon:
( see 2] :)..The singlet amplitude m 1s giveniin: ternis of’ them as’ follows e ;

! m*

2T (LY

[ '?',‘;’5. i RN
2a,= 5—5—-@ + (- /)‘l 3 ;4(

BRSE S AR R S St : . '. fhipsers il el lo 2l 0 A 2 ¥
(here 7[=I€‘ ?) (4) o

As usual in the forward scattering case, one.: subtraction must. be performed However, this, subtraction 7
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errors arising from the' simultaneous use’of two expansions.”"But there is also another c1rcumstance which _
confirms this point of view. i ol : ’
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As it Is known, the N-fN -+ N+N .scattering; amplitude contains many waves so that the partiai
wave expansion converges very siowiy. To obtain a true p1cture of the reality without using many appro-
ximation terms, we must expand M ¢ 92)  into a more convenient set of. functions. Due to the method o
used we shall consider only the power expansions around z* = 1. :



Emphasizing this idea we can say that the most rapidly convergent expansion of M( 9 %z} is that
in the powers of M itself, where it is reduced to the trivial 1dentity M=M ButvM is not .
known before solving the equations; the only information known about M concerns the location of the
poles and cuts. In the limits of this information, the most rapidly convergent expansion will be that in
powers of a function having the same location of singularities as M . An'example of such a function .
Wy is given in Appendix‘l, but itis complicated for practlcal calculation. Our W -function, which
is much simpler, approximates this ideal case somewhat worse, but, as the numerical estimations

show ( see Apperidix ll), three coefficients in (2) are quite sufficient.

It is pleasure for us to acknowledge the frequent stimulating discussions we had with Professor
H.Y.Tzu and Dr. D.V.Shirkov. We wish also to thank to Dr. V.S.Vladimirov and E.V.Matkov for their’ help- .

ful discussions concerning the mathematical aspects of this work.

Appendix 1

l.Id order'to secure the convergence of the power expansion around cos 29 =1 in the whole physical
region 0 4 cos 20 <] we transformed the left half plane defined by the straight line C into the in-
side of the unit circle C in the complex plane W = t——l—a- ( see Fig.2). The point 00529 = ]
transforms evidently into W = 0. ' (e ‘

The power expansion around W=0 is convergent in each point inside the unit circle, because the
amplitude has no singularities in'this region. All physical points are contained in this circle, thus the
W -power expansion.can be used-in the integrals of the unitarity condition without supplementary precau-
tions. ' .

2. There is a great variety of confOrrnal transformations which ensure the convergence. of the corres-
sonding Taylor expansions in the whole physical region, As it is known, the Taylor expansion behaves '
for w-»00 as the geometrical series (-—-) where R s the convergence radius,and r={wi . It would
be natural to find such a transformation for which in all physical polnts - % would have a minimal value,
Such an optimal transformation = W (z) actually exists and we shall show that it is that one which trans-
forms the cut complex plane Dm (See F1q.3) into the unit circle. This is equivalent with the statement
that for any other conformal transformation W, transforming an arbitrary domain D cD 2 (not containing

points of the z-cut 1) into the unit circle, the inequality
nzpce| > A, sIWel ( here R:'R“ﬂ) :

takes place for each point P €Dy



To demonstrate this, we observe that W (z) transforms .D into a domain D contained
~
in the unit circle D . The function W fm) which transforms the -?W -unit circle into :D‘ is

analytical and has the following proper-ties:,@, I{-tr)]“l for each P‘ _‘,contained“in the: W -unit

circle, and ' ‘ . 2 Lo
. {(o):O because both w, ('!) and 1\‘ (’1 )transform the point cos’ 6 =l into the origin.
Now , the well known' Schwartz Lemnm* requires B

\‘“’nl =3 W«i
for dll points “, ‘ contained in the un.tt circle

3. The optimal transformation ,wn ' can readily be constructed with the help of the J oukowsky
transformation By means of the transformation W= E{lfi the cut of the 2 plane goes into a
cut between U=-l and- W=+ l; -and U.(! =1) =o0.. .This cut can be afterwards transformed

into the unit circle’ (and U= eo ,into the origin) by.means of the. transformation -1-(\1' +-—)=u Thus,

- ',%(r 1)-(':2‘)'
20— -1

Appendix- 1}

In order to compare the convergence rates of the different expansions, we shall treqt, as an example, the
case of an amplitude of the form :

A= 4 '1 - . "(f'CzE 4111)

4 :
Tt+ess@ T—cas

‘ ; | | ) )
To check the accuracies of the first, second, etc., approximations of the cos™ and We = 1,_ c“z.,%

expansions, we shall calculate some partial coefficients of A —;wa + m ' first e>2<actly,

by integrations, and then with the help of the approximative expressions provided for A by the-cos“g and

exponsions. These approximations are listed below, in the first and second columns respectively, the

errors being expressed In percents, Table 1 is calculated for o= / , for which both expansions

are convergent. Table 11 is calculated for a( = 1.28 for which the expansion in coszo is divergent,
the W~ -exponsion remaining,naturally, convergent, This corresponds to the laboratory nucleon energy

of 72 MeV, but 1f the one-pion pole is subtracted and - represents the location of the beginning of the
two-pion singularity, this value corresponds to the inelastic.threshoid‘ 290 MeV. -

*If f(z) is onalytical for allja¢Rand if Y& M and {(o;_=o then it follows Hml T"’ .
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EXAcT
VALUES 4,386 -00834 0,001
EXPANSION : in m’é._ inw, in m"o in v, i ey 0, TR,
ONE TERM 1,9 1,2 0 0 o ]
APPROX, EiyA 359% ’
Two TERMS 1,17 1,30 0,1k 0,105 o 0,005
APPROX. -5 Yy 4 . 3% 28 -30%
THALE TERNS 4,49 1,403 - 0.05 .. 0,018 . 0,015 a,oogz
"APPROX. 7% 74 -39% -5 3% 7%
Fovr TERMS 1.33 1.383 0'19 0,0836 0,001 Q,0064,
arPRroxX, -4y -0,29 29% 0,6% -483% -9%
-~ a
TABLEF (< 4,23)
.EXACT 5 ~ wWawve :D— wAVE Gl - WAVE
VA LUE
ALUES =2,40 :0,2.65 =0,0 47
szA/isioN; in cos8 n W, n 6. v ow, H eno. n W
ONE TERM L L 0 o 0 o
APPRoOX, 972 ' 972
Two TERMS - 02 1,4 - 0,8 04 0 0,045
APPROX. ~108 % - ~33% 246% 58% : ~4%
THREE TERAS 5 2.4 -0 0,49 0,2 0,056
aPPROX. 142 % 12% «350% -27% 361% 18%
Foum TeRMs | _ g 1,99 1,3 0298 | =0y 0,040
APPRox. -195% .52 528% 12% -1034 %! -4%
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