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Abstract 

A model of the local field theory suggested by Bialynicki-Birula is treated using the method developed 

in the previous papers. rr'he s-mi:rtrix and the renormaliiation constants have been obtained. IUs proved 
that the charge renormalization is finite for all tQ.e order~. and does not contain the logarithmic diver
gencies. It is shown that the contribution to the series from the ultra-violet region is summed towards 
the flriite limit. It is also proved that a series for the Green function of the nucleon is absolutely 
convergent at small times and has a branch point at t = 0, the singularity at zero being integrable. 



Introduction 

In investigating the consistency of the. quantum field theory, the study of different models became 
rather popular as there are still unavoidable difficulti{1ion the way of obtaining the solutions for exact 
f!el~ equations. The investigation of _the Lee mode has led,. as it then s71_.91ed, to the conclusion 
about the internal contradictions in the theory. However, it was shown later on , that the nonconsistency 

of the model is connected with the simplifications which are made for obtaining the exactly soluble Ha
miltonian. In particular, these simplic ations violate an important requirement of the crossing symmetry. 

Using the method developed by the authors in the previous paper/3A/ a modified Lee model sug

gested by B!alynicki-Birui651 is investigated. In this model the condition of the cr~ss!ng symmetrv is 
fulfilled. The solutions are obtained as series in a renormal!zed constant Am (Am is the physical parameter 
upon which the mass difference between two fermion states in the.model depend). The convergence of 
these series· in the ultra-violet region £ >> Am is proved. An important property of the model is 
the finite charge renormalization in all the orders of Am for the point interaction in contrast to the Lee 
model where exists a well-known problem of zero-charge. 

The Green function of the model under consideration possesses all the properties of the Green function 
/6·7/ . 

of'the renormalization theory ' • 1. The renormalized propagator is analytical in the plane t and 

ad:= 0 !tis a branch po!nt,·,c2. For 3/sr~ <. l, there exists a Fouriertransformwhich allows the 
expansion in a series near the point J2 = 0 • ,. 

1. The S-matrix of the ~,fodel 

Bialynicki-B!rula' s paper treated a model of the local field theory with the fixed nucleon. According 

to this model the nucleon may be in two states differing in mass ( we agree to call these states - proton 

and neutron). 

· The- Hamiltonian of the system is as follows 

( 1 ) 

where 'f = ~ Cf +'Un Cn is the operator of the nucleon field, C,v (AI=: f• n) 

hi'lauon operator of the nucleog • -v;. . I vr= (b), v;, = r f J J 
is the ann!-

is the spinor 

describing the nucleon, Yf(x) and Cf{iO ar~ operators of the meson field, 'z; and 'z; 
. I . . . 

are the matrices of the isotopic spin~. Noting that by A m. = 0, an exactly soluble case ot the scalar 

mesons with the fixed source is obtained, it is possible to apply the perturbation theory in the constant 

.Am. , without restricting the interaction force between the nucleon and mesons. In this way an interis
ting result has been obtained i/(5/. It consists in the fact that the charge renormalization turns out to be 

finite, i.e., it does not contain the logarithmic divergencies. 
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. /3 4/*) . According to the method developed ·m papers ' the Hamiltonian (1) Js remar~able because 

a series of LappcrDanilevsky coincides here with that of the perturbation theory in the constant Am., • 
However, a new method makes it possible to get the n-th order term of the series what tKe perturbation 

theory fails to yield. 

So, let us consider the equation for the S-matrix in the interaction representation. We shall look 

for the "adiabatic" s"'-matrix in order to make use of formulas (I.4;2) and (I.4;3).· 

In the interaction representation we have 

J o( • -ol/t/ o( 

iiiS (t,t.) = Jl(t)e S (tA) 

s_o<{t, fo) h-t. = f 
where 

Ji(tj= J'(/;/T,!?)rf{t) + Anto(Cf+G'f/). ( 2 ) 

· "' 1 { -.lwt + ic.Jt) 
Cf{-t} = "i;vzw a'Ke +a; e. 

K . 
Following the procedure set forth in Sections (I. 1 .;. 3) we get the following expression for the 

S o<{t., i.)- matrix: . 
o( 

S {f,to) = 1- [2(1f+~P}-{If+lf/] + 

-t 1! . t f/ 
oO f •/, +. .I J '/ r.. { - .x(/J;f+, •. +/711) { ~~·'" -ol(Sfrr. . A .Jl . -+-L -tltf''Zj<I-:A111o ;riJ; ... )'Iry e :eKf -z?(tf~tf1;ils~ .~tC{.f-S)ljJ{SJ: X 
f"'O . '1• to i, (/ • io J- ( ( 3 ) 

t- t 'I . • .z f -oi(lft{+tt.f) . } 
. X 0?'f {- if f d~ dsz. e .TT EOj-S,}A(s,-s~.JE(lj-Sz) 

~.1!. J=-i 

o( • . . 

The S -matrix is determined with an accuracy up to a unitary phase factor and satisfies the aqua-

lity 
o( s ( oe.,- oo)fo> =: to> 

• a,,..t 

. S-<.( oO,- oo) IN>= e' oriN> 
. ( 4') 

* Pape/4/will be further reffered to as I; 
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where / 0) and \ N) denote the vaccr.tum and· one-nucleon state of zero Hamiltonian. However, . · 

usual conditions for the vacuum and one-particle state to be stable require that 

S (-=-,- e>4)JN> =-IN> ( 5) 

In all further calculations we shall make use of the adiabat~c hypothesis- which will allow, in particular, 

to remove correctly the phase factor 1101 which is indefinite for 0; an~, hence, to satisfy (5) (see 

Appendix A), 

Consider now the most important elements of the S-matrix. 

- The eigenvalue of the energy of the one-fermion state is 1101 (see Appendix B). 

' . <>{ 

_ &-,· <N/HS (<t,-oo)fN> 
£tv - o(-+o <Nf Soc(o,-oa)JN> 

where S. -[+1 for the proton 
,... -1 for the neutron 

m = m. - -L qa /; 7fo 
2f K 

Am::: Am. e?<f{-/'f C::r} 

( 6') 

(6") 
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The requirement that the observed m and 'Am should be finite leads to the necessity of considering 

the values mo and AI'Yl, as infinite. Note, that the renormalization mo just coincides with the case 
of the scalar mesons in the fi~ld of t~e fixed source. Upon making the renormalizations (6'). and (6"), 
each term of series ( 6) is finite if 3/:ff2 < f *) ( see in more detail Appendix B ) • · 

N . . 
The renormalization constant of the fermion field 2';. is determined, according to its probability ... 

meaning, by the square of the matrix element 

Z N I I 2. o( 2 . ~ = <N N>l = I <NI 5 (q-oOJ/N) I = 
. 00 . _' 00, 00 .· : 

__:_ z.cx[ ·L. (S.vLlm( {otKt··· [«'K( ><1-: •. · Xr x ( 7 ) 
,-=0 0 " 

. r R ~ . R · Z 

0 
r { 2.)" 1 [ ~ t -t:.JEX· . 'l · -c..J:£ x-}~ j ~ ~ {!4{f ! 4--o'-'3 -L_..(-J f! j•t ~ + 2)_,~ (-/+m {? i .. ,..; 

'Ol<', ax, I( R::t L , ~-2. m=2 · 

where 
CK z2 ~{-ll2~w~} 

K . 

jN) denotes the one-:nucleon state of the total Hamiltonian. · 
. lo/ 

Let us· emphasize that the. constant 2; in the model under consideration is equal to the product . 
CK • . ' . 

of the co"nstant ~ of the scalar neutral theory with the fixed source by a series of f!nite terms since 
for !f..< 1 all the terms of the series are' finite. Further this circumstance wm allow. to make the con~ 
elusion about the constant ~ • The renormalized coupling constant is determ-ined as usual 

ir = <p/Ccr+~o/J/n) = .ec-. <pi soyoa, o)('f+z:,~J s:o~.(o,-o<>J Jn>. 
J . <X.~o / (f/ So<{oO,-co)jf>(n/ So<{o0/-o<:J)/ n.) 

c:>'O o<> """"' 'I 

= -l -+- L. {4m/1{dtt, ... fo~~.; Xf· ... · ~,.;-L >4.j-t >' 

r=" o o J"'" 
i 

2.'f-f . 'Zf·l e -w?! K· 
~ [ a~ I )'·")' e- "'. J""" J} 

X· . -Uf 2J L_. z;a L_. L.. (-J · -t:; · . 

o'X't ... i>Xr.1-r It ect .., .. ( 

( 8 ) 

................................................................. . . ~ ·t 

*)In pape/51 is given an incorrect condition for the terms.of the series to be finite /l;;a <4e . 
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The situation in this model is essentially. unlike to that for the Charge scalar theory (see(l.4;10) and 
~ . 

further on), since at the. point 9 = 0 all the integrals are limited in contrast to expression (1.4.12). 

Therefore, here in applying the perturbation theory, i.e., in representing the solution as a power series 

in t·, the logarithmic divergencies do not arise which are so characteristic for the local field theory. 

In this connection this model, in our opinion, does not reflect certain fundamental difficulties of the 
mesodynamics equations. 

The renormalization constant of the vertex. Zf · may be found from the well-known equation 

r::7 -1 ('Y I' '72" ") ~ z J'f ffr = z:., z::~ ..C:z 3 :J 

In the given model the renormalization constant of the meson field 2'3 is equal to 1. By using (7) 

and (8), one can make a conclusion that the constant Z, has the following structure 

( 9) 

• t 
where C3'(3:4"') is a; series in A/11 consisting of the finite quantities if ~·<f. 

. . 
We write down the matrix element of meson-nucleon elastic scattering ( see Appendix A) 

S = ~· .(Njaft S(oo,-<X>) a~ jN) 
'.f.,_i ot. .... o ( N/ .5 o((oo,-~) / N) 

( 10) 
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= oO. J" 

x f.J' fd,r,··J"!' "Jr·· '!r 
f 'l R R 

Mf'l 'tr,;.;; & r:-r e·,.,~; 
x, "? 

" 2. · On Series Convergence for Er , z; , Jt' . 

A proof of series convergence (6) - (10) is extremely complicated, since the estimation of the n-th 

order term requires very refined methods of approximations. 

Only this estimation allows one to judge about the series behaviour on the whole. However, the se-
" . . /9/ 

ries for £f I Z.z • and for ,,. can be summed in a certain. genera. lized sense (we shall 

say in the n E 11• sense) which is illustrated by the series for £r . · 

Consider the series 

<:>0 C)OQ 00 'I 

Sm = ~ fAml 1 ~Kt··· (dK1• >cf· ... ·X'1 {) F;(¥,, ... , Y.,) 
L....... 'j r r . 'O~ ... al(y. 'I 
'f'=O o 0 '.( 

( 11) 

where 
. '{ .R • .(' 

f;'6o-··· Y.,)=- ~f{z!~l;.""':s L L c-/+"' if"";~>.]} 
I( .R•f tH<=f 

After the partial 'integration in each term; we get ( see formula (8.8) in Appendix B) 

. oO c;_··, '{. . 

Sm = f (Am) 1 Jd)(, ... Jd~ TT (1- q) F; (~1 ... ,.\f) 
r-o 0 0 J=f 

( 12 ) 
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~ 

where the ·operator 0 is determined by the equality 

"' ~· F;( .. , XJ, .. .) = F; {. .. ,oa, .. .) 

( 13 ) 

.which at ~ = 0 passes into ( 12 ). 

· It can be shown that for E satisfying the inequality 

0 ( 14) 

series ( 13 ) is limited by the quantity ( see Appendix C ) . 

00 } - t 
bn'/' < {1- ~tnJotxci"ex [f!(x)-tj 

( 15) 

With E __.,. 0, the left-hand sfde of inequality ( 15 ) goes over into initial series ( 12 ), whereas the 
' "'" right-hand side has a finite positive limit when .C:. m ~ dx [F ('x)- 1 J < 1 • 

0 

This procedure means that series ( 11) is summed up in a generalized sense*J ( e- sense ) by 

0 

*) This method is regular, i.e. convergent series of form ( 11 ) are summed up to their usual sufo
91. 
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and its sum is restricyed by the quantity 
oO -1 

f>m < [ 1 -Llm['x.fP,M-tJ} (E) 
( 16) 

n 
The series for 2'

2 
and jr are summed up in t)le £- sense. Let us give here the result 

00 -2 

Zzn .( Z
2

<U< { 1-Amfrh[F;M-f] j (c) 
( 17) 

00 

\ :r ~{I < 
2. (~m)a fot(·x[ F;,M- 1] (£) ( 17' ) r ~ - c A""trc{" [ ~(")-n? r· 

0 

Consider the physical meaning of the summation_fluggested. We have seen that series ( 13) is con

vergent in a usual manner for sufficiently large£ (condition (14)),, but series (13) differs from ( 12·) 

by a reduced contribution from large times ( large Xj), i.e., small energies. Therefore, the contribution 

from the ultra-violet reQion turns out to be summed up towards the finite quantity, what seems unelq)ected 

from the poin~ of view of the local field theory. 

In this connection it is interesting to investigate the behaviour of the Green function at small times 

i.e., in the ultra-violet region. The Green function is determined by 

G (t J = <ofT { 'f'(tJ'f-r(oJ s roe, -ooJ j 1 o > = 
oc -{: r. ·r,-( z; GC«(-t) L. (-i'l:;sAm)q fatr1 fdJ:t ... far? ,· 

'f=o o · o _ 0 

{ 

~ -1 [ ·~ ( ( -t'c..J(-{-]e} -t4lfi!) 
x t!4f - 3z. T c.J.. f.;; c-J .e .~ e + ' Is l 

'f e-( 
+ 2. L L C-JR_. e-z't..J(f,..-le)j 1 

e=R. nt:::( 

where 

{-

2 )" 4 -z·.....,t! 
GCK(t) = B(t.J../24Ct - zmt-+ i. d T G:i3 e ~ 
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The functi2n Gc.K{-t) is the Green function of the scalar neutral theory and at small times it be

haves as £ 'Yr / ffj. . 

It can be shown (see Appendix D ) that the series ln A m small t ( rt "'- ~ 1) is convergent 
t . . 

absolutely if t!ifz. < 1 and has a branch point when t == 0. Thus, the function 6!(tlhas at 
t = 0 a singular point, provided this singularity is integrable due to the condition ?7:.,~_< 1 , what 

permits to make a Fourier transform. · 

Conclusion 

The described example of the model with·the finite charge renormalization shows another possibi
lity (compared w~th the Lee model) which may be realized in the rigorous theory. However, in our opinion, 
this model does not also reflect a real situation .in the field theory as the investigation of more complex 
models (see 141) leads, very likely, to the conclusion that in the exact solution exists a singular point 

g 2 =. 0, at which the expansion of the sol)ltion into a Taylor series leads to additional divergences. As it 
was poirtted out above' the model we are considering has no such a property. 

In ·conclusion the authors express their deep gratitude to Prof •. D.I.Blokhintsev for his permanent 

interest i~ the research and stimulating discussions,, as well as to L.D;Zastavenko for the discussion 
of the mathematical problems. 
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Appen.-lix A 

Since the s~matrix is set as a series, then the matrix elements are represented as a lirriit by o<._.. 0 

of the ratio of two series. It turns out that if we divide one series by another and collect the terms with 
the identical powers ~m, then in the terms thus obtained the phase reduces, and, hence, it is possible 
to go over to the limit with o<. _,. 0 in each term separatelv. 

Let us illustrate the procedure of removing the phase on the example of the matrix element of meson
nucleon scattering ( see formula ( 10 ) 

00 
c:>O o( 

L (-z"F.v.amo/13 {7:} ,=., r 
= o( L (:-z'~Amo)f ~ 

'f=O 
. (A.l) 

M . r(,.)~J = .· ~2. (,('(;" eic.J/' e... 
frt Zz"J )' ot.~o 

- 0() 

where _, oo '1-

B;r-t:) = r~f"r,~f''r, urht.tljij J[e{U}C(J<-'i:). (A.2'1 

{ 
• z. so-> -a<.(/Stf+(tu} fr } 

" .0}(f - ~a_jdr(t:ts, e j~:·c(~~s,)4{~-sz.)E(!j-Sz) 

o(. -"'"" •• ,· 

/J _. { ( f { ~ ftt r' -ol{ISl+{S,I} (A.2 11
) 

D'f - r~l.dr,~.'._ dJ9 0Kf -~{;;-/lj/.._ 2._~dr,&112 1Z y 

. £ 
)(' TTecn-s,) A(s,-s:JECr;-s~.)J 

j&l . J 

The integral of the exponent is equal to 
a-a - o~(rr,t-ttr,l) q 

_ !2_' .H ds,ofs
2 

(2 }T E(Tj-51) ,a(s,-Sz.J£q. -S2 ) 

2. - _, J kl 

I L~-
- - :2 "o( L-... (..)~ - ( ~ 

- 82 £;: ~3 
I( 

'7 ..,._ ( 

[ 1 + 2L.t TTtrr.:-~JTI .!(Tvz_-~1 )iz"'tr.,-T~t} 
\',""2. ~:{ j'1¢~ jL?I{ 

(A.3) 

The first component is identical for all the terms of a series and therefore, it is cancelled. 

The presence of the phase in the expression for the matrix element is demonstrated in the fact that 
the integrals in time ( by J.i ) are divergent linearly at the infinity by oi. = 0 , However, as was 
mentioned above, a series which is the ratio of the series divergent when ol::::Q, contains the integrals 
finite at oi. = 0. This due to the fact that near each degree 4 m the divergent integrals are grouping 
so that the h1finities reduce. The procedure of regularization is the following. In the integrals (A.2') 
and (A.2") we go over to the integration over simplex and make a s~bstitution of the variables 
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P-f 

"k=s-~>y 
J "' ( 

(A.4) 

The integral of the function R,~1 is divergent linearly at the infinity by any argument ~· • 

However, the function ;;;..,( .. , ¥;·, •• .}- ;;;.,(. .. , oo, ... ) can be already integrated over~· at the 

infinity. Note further, that 

(A.6) 

It follows from what has been said that in order to regularize the function .13; (7:), it is necessary from 

the function /?,., subtract its values at the infin~ty by ~~chits arguments i.,e'.,to replace /f-,by the 

function 
9-1 ' ' 

1T (1- ~) f;_, ('~~o···, Yr~r) 
.e=f 

(A.7) 

.-'\ A 

where the operator ~- is determined by the equality~~(.., lt)i ... )=_~ .. J .. ,"",·:·). Such a substitution 

0 f the function·. Pr~· \ ' for ~he f~n~ti~n (k 7) is .!ust accomplished by dividing a series by a series and 
by gro~ping the terms near the identical powers Ani. The same holds forth~ regularizatio~'of the inte· -

gral ove~(A.S). Finally, the matrix ~lement of ~catt,ering with the ~~moved phas~ is put as 

(A.B) 
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= q i e 
>< s cts[ {(T}{(J-~)nc(T-f,Xj)E(T-<c-~Xi)-1] 

- <:><0 

From (A.8) immediately follows (10), if we take into account that the operator ( 1- ~ ) may be re-

presented as . -1 j~ d 
1- q =- "Ji d'/.· 

xi (}J 
(A.9) 

In an analogous manner the phase for any other matrix element is removed. · 

A p p e n d i ·x ·a 
According to formula (6) the eigenvalue of the one-termion state is determined by 

£ -. iL. <tV/ H S(o,-oaJIN.> = fYlo + ~,vt:l mo -+ s E~ (8.1) 
N- ~_.0 <N{So({o,-oo){N/ 

where 

?) £. _ = g_ < ,vj fJ (tj/+'l:(lfJfi(o}S"'(o,-""') /tv) 

N' "" ..... o ( tV/.S<>I{O, -oo) / ,V) 
(8.1') 

The matrix element in the numerator is 
e( ,., o< M = ( tV/3('f+'C,tf}'(J{o)S (q-oo}/N) = 

1 . 
....:> D - Sf_-1 f 0 'f 

= -if?;; (-l'a.vAmo) :Jot}:, ~·ldJ9 €~"flj 'lJ_1rls.fo<SfA(S)J7Jt(S-lj)" 

(8.2) 

{ . 1jj'f . O((~.~S"J,}rr.q } 
"'.eyp - ![ Jofr,dsa~ • E{S',-lj·J.1(s,-Sz)E(S2 -lj) • 

I _..., J"'' 

The matrix element in the denominator (8.1') is obtained in an analogous manner 
"' - ~- 'I M = ( N/.S<>~{o,-oa){N) = L (-z'~Aiffo) "r 

2 fAO 
where (8.3) 

o<,__,; • ~ o<,J',+J'z) 0 J•l ::..~ ' 0 "' 'I 
4 -:_ J:1i·~·"""' dr., fl. ,., J Uf { _, ~[fds,«s~ e J[fc{J,-lj)tJ(s,-sz)c{Sz·lj) j 

The integral of the· exponent, is equal to { by '"§, >Sa > ... > S 'I ) 

• . • .z 0 C>((J',+.S's.) 'I 

L (J;, ... ~""f;) =- '!f ffris;dsa e .[fc(Ii-?j)t:I(Sf-Sa)E(sa-lj) = 
1 -- J -f (8.4) 

'I • q .f-( • l'r ,.,) 

t [ "' f t&Jli "' '""" f- -r(..)•P··u J =-£>' ~(;.~+-L)- q:z.L:-, 'f+£....l·J~ +2t:...;.L.c-; R 
If. T {,.) I "" 0 K (.J .lrT( 1•3. ,., .. ( 

., 
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The first component in (B.4) is identical for all the terms of the series both of the numerator and the 
i " '". 

denominator. Therefore, it reduces. Calculating in (B.2) the integral overS, we get 
, ' . . ;. . . . ~ 

o( 2 " . o{ . oO 'l 0 7;~ ot.:El. 
M =- £ "'-. . M - ·'"""(:-z'S. Afl?.} fd~ fc( n f=• ~ lit 2 4-- c.1 2 I 12 L.__. "' • .r ~~ ·.. Tr -c >< 

I( . r=r -"""' -o.o . (B.S) 

. ~ ~-r'O~ + • ..... 2 ) iWIJ [ la (J1,:··r Jr)j• 
. lf 7Jl? .I .• I . 

Consider now the q-th term of the series (B.S) 

0 ~ q . 

) 
r-r <>{~" G 7} ) . f . . . d-r fc!rf j~• 1 i 2-r +- e¥/J LCl1r·,f;,)l= £Zr-,-i"U1'Cr (B.6) 

)~ .... }f o'f1 • .. or., 1 ' f . . · . · 
---=- -0.0 

Further, by substituting (B.6) into (B.S) for £ N , we get according to (A.l) the expre~sion 
"""' '7' 

~z. ., .. . ~ (-tO,.,LJ.M.) ? '"r 
[ = m-- 'I:) 2 + &.... rzot . .·. '(B.7) 

N o 2 ~ CJ Oo{~o ~ 1 
K . L, {-z·~Ll1<1o) ?7 

r""" 
Dividing in (8.7) a series by a series by terms, we _exclude thereby the phase factor in each order of At11 
This allows a limiting transition by ex. in each order in Am (see Appendix A). 

Finally we obtain 

C>O oO <><> '?-1 t: = m,- :
2

~ c.J', + L {:-i~.tJm)" Jot)(, ... fc~x,., 1!{1-q) ;;;/ ('tr·•)('f_,)) (B.8) 
. r=r 0 0 e~( . 

where r:;.·f_ is given by (A.S). From (B.8) immediately follows (6), if we take into account (A.9). 

Appendix C 

(C.l) 

(C.2) 
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oC> oQ 

1£ ( ·f -E{Jr,+,.,.,.Ks) 
s = Jtt"l··· cit<, e f: {Y,, ... ,x,) (C.3) . 

0 0 

Substitutinq these relations into (13), c~anqinq the order of Sl!IIII1lation in the sums by q, f and ~· and 
replacinq the summation indices (the calculations are simple, but somewhat cumbersome, therefore, we 

.will not qive them here ) we qet 

8m~=t(Am/J/ =f c-;:l[f.. (am>'J/}t+f 
1=" ~-o r=o 

where 

_... 00 f 
- C ( f. -C(If,+ ••. ..,_,Y) . I, = )'1~ ... r/1('1 R JT(I-qJf; {~, ... ,';(,} 

0 II . J"'(. 

Perform formally the summation in (C.4) 

b"m' =+": . f t>· .. ,r .r,J' r 
Since f ( c) 1 · I, ~ I, , ·then 

[ tJ""f [ -E 1 d,., c ~ ~ "'" { -A,., 11 =' 1 - Am 11 

.The summation in (C.4) is valid if £ satisfies the conditions 

t' 
AmJ, <1 

.. ~m · c y<1-Am1, 

from which the second one is stronqer. 

(C.4) 

(C.S) 

(C.6) 

(C,7a) 

(C,7b) 

.J) ..... 
"' 

(I' 

r 
.... 
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.\ p pend i x D 

As we are interested in the behaviour of the Green function at small times ( fAt c::.< 1 ) then the 

functions in the exponent may be replaced for their asymptotic expansion for small arguments. 

· a { -t"wr z. z. 
q L_-l e =- 6 /!.{z"fl) ... G- (£2 -C-f} o~- ()(t<T) 
q - c...J 

I< 

2 . 3z. 
where C is the Euler constant , G = '27i. 

'Replacing fl,lrther the integration variables in (D;l) lj = .f f · ~ 
asymptotic expansion (D.2), we get q 
. q 

1
_2(;a[fJ 2G2(C.2-C-f)[2 ] 

~~=f~)~~ e ~ 

I., 

Make the following substitution of the variables in the integrals 
t 

X = TTi!. 
' (. . i"' J 

then we obtain 

(D.2) 

and substituting there the 

(D.3) 

(D.S) 
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It can be easilY. seen that the integrals are convergent at the upper limit, provided 

26! 2 < 1 or 
L 

L <I 
:Jlt 

To estimate the upper value of I;, 11 we use the inequality 

1-X ~ 1 -- " 
-1~~ 

by 0 ~ )( ~ .( J () ~ f ~ 1 

The estimation yields 

' . .f 2 .. (t-~'J-1 2h 1 . . 

1 < 5 di!,· ?, . rr f (2 .... ,-ej(l-~'}-1 -2.GI. 
211 ·"' c t-r.)G.. d?~?~ · {1-zeJ 

0 
. I P=2 0 

The calculation of the integrals leads to 

L ~ {(f-Gt;P(t-2Gl.J]
2
.,r({2h+l){t-b')-f) r rrr-6"'). ]2. 

211 r('-2:'-l· {. 1-G'- I Lr((2n+t)(t-G') 
· t- u I 

When n · is tending to infinity the inequality.has the form 

(D.7) 

(D.B) 

(D.9) 

(D.lO) 

L [P(t-26'-))2.11 (f-G2)2."[f{t-6/]2.! (f-26/'~26'}}211+( 
z., ~ f((2h+t)(f-t(;'JJ · r ( ;:.~j ( 1_ G'J2(1.:26cj (D.u) 

by 
(Zn+1)(1.:.2Gz_}.>> 1 

The presence of the factor i{(Zn4){1-2.G'}} in the denominator in the right-hand side of the 

inequality provides the absolute convergence of the series (D.l) at small t (;d~~f}and A IT1 

is arbitrary and 8h,z < 1. 

The estimation of th~ odd numbers 12.,., is made in an analogous rr.anner and yields the same result. 
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