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Abstract, The properties of the scattering matrix are investigated by
the axiomatic approach, without the perturbation theory. S-
matrix is presented as a series of the normal products of
asymptotic field operators, Formulae are established formal-
ly expressing the coefficient functions of such an expansion
in terms of chronological products of the current operator and
some sequence of operators A , Some infinite sets of coup-
led equations are also derived for these coefficient functions.

1. Introduction. thatlons.

The usual approach to the quantum field theory based on the Hamiltonian formalism encounters a num-
ber of well-known difficulties. The most important one is the impossibility to go beyond the lim_its of the
perturbation theory: one 6f the basic stones of the theory - the removing—of-,divergences prescriptions -can-
not be even formulated otherwise than in terms_of successive powers of small coupling parameter.

This circﬁmstance has stimulated the attempts to attack-the problem from the very opposite end. Namely,
‘instead of writing down the Lagrangian or the equations of motion and trying to solve them, one attempts to
formulate those physically eviden't basic requirements which the solutions must satisfy, and to find all
the totality of solutions satisfying these requirements. Assuming furthermore the perturbation theory and

the hypothesis of the adiabatic switching on and off the interaction to be valid such a methed was systema-
tically employed by Bc.":golubov1 and by Bogolubov  and Shirkov 2. It may be seen , that this method
leads then to the conclusions essentially coinciding with those obtained with th‘e'chmiltonian one.

Without these simplifying assumptions such a methed - it is often called *'axiomatic’’ one, though this
name doesn’t seem to us the best - has been intensively developed recently in connectior. with the disper-
sion relations - the only exact result in the quantum field theory.

The basic physical principles of the axiomatic method may be formulated in different ways. So, for in.-
stance. we could require from the very beginning the Helsenberg fields commuting on any space-like hyper-

surface to exist at each point. The attempts in this direction have been made in the papers by Lehmann ,
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Symanzik, Zimmermann and other authors (-see®*® and numerous further investigations ). On the other
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hand, we can follow the programme suggested by Heisenberg and restrict ourselves to treating the scat-
tering matrix.. The latter way was chosen by Bogolubov, Polivanov and the authors* in connection with
the theory of dispersion relations.

It i{s to be emphasized at once that we are not quite exact when saying weﬁfollow the original Heisen -
berg programme. In point of fact, the manifold of objects under study and the system of the basic physical
principles will now be wider, but the class of the admissible theories becomes more narrow. Namely, the -
Heisenberg programme is dealing with the '‘on - the-energy-shell’’ S-matrix ele ments only, which correspond
to transitions between the asymptotic stable states, l.e. transitions in which the total energy and momentur
are conserved and the squares of all initial and final 4-momenta are equal to the corresponding masses. The
manifold of such matrix elements can be expressed as a functional series of the form PTDR, eq. /2.14/ in
the creation and annihilation operators or, instead, as a functional expansion of the form PTDR, eq. /2.15/
(or eq. /10/ below ) i.e. expansion in the normal products of the asymptotic fields satisfying the equation

(0 -md) ¢ (x = 0, | ' (1)

However, we cannot formulate the condition for exact causality making use of the scattering matrix on
the energy shell only (one may see this already from the fact that we can’t construct  a four-dimensional
S-function from the solutions of equdtién (1) ). Hence, it would be impossible to distinguish between the
theorles with the exact and wlith’vtvh‘e macroscopic causality, To be able to formulate the exact causality con=
dition, one has unavoidably to extend the functional expcmsioh (IO) and to treat {t as defined on the class

of arbitrary functions ¢ (x) not necessarily satisfying the equation (1).

N

This brings the method of PTDR closer to those adopting the existence of Heisenberg fields. In the
latter case, however, the class of admissible theories becomes still more narrow, there being no need of it

physically.

We shall start from the system of basic principles as formulated in PTDR, Sec.2. For the sake of sim -
plicity let us consider one self-interacting scalar (or pseudo-scalar) field

— s sl (e () + o x () y; (2)

(2_77)3/2 vV 2k ‘ '

B(x) =

=+ I_‘_2+ m2.
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* Hereafter referred to as PTDR.



t)
Here a( (k) are the creation / annihilation operators for the asymptotic particles (strictly speaking out-

particles), with the usual commutation relations

[Nk 3, & (N =8k =k ) . ~ (3)

Let us assume that there are no bound states. Then one may take the manifold of states such as

Ik, 0 k> = a(“)(_lgI) v aP U ypos (4)

as a complete; system provided by the requirement PTDR, I, (4) . Thén the equation

e 1 . —
AB >= me— e een L oee ' ’
<a | AB|B>=% - [ds...ds <al|s, s ><spyew s BIB> L (5)
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holds for amy two operators A and B.

We shall write the four-dimensional Fourier-transformation in the form

-ikx = - ik , .

F) =t [ Ryl F ()= F(x) dx. (6)
@em)d . . ’

and exploit similar formulae for many arguments.

Define

Qem () |05 ==idNx=y ) ;

[$(x), $y)]=~iD (x -7),. (1)
~<0|¢(y ) (x) | 0> =—iD(*) (x-y);
Then by eq. (2), (3) ‘cmd (6),
0 = 2niok) 5«2~ m?);
D)= 2mi EGEO) 5k 2-m 2); (8)

D (k) =~ 20i0 (k9 8 (k 2 -m? );



Note, that in our notations

(B06e) 17 =0W(k); DO =D (k) (o)

DO 1* = DW (x); PO ex)= =DM (x).

2. Some Properties of Scattering Matrix.

The main quantity we are going to deal with is the scattering matrix out of the energy shell. We shall
write {t down as a functional expansion in the normal products of the asymptotic fields

f dx g di (% ey B): b (%) won b (%) £ (10)

Here T(he coefficient functions @7 (: x~,...,‘xn ) are c-functions symmetrical in all their arguments. Let us
emphasize that we don’t intend the functions ¢ (x) here to be restricted by the condition eq. (1).Per-

forming variational differentiations one may obtain from the scattering matrix a sequence of operators de-
pending upon the sp ace - like points. However, it is more useful to consider not the variational deriva -

tives themselve s, but the radiative operators:

5%
sx,,..., %) = s" (11)

8 (x;) oo S 9(x,)

Now ,we are going to prove some Lemmas which establish the relations between the vacuum expecta-
tion values (VEV) of these radiative operators, S-matrix’s coefficient functions and their matrix elements.

Lemma 1. The coefficient functions of the scattering matrix coincide (up to a factor) with the VEV
of the radiative operators (11) ‘ '
N 5" s + 1 (1)
o7 (%, x)) =i O] e § T{0>= £TOSx, L, kIO, (12)
n BqS(xl )... 8¢ (xn‘) ’

.

Proof: Taking the n-th variation detivative of the expansion (10), we get



8n S g . ("i)v V( )__Z'__ 8( ) 8( y K
Sex... 56 am) Sz [dzp.dz @1Z4,...,2 Vit zpxp). 2= X )2 (2, 1),.,,4, (z,);

n v!
or after the renumeration of the variables

ans o V

00 (-1) '
= ()S e (dzgenndz O X%, 2gyeen2) 12 LBz )
895(!1)...896()!") A Jdz, ‘v e X 24 v ¢1 #lz )

After taking the VEV only the term without normal products survices in the right-hand side

N
s
iﬂ <0‘ : l0>.= in('i)n q)n(x yeeey ),
8p(x)) ...8¢(x, ) 1

Thus, to prove the eq.(12), it remains but to introduce the operator S * under the VEV sign in the left-
hand side. This can be done in virtue f the vacuum stability condition PTDR I, (6).

Corollary : The scattering matrix can be written down in the form

s § 1 o | ans .o . ,
Bitaliaey: b St Ry ST glx,) L (1) 2 (13)
' 8¢(x1). . Splx )

Lemma I expresses the coefficient functions of the scattering matrix in terms of the VEV of the ope -
rators (11). Let us now express (on the energy shell) the matrix elements of the S-matrix in terms of the
same expectation values as well. To this end we will establish the

Lemma 2:

‘ . PR/ Kk k
- # min(n,m) 1" n-s 1 *m-s
Lyply Tk, k= = B YP( ) PGk, peerky)-
‘ s=10 Cr-ss1reeobn k ok m-s+ m.
‘ a m-s+1’""*’"m
i - - - ’ : (14)
T S P A | _
&
x - Zky
d . dty_odyy oee Y g : p7tm ~2sg .
of : O 5 ( QS"”;
Sngm _ 3 s 5d(x)) dlx, ) 8y ; 1Bl
@m) % /2?’1 w200 2k a2k n-s m
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Proof : Consider now the matrix elemént. {@,,_ 1S | k PR which, according to (4), may be

written as

<01a(€1)...a(2 2 S a’f(kl)...- a( k)10>-

If all the momenta -I:"cmd‘ E of various groups were different .we could push them 1mmediute1y through
the S-matrix by means of theformulaePTDR (2.20). Then one would obtain the expression PTDR (2.21).

However, we cannot restrrct ourselves to this case only since the commutations (3) being singular,

the cases of coincidence of some f with sgme k will bring nonvanishing contributions to occasio-

nal further integrations.

Now the coincidences of-é and I? give rise to some additional terms. Namely, each of the creation
opercxtors a (k) may contract not with the S-matrix, but with anyone of the annihilation operators:
a( Z ). Hence, it is evident that the whole expression for the matrix element considered must be composed
of a sum of terms of the Torm PTDR eq. (2.21), the order of differentiation being successively decreased
by 2, and the factors "6 ( i- P ) Gppearing accordingly,.

For writing down such expressions explicitly it is convenient to use the symmetrizing opera-
. n/
tors introduced in 2 . The first of them P ( -—~—£—-—-——-— ) prescribes to sum over all the possible ST
s+ 1reer%p * :

divisions of the setlx 1101 %y } into two subsets of s and n-s elements. The divisions differing only
by permutations inside one of the subséts, are to be counted only onee . The second operator P( xI,,,,,x)
denotes the sum over all ! permutations inside {x gr e X, } . It is easily seen that In terms of such
Opercxtors the sum mentioned above takes just the form ot (14) * (the factor ¥ may be put under the
siqn of the vatuum expectation value due to the vacuum stability), ~ The upper limit in the sujn over §
in the right-hand side of (14) is determined by the number of tha creation and Aannihilation operators;

The first summation over symmetrizations P corresponds to dividing the whole set of annihilation ope-
ratprs into two subsets: those contracting with creation operators and those contracting with the S-matrix;
the second summation P (km -5+ 1:---’1‘,") corresponds to similar division of the creation ooerators.
Finally, the last sum comes from all posslble different combinations of the operators af f ) and at ( k )
tobe contracted..

It is clear that the formula analogous to Lemma 2 will hold also for the -matrix elements of the S-matrix
variational derivatives of any order - the additional differentiations will come, unchanged under the VEV-
sign. The situation will be quite different in case of the radiative operators (11). Due to the factor stan
additional expansion in the complete system of functions will be necessary, and the formulae become much
more troublesome, Exceptional are the cases when the ket state is the vacuum or one-particle state. Then,
in virtue of the stability condition PTDR, I, (6) the operator S+ can be absorbed in the ket, and the proof
will be the same as for Lemma 2. Thus, one can formulate two more lemmas

o mmmmissevessenescisssescosnesrrretecine

* Compare the technique developed in 8 . Its application would make it possible to replace the
reasoning by calculation (to say the truth, a complicated one)



Lemma 3:
,i%,lﬂ X
<E Z_. (x) dx,...dx,e 0 s(" + n)(z
o nlS (’1,'---")'0>=f = I~ <0] 1,...,z4.x1,...xn)[0>_ (15) .
@5 V2 V2hy

By complex conjugation we obtain

Corollary :
7
-inky

w6) - > dyl'" dyme +(n +m)
O (2 2) kg o by > = QS (Zpenz, ypeyy) [0 (16)

©ens \/27<1'°....\/2k,;

Lemma 4 :

n
if(lx - ky)
I)a+m-1( )
[} Z .
8(at+1) e Ey XXy yH

@ 3 Ae.Ao2 K

a +.1 r‘dxl...dxn dy e

->

<2 Z—» (,‘) [: - ‘4+
peeor Ll S (21,...,za)l.>—('1)

1 (17
n-
i?i‘, ¢ x
£, dx,...dx_ 0
1°*** "n-1  +n-1 17" "n-1 n+n-1 > >
+ P(“’E“‘""“"’ ) (-1) o) o (21:---;24,1! reeer Xy )8(@ n k) .
2 o] o]
" (2q) \/’221 w202

Taking the complex conjugate expression one can obtain from here the eq. of the type of eq. (16).

Up till now we were not concerned with the causality condition. Under the main assumptions of PTDR
it was expressed in the form

5 85 . sV .
54(x) ( 5ay) > 5% (M - (18)




‘10

(The inequality slgn comes from the fact that we.consider the asymptotic flelds ¢ (x) to be out-flelds .
For the in—rﬁelds it would be replaced by the opposite one). Let us prove some new relations following from
it. )

Lemma 5 : It follows from the causality condition Eq. ( 18) that

5 (n) : (19)

) ) eeny = 0,
salz) o O

if

. x < { Y freees Yni ' (19qa)

(The symbol (19d) means that the point x is earlier (or space-like) with respect to all the points yi,,_,,y )
"'n

Proof : Suppose the Lemma is valid up to a certain N. Then

o ' N » ~
) 5 S ) N : -
("““"""‘"“— ) )=0; if X < { y seeey Y } (*)
(x) 890y ).Bry) SR
Differentiating this equality over ' ) (yN ), one obtains
+1
) . N +
N+1
5 S ) b 5 S . 558
) ( — Y .5 Y=0,

: F S
Sp(x) Sp(x) 54(¥ ,)...88(yy) 5¢(YN+1)

8¢(y1) "‘8¢ (YN+ 1 -)

Henée, making-use of the unitarity, PTDR I, (§) and performing the differentiation over ¢ (x), one
finds that )

N +1

N S ) . .

5 ( 2 s ) ( s s 8s §t
———— = . . . +
8p(x) 3By BBy, ) sy 8y )by, OH, )

, ’ |
5 S + ) 58 +
; S - S

+ —_ © S
1] : 1] 1] ‘
b( yl ) (yN) b(x) ¢(YN )

+1
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The first term vanishes here by( ) , the second one - in virtue of eq. (18), if we require that x < yN+ 1
So, if (%) holds for n = N, (%) holds for n = N + 1, too. Since (%) holds for n= 1,
Lemma 5 is proved by induction.

Lemma 5 allows one to increase arbitrarily the number of internal arguments in the causality condi - ..
tion eq. (18). It is also possible to increase the number of external arguments : :

Lemma 6; It follows from the causality condition that

m

: :S(")(YI,...y,,)‘ = 0, : : (20)
Op(x )... d(x,) .

if, at l’ea_st for one 1 _< j <m,
X<l Yoy ) . - (20q)

The proof is evident.

Both the original form of the causality condition (18) and the corollaries theréof, eqs. (19), (20) con-
tain not only radiative operators but their variational derivatives as well, In -some respects that form of
the causality condition is more convenient which includes only the operators 7( 11) themselves. This form

is analogous to the / ‘integral’! causality condition of the perturbation theory ' . Such a form is established
by

Lemma 7 : It follows from the causality condition that for any 0 s < n the radiative operators

Sn( X frenes xn) are factorized in the form

SOz = 90, e C RS SO
1 s s+ 1 ]n
if
{x .. x '
le, ’x]s } >4 X; s+1,.." o (2la)

holds



Proof : Suppose the Lemma is valid for 7 < N and let the argurﬁenté { x’I,,,,, xIV 1} be such that

+

}. (=)

{x, 1oy X 1ot x y X
A veey X,
I1 Is js +1 TN+

Expressing S(,k) as usual in terms of the variational derivatives, write down the identity

N+ 1 ' ‘ N
) S + 5 'o‘S ) +

S 8= ( TS ) -
.8¢(X1)...8¢(xN+'1 ) 5¢(xjN+1) 5<75(xj1')...8¢(xjs ) 8¢(xjs+ 1)",5¢,(xjN)

v |
5 S N st
, st s—-

BB(X, )oSb(xy ) BB(X,  )eesSb(X; ) 56 (x. )
jl js js-rl Ty ' ]IV+1

By supposition , Lemma 7 {s valid for the radiative operators of the N-th order. Therefore, one can pro-

" ceed by applying the Lemma and performing differentiation over & (xj ) in the first term :
N+ 1
' N-s
5 8% S . 5 S
‘ ( ) S+) . g S+ +
8¢(xjN+ 1) ,5¢(xj1)...5¢(xjs) . 8¢(x‘is +‘ 1)--- o¢ (ijV)
v BSS ’ .OJV-S +1 s . ' 5 S S R
+ st - St — s
Ob(x; )... : Sd(x . )..5¢(x; ob(x, )...
Bxj ).wbb(x) ) Bx btz ) B )45 )
BN-SS ’ 5 S+ 5 SS SN-SS' lo\s+
' . - st sts .
Sé(x * O(x; ) Od(x, )..5 S OP(x; )., S p(x;
al To+ 1 ) 8¢(xjN ) o IN+ 1 ) o 11) ¢(xjs) i ]s+1) 8¢(’3N) N+ 1)
Here the first term vanishes by Lemma 5 as the point xj‘ belongs to the second group in (=) ;

+
the last two terms cancel s Retuming to the operators S( ) , we see that the Lemma holds also for n= N+1.

Sifice forn=4 it is trivial, Lemma 7 is proved by induction.
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The integral causality condition eq. (21) is not only necessary, but also sufficient for the fulfilment
of the differential condition, eq. {18). Moreover, to obtain the latter eq. (21) must hold only for n = 2.
Indeed, let us perform the Vvariational differentiation over ¢{x) in the left-hand side of eq. (18):

B N 2 R -
8 s & s 88 ast
« SN, 5t :
op(x)  dé(y) O (x) 6(y) 8¢ (v) L B(x) .
The first term, by eq. (21) is.equdl to
6 . 8S + .. 88 + 8S +
t S $7if x <y and -8 S i y < x,
Sb(y) & H(x) 8¢ (x) o¢ (y)
' ) : 58S 84S +.
whereas the second one- in virtue of the unitarity - will always give - st - 8 .Thus, we

. dé(y) d¢(x)
see that once the eq. {21) holds, then

| 0 8s o 88 &1

. , - X
5 . 8 He 340 " s4ry) _
Sé(x) ~ S(y) -9 . (22)

v
~

i

Thereby we proved

Lemma 8 :For the differential causality'condition to hold it is sufficient that the integral causality .
condition would be fulfilled in the form :

e < (2) : '
(XI’XZ) = S( )(ij )S( (xj ) if X, > . x (23)
\ 1 2 1 - 2

e
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Why is condition eq. (23) sufficient for the derivation of eq. (18) , while in perturbation theory it had
been necessary to require 7 a fulfilment of the integral condition for all n ? The reason is that now our
radiation operators S'" depend not only upon the arguments Xppeens Xy written in explicit form, but are the
functionals ¢(x) as well . This latter functuonal dependence connects the operators g~ of different orders

with each other.

The results of the investigation we have performed may be formulated in the form of

Theorem 1: The causalitg conditions in the forms eq. (18) cmd eq. (23) ore equwalent. The relations
between the operators - S follow from e1ther of them These relatrons are expressed by eqs. (19) (20)
and (21). ’ : : :

3.Coupled Equations for the Coemclent Functions.

Various forms of the causality condition obtained in the previous section were the operator equations.
- ‘In many respects it is better to dedl not with the operators but with the c-functions - the coefficient func-
" tions or matrix.elements. The relations proved above allow us to derive a number of equations for these
functions.

Note that the causality condition in the torm eq. (21) may be written (by neglecting possible coinct -
denms of the arquments, cf. below) as the equality

n
8 S Z gy eeny Z
=P (1t YO (2penr 235 24 4 groves %)
8¢(21) ..-8¢(Zn) s+ 1’ zn
(24)
858 shs g
. st st
5¢(21)...8¢(zs ) 3¢(Zs+1), 8¢(zn)
where 0 (zl s B 2 e z,) is'equal to 1, if all 21‘3.;., zs,° . are greater than’all zsil'"" zn"‘

and is equal to zero in the opposite case . If one takes the VEV of this equality, then in the left-hand
side will appear the function (-i)? ®7(z 1-,..., Zn)) by Lemma 1. On the other hand, the right-hand side
is tobe expanded in the complete system of states making use of eq. (4). In doing this, we teet

two possibilities.

If the first subset in eq. (24) contains only one argument s =1 then the unitcxrfty property of the
S-matrix makes. possible  to put the first factor of the right-hand side in the form
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5s 58
— =S e
59-"(21) 5‘#’(21 )

. X . . *
After this by the Corollary of Lemma 3 it may be expressed  in terms of the functions ®Y (z e z,)

The second factor will just have the form reducing to the coefficient functions ®Y by Lemma 3. Thus
we obtain '

00 1 L L
Z9eeny Zp) L — fdxl...dxmdyl...'dym
22,..., z, m=0 m/! ’

. z
‘I)n(zlr---y zn) =P( _"'—l"‘"‘) 0 (21,'

> -»>

ol
d’cl... dk,, 1;-‘-112 k(y-x) m+n'1(x

-

*m+ 1, '
® . 21:}'1;---: Ym) d 1,--.,xm,z2,..., Zn)

3m [o] o
(27)7™ 2k 1o 2k

Noting now that according to egs. {6), (8), the integrals over each of k

R R 17 R TR VR
@m3 ° %] ° oo

reduce to the functions fDH (y-x) we are led to an infinite set ot coupled ecjuations for the functions @

z] Ve, w (-7 o
2y -zn s (21‘;’;2?,.’..,7 Zn)&zi ey :fdxl...’dxmdyl...ffyni :

DUz, 2) = P

(25)
. (I)*I +rﬁ 7

-ZI’YI’"'" V! fD(-) (YI-:?I) ...fD(-) (Ym-xm) it m (XI,..., X Zgrees Z) [

This set is anqlogous' to the /! system A !/ derived by Lehman, Symanzik and Zimmehncm/4/ starting -
from other basic assumptions.

Another possibility, or, to be more  exact, another set of possibilities is realized if we choose
1< s < n-11in(24). Then the unitarity condition may not be used to bring the first factor of the
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right-hand side of eq.(24) to the form allowing the application of the Corollary of Lemma 3. In order to re -
duce the right-hand side to the functions .d¥ we have but to resort to the division into three factors, i.e.,

to use the expan sion in the complete system of states two times. Then we shall come to the set

. n ' XI,..., Xs o0 00 oo ) R Sy
(1) Xpy waXy) = P () O(Xpy00ey Xgi Xy proves Xg) 0 20 S L.
X e X A= 0= pu=0 oy fop!

.-fdzl...dzrdgl...dq v,f du’y...du’, dvl...dv#fdz'l...dza’ dv’y .. dv’“ .

. rI)S+I'z +V(x

) Zy Uppeery 1, ) ‘.D(-)(ZI- 21“)"' o) (Z;-z'n) i)(-)(ul-ul‘)...@(-)(uv -4l .

1o XS,ZI,... 2y

* (26)
. U (v, v, ) 9(')(?1- vl) ...3)(') A(V# - V#') .

t
youry U v Vipeeos

o MS A ' :
)] z ¢ .
o (z' Py z? ,VI, ,V‘#, xs+1 ,...‘,xn)

(strictly speaking, this is a set of sets correspondingly to the choice of the value of s). The structure of

the set obtéined may be yisua}ized by the graphic schgme

Fig. 1
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An infinite set of eq. {25)-is much simp ler than the set, eq."{26). However, to find the functions CI)V
one cannot restrict oneself only to this set. The reason for this lies in the following , very essential
circumstance. When in the previous section we wrote down different forms o f the causality conditions
eqs. (18)-(23), we have always used strict inequalities between the coordinates - e.q., the equality (23)
is valid only if x < %, or if P < x°, butnotfor x = . x_. ‘Therefore , expressions (21) or
(23) determine the functions ®"(x.,..% x. ) * not for all the values of the arguments:if any two points

entering different subsets in the :Dnditionv 2la (or two points in condition (23)) coincide, then the corres-
ponding value of ®"remains undertefmined. Therefore, it is necessary to int_roduce additional terms

("'counterterms' 'Y in the right-hand sides of egs. (25) and (26). corresponding to such coincidences of the
arguments™, '

A consistent tre atment of these counterterms seems to lead to great combinatorial difficulties. If, .
however, we shall allow ourselves to use simultaneously the sets, eq. (26) for all the values s, then it is
easy to see that a set of points x Xy will permit no divisions eq. (21a), only {f all of them coincide. In
other words, for each function. ® it will be necessary to introduce only one counterterm - the remaf -
ning one being taken account of automatically by one of the egs. (26). At the same time, however, one
has to resort to a peéuliar “'squilibristics’’ - to obtain one and the same function it is necessary to use
different sets of equations depending upon the value of the arguments.

Still another set of equations may be obtained from condition eq. (23) which, according to proof, is
sufficient for the fulfilment of the causality. A great advantage of this set is that it contains only one
g~ function. Therefore, one may hope that the combinatorial difficulties will disappear. However, in this
case one cannot restrict onese 1f to the VEV of the operator cond ition to obtain a closed set, it will be -
necessary to consider the matrix elements between dll the states. Such a set was studied by M.K. Poliva-
nov and the author elsewhere. ‘Therefore we will not write it down here.

................................................................................

* The formal use of the sets , egs. (25), (26) without taking account of this circumstancé, may lead to
well-known divergences. They arise due to the multiplication of f-functions by the functions insuf-
ficiently reqular near zero. As shown in PTDR, sec. 4,5 this is equivalent to an incorrect application
of the integral Cauchy formula to the Fourie r-transforms, not t_ending towards zero at infinity.
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4. Functional Expansion of the Scattering Matrix

In the previous section we established some infinife sets of coupled equations for the coefficient
tunctions oY, entering the functional expansion, eq. (10}, of the scattering matrix {n the nofmal
products of the as'yrnptotic fields. An attempt to solve these equations even approximately, leads to
enourmous difficulties. Yet we shall s ee now that some evidence about the functional expansion may be-
obtained in another way. Indeed, we will sho‘w that all the coefficient functions may be expressed in
terms of the VEV of the T- products of a certain set of operators. At the same time it will turn out
that the structure of the functional expansion (10) closely resembles that of the functional expansion
in powers of the *’switching on and off’’ function, or roughly speaking, of the usual perturbation theory
- expansion. ! i ) o

Let us turn cxgoin to the radiative operators eq. (11). The causality condition is expressed in terms of
of them by eq. (21). On the other hand, if n  variational dxfferentiotions of the unitarity condition PTDR,
1, (5) are performed then the requlre ments

Xpree *nom (n-m)

P( ) S (XI;"-: X s(m) (x nem 10" xn) = 8210_ (27)

8
o

youes X,

X
N1 n

will be imposed upon the operators S(n)

Now we may forget about the way (11) of forming the radiative operators S(n) and set a purely alge-
braie problem of finding a general form of the operators ‘satisfying the condition (21) ‘and (27).-Now, the
conditions (21) and (27) are just those imposed on the operator coe fficient functions entering the

* S-matrix expansion in powers of the !/ switching'on and off function’’ a(x) (see (18 1 , eq. (1).
The condition (21) coincides algebraicolly with.the / 'integrol causolity condition’! . /7/ from ., whereas

condition (27) is the unitarity condition /18.9/ from

Thus, it turns out that the problem of finding a general form of the radiative operators S( W is iden-
tical with that of finding a general form of the coefﬁcient functions of the scattering matrix in the pertu I~
bation theory. The latter problem has been solved in , and , just for case of the causality condition

_analogous to eq. (21), in 7. It has been shown that all the condiuons (21) and (27) are compatible and ,
each of the operator functions 'S (fﬂ (x,,...xn) _1s_expressed in terms of the lower order operator functions
up to its anti-hermition part for all argumentvsm coinciding . "This latter may be given arbitrary value.
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Therefore, in our case the general expression for S(n) will be of the form

S(")(xf"" x) = i)t TIA (x)) ... Al(xn»).] +

S — P(Xgyeeny X . X ey X seelX
— %y | v erm Ny +v2| ‘VI ST ANPES

Xx_)e
; (28)

-TA, [(x yoser xvl)...A (x

Vip Viteestvp (477

xn)
m . '

where P(xl’,..., 'S IR x) -

Y1

n! . , ’
is 2 the operator of summation over all possible e divisions of the set of n points
i VJ', "ee l’m !

into m subsets with Vp Voueen v Points in each,

—

The operators AV are arbitrary operators with the properties :
(-1) locality : ‘
Av(xp o x) =0 except the case Xy = K== X, (29)
( 2) hermiticity

+ . .
A V(xll"lb XV ) =AV(X1,..., «XV)_ ’ . (30)

( 3) symmetry _ |
Av(xa’ revey xay) = AV (xl,n-: XV ) 7 (31)

and (4) commutativity in spacelike points:




They reflect the just mentioned arbitrariness of choosing the values of the radiative operators S W) for the ooincndmg
arguments. The first of the operators Acoincides with the current operator -

A (9= in) = isP) (39

There is yet one point to be emphasized.When using eq.(28), it is to be understood that we fix somehow for
each v the arbitrariness contained in the definition of the T-product for the coinciding arguments (the inte-
gration rules near zero).In doing this we should keep the unitary condition fulfilled.Only after this do we

add the operator A,,. Therefore, one can say that the operators Ay, contain'all the arbitrariness of the T-pro -
* ducts. They play the part of the counterterms which were told about above in connection with infinite sets of

equations. Should we not like to’ separate the counter terms, then it would be sufficient to restrict our -
-selves in eq. (28) to the T-product of the currents, but-in every case of the coinciding arquments ‘the arbi -

tmrmess would arise

» Since (Lemma 1) the coefficient functions & of expansion (10) are obtained by taking the VEV of the radiative
operators S(ﬁ) ‘then, w1th the aid of (28), they rricxy~ be expressed also in terms of the successive operators

:cp"(

Xpoees xn)=<°|T Licxy) ... j(xy) 110>+
in-m v . . )
PP Pk X e Loy 2 JOTIA (Epeen® ) e, (nyx) |0+
2\<m~\<n_ 1 ! (1 xvll | Xn) l 'V‘I L Vm n)l |
Sv=n ‘ , k! |
. . (39
n-1 :

* Note, that according to our approach the counter terms. play a more noticeable role than in the perturbation theory.
-If in the perturbation theory they were essential practically only for the problems related to the infiniies and renor=
malizations, then, here, - as one can be easily make sure by using the perturbation theory expression- for the cur-
rent, the operators A with v > 1  will contribute to the processes which do not involve divergencies,
e.g.,"in the Compton effect in the lower order. This is caused by the fact that the main term here ((28) or (34))

..is T-product of currents, and not of Lagrangians. -
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5. Discussion,

Expressions (28) and (34) obtained for the radiative operators and coefficient functions of the S-matrix consi-
derably clear up the structure of the functional expansion (101 of the scattering matrix.  In particular, they may prove
to be a valuable tool for the attempts to find an approximate solution of infinite equation systems for the fUI'lC‘thIlS

9", Inno way, however, they can claim to resolve the fundamental problem to find a scattering matrlx without
perturbution theory, - :

Indeed first of all in the perturbation theory the expression extemcrlly identical to eq. (28) solves the problem
of only the formal construction of the scattering matrix. We have to speck only about the formal constructron since its
immediate cpphcrrhon would lead to the divergent expres sions when the arquments of the T—products cn1nc1de. Asis
well-known; a further step i is to impose the condition of the absence of divergencies upon the whole sum _analogous

to the sum eq . (28). At the same time one is able to demon strate (see ,Sec. 26 )", that such a condition may be

be always satisfied by approprlately choosing the arbitrary operators A In our case this would be still
done. : . Coe

‘However, the main difference of our formulae from the perturbation theory expansion consists in mrotherpoint. ,
In the perturbation theory the quasilocal operatorsA ,, are dependent only upon the coordinates xj,...,x,(strictly spea-
king upon the free field operators at these, coinciding points). ©  In our case the operators A depend not
only. upon the coordinates x 1t %, but dlso functionally upon HY) : -

A(xpe x) = A, (xpe0ns x| dw) ' . (35)

The same holds, evidently, for the operators S (n) . But we do not know. yet anything about this dependence in
detail; it is only clear that it. will connect the operators of different orders.

By taking into account this circumstence formula (28) expresses the operators s® for o certain Mfixed!! &(y)
in terms of products of the operators’ A, related to the same 'value'’. = therefore, in terms of A (... | &Y)
with any é(y) (the sum over the complete system!).Therefore; in order egs. (28), (34) could serve as a basis for
aolvmg the probiem ot finding the scattering: matrix without the perturbcrtron theory, it is still necessary to clecr up
the character of the fu nctional dependence of the operators A upon ¢(y) . This problem mcxy be the subject
of another investigation which will be performed elsewhere, v

In conclusion the quthor wishes to thank N.N,Boqolubov and M.K.Polivanov for the constant interest in the fnvesti-
gation and for a valuable discussfons.
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