ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Лаборатория теоретической физики

B.V.Medvedev

1

D-599

ON THE FUNCTIONAL EXPANSION
OF THE SCATTERING MATRIX
IN NORMAL PRODUCTS OF
ASYMPTOTIC FIELDS
ne но, $194, \div 40,63, c 826-838$.

B.V.Medvedev

D-599
ON THE FUNCTIONAL EXPANSION
OF THE SCATTERING MATRIX
IN NORMAL PRODUCTS OF ASYMPTOTIC FIELDS

Submitted to JETP

* V.A. Stekioff Mathematioal Institute of the Academy of Solenoes, Moskow, USSR.

Abstract

The properties of the scattering matrix are investigated by the axiomatic approach, without the perturbation theory. Smatrix is presented as a series of the normal products of asymptotic field operators. Formulae are established formally expressing the coefficient functions of such an expansion in terms of chronological products of the current operator and some sequence of operators $\Lambda_{\text {. }}$. Some infinite sets of coupled equations are also derived lor these coefficient functions.

1. Introduction. Notations.

The usual approach to the quantum fie ld theory based on the Hamiltonian formalism encounters a number of well-known difficulties. The most important one is the impossibility to go beyond the limits of the perturbation theory: one of the basic stones of the theory - the removing-of-divergences prescriptions -cannot be even formulated otherwise than in terns of successive powers of small coupling parameter.

This circumstance has stimulated the attempts to attack-the problem from the very opposite end. Namely, instead of writing down the Lagrangian or the equations of motion and trying to solve them, one attempts to formulate those physically evident basic requirements which the solutions must satisfy, and to find all the totality of solutions satisfying these requirements. Assuming furthermore the perturbation theory and the hypothesis of the adiabatic switching on and off the interaction to be valid such a method was systematically employed by Bogolubov ${ }^{1}$ and by Bogolubov and Shirkov ${ }^{2}$. It may be seen, that this method leads then to the conclusions essentially coinciding with those obtained with the Hamiltonian one.

Without these simplifying assumptions such a method - it is often called "axiomatic" one, though this name doesn't seem to us the best - has been intensively developed recently in connectior. with the dispersion relations - the only exact result in the quantum field theory.

The basic physical principles of the axiomatic method may be formulated in different ways. So, for In .stance. we could require from the very beginning the Helsenberg fields commuting on any space-like hypersurface to exist at each point. The attempts in this direction have been made in the papers by Lehmann, Symanzik, Zimmermann and other authors ('see ${ }^{3,4}$ and numerous further investigations). On the other
hand, we can follow the programme suggested by Heisenberg ${ }^{5}$ and restrict ourselves to treating the scattering matrix. The latter way was chosen by Bogolubov, Polivanov and the author ${ }^{6}$ * in connection with the theory of dispersion relations.

It is to be emphasized at once that we are not quite exact when saying we follow the original Heisen berg programme. In point of fact, the manifold of objects under study and the system of the basic physical principles will now be wider, but the class of the admissible theories becomes more narrow. Namely, the Heisenberg programme is dealing with the "on - the-energy-shell" S-matrix elements only, which correspond to transitions between the asymptotic stable states, i.e. transitions in which the total energy and momentur are conserved and the squares of all initial and final 4 -momenta are equal to the corresponding masses. The manifold of such matrix elements can be expressed as a functional series of the form PTDR, eq. $/ 2.14 /$ in the creation and annihilation operators or, instead, as a functional expansion of the form PTDR, eq. $/ 2.15$ / (or eq. $/ 10 /$ below) i.e. expansion in the normal products of the asymptotic fields satisfying the equation

$$
\begin{equation*}
\left(\square-m^{2}\right) \phi(x)=0 . \tag{1}
\end{equation*}
$$

However, we cannot formulate the condition for exact causailty making use of the scattering matrix on the energy shell only (one may see this already from the fact that we can't construct a four-dimensional δ-function from the solutions of equation (1)). Hence, it would be impossible to distingulsh between the theories with the exact and with the macroscopic causality. To be able to formulate the exact causality condition, one has unavoidably to extend the functional expansion (10) and to treat it as defined on the class of arbitrary functions $\phi(x)$ not necessarily satisfying the equation (1).

This brings the method of PTDR closer to those adopting the existence of Heisenberg fields. In the latter case, however, the class of admissible theories becomes still more narrow, there being no need of it physically.

We shall start from the system of basic principles as formulated in PTDR, Sec.2. For the sake of sim plicity let us consider one self-interacting scalar (or pseudo-scalar) field

$$
\begin{gathered}
\phi(x)=\frac{1}{(2 \pi)^{3 / 2}} \int \frac{d \underline{k}}{\sqrt{2 k^{\circ}}}\left\{e^{i k x_{a}(t)}(k)+e^{\left.-i k x a^{(-)}(\underline{k})\right\} ;}\right. \\
k^{\circ}=+\sqrt{\underline{k}^{2}+m^{2}} .
\end{gathered}
$$

[^0]Here ${ }^{(\pm)}(\underline{k})$ are the creation / annihilation operators for the asymptotic particles (strictly speaking outparticles), with the usual commutation relations

$$
\begin{equation*}
\left[a^{(-)}\left(\underline{k}, \dot{\prime}, a^{(+)}\left(\underline{k}^{\prime}\right)\right]=\delta\left(\underline{k}-\underline{k}^{\prime}\right)\right. \tag{3}
\end{equation*}
$$

Let us assume that there are no bound states. Then one may take the manifold of states such as

$$
\begin{equation*}
\left.\mid \underline{k}_{1}, \ldots, \underline{k}_{n}>=a^{(+)}\left(\underline{k}_{1}\right) \ldots a^{(+)} \underline{k}_{n}\right)|0\rangle \tag{4}
\end{equation*}
$$

as a complete system provided by the requirement PTDR, $I,(4)$. Then the equation

$$
\begin{equation*}
<a|A B| \beta\rangle=\sum_{s=0}^{\infty} \frac{1}{s!} \int d s_{-1} \ldots d s s_{s}^{\langle a| A\left|s_{-1}, \ldots, s_{-s}\right\rangle<s_{-1}, \cdots, s_{-s}|B| \beta>} \tag{5}
\end{equation*}
$$

holds for any two operators A and B.

We shall write the four-dimensional Fourier-transformation in the form

$$
\begin{equation*}
F(x)=\frac{1}{(2 \pi)^{4}} \quad \int \mathrm{e}^{-i k x} \tilde{F}(k) d k ; \tilde{F}(k)=\int \mathrm{e}^{i k x} F(x) d x . \tag{6}
\end{equation*}
$$

and exploit similar formulae for many arguments.

Define

$$
\begin{align*}
& \langle 0| \phi(x) \phi(y)|0\rangle=-i D^{(-)}(x-y) ; \\
& \tag{7}\\
& \quad[\phi(x), \phi(y)]_{-}=-i D(x-y),
\end{align*}
$$

$-<0|\phi(y) \phi(x)| 0\rangle=-i D^{(+)}(x-y) ;$

Then by eq. (2), (3) and (6),

$$
\begin{align*}
& \tilde{D^{(}}(\mathrm{l})=2 \pi i \theta\left(k^{\circ}\right) \delta\left(k^{2}-m^{2}\right) ; \\
& \quad \tilde{D}(k)=2 \pi i E\left(+k^{0}\right) \delta\left(k^{2}-m^{2}\right) ; \tag{8}
\end{align*}
$$

$\tilde{D}^{(+)}(k)=-2 \pi i \theta\left(-k^{0}\right) \delta\left(k^{2}-m^{2}\right) ;$

Note, that in our notations

$$
\begin{array}{ll}
{\left[\tilde{D}^{(-)}(-k)\right]^{*}=\tilde{D}^{(+)}(k) ;} & \tilde{D}^{(-)}(-k)=-\tilde{D}^{(+)}(k) ; \tag{9}\\
{\left[D^{(-)}(x)\right]^{*}=D^{(+)}(x) ;} & D^{(-)}(-x)=-D^{(+)}(x) .
\end{array}
$$

2. Some Properties of Scattering Matrix.

The main quantity we are going to deal with is the scattering matrix out of the energy shell. We shall write it down as a functional expansion in the normal products of the asymptotic fields

$$
\begin{equation*}
S=\sum_{n=0}^{\infty} \cdot \frac{(-i)^{n}}{n!} \int d x_{1} \ldots d x_{n} \Phi^{n}\left(x_{1}, \ldots, x_{n}\right): \phi\left(x_{1}\right) \ldots \phi\left(x_{n}\right): \tag{10}
\end{equation*}
$$

Here the coefficient functions $\Phi^{n}\left(x_{1}, \ldots, x_{n}\right)$ are c-functions symmetrical in all their arguments. Let us emphasize that we don't intend the functions $\phi(x)$ here to be restricted by the condition eq. (1).Performing variational differentiations one may obtain from the scattering matrix a sequence of operators depending upon the space - like points. However, it is more useful to consider not the variational deriva tives themselves, but the radiative operators:

$$
\begin{equation*}
s^{(n)}\left(x_{1}, \ldots, x_{n}\right)=\frac{\delta^{n} s}{\delta \phi\left(x_{1}\right) \ldots \delta \phi\left(x_{n}\right)} s^{+} \tag{11}
\end{equation*}
$$

Now, we are going to prove some Lemmas which establish the relations between the vacuum expectation values (VEV) of these radiative operators, S-matrix's coefficient functions and their matrix elements.

Lemma 1. The coefficient functions of the scattering matrix coincide (up to a factor) with the VEV of the radiative operators (11)

$$
\begin{equation*}
\left.\Phi^{n}\left(x_{1}, \ldots, x_{n}\right)=i^{n}<0\right] \frac{\delta^{n} S}{\delta \phi\left(x_{1}\right) \ldots \delta \phi\left(x_{n}\right)} s^{+}|0\rangle=i^{n}\langle 0| S^{(n)}\left(x_{1}, \ldots, x_{n}\right)|0\rangle \tag{12}
\end{equation*}
$$

Proof: Taking the n-th variation derivative of the expansion (10), we get
$\frac{\delta^{n} S}{\delta \phi\left(x_{1}\right) \ldots \delta \phi\left(x_{n}\right)}=\sum_{\nu=n} \frac{(-i)^{\nu}}{\nu!} \int d z_{1} \ldots d z_{\nu} \Phi^{\nu\left(z_{1}, \ldots, z_{\nu}\right) \frac{\nu!}{\nu(\nu-n)!} \delta\left(z_{1}-x_{1}\right) \ldots \delta\left(z_{n}-x_{n}\right): \phi\left(z_{n+1}\right) \ldots \phi\left(z_{\nu}\right): ~}$ or, after the renumeration of the variables

$$
\frac{\delta^{n_{S}}}{\delta \phi\left(x_{1}\right] \ldots \delta \phi\left(x_{n}\right)}=(-i)^{n} \sum_{\nu=0}^{\infty} \frac{(-i)^{\nu}}{\nu!} \int d z_{1} \ldots d z_{\nu} \Phi^{n+\nu}\left(x_{1}, \ldots, x_{n}, z_{1}, \ldots, z_{\nu}\right): \phi\left(z_{1}\right) \ldots \phi\left(z_{\nu}\right):
$$

After taking the VEV only the term without normal products survices in the right-hand side

$$
i^{n}<0\left|\frac{\delta^{n} S}{\delta \phi\left(x_{1}\right) \ldots \delta \phi\left(x_{n}\right)}\right| 0>=i^{n}(-i)^{n} \Phi^{n}\left(x_{1}, \ldots, x_{n}\right)
$$

Thus, to prove the eq.(12), it remains but to introduce the operator S^{+}under the VEV sign in the lefthand side. This can be done in virtue of the vacuum stability condition PTDR I, (6).

Corollary: The scattering matrix can be written down in the form

$$
\begin{equation*}
S=\sum_{n=0}^{\infty} \frac{1}{n!} \int d x_{1} \ldots d x_{n}<0\left|\frac{\delta^{n} S}{\delta \phi\left(x_{1}\right) \ldots \delta \phi\left(x_{n}\right)} s^{+}\right| 0>: \phi\left(x_{1}\right) \ldots \phi\left(x_{n}\right): \tag{13}
\end{equation*}
$$

Lemma I expresses the coefficient functions of the scattering matrix in terms of the VEV of the ope rators (11). Let us now express (on the energy shell) the matrix elements of the S-matrix in terms of the same expectation values as well. To this end we will establish the

Lemma 2:

$$
\left\langle\vec{l}_{1}, \ldots, \vec{l}_{n}\right| s \mid \vec{k}_{1}, \ldots, \vec{k}_{m}>\sum_{s=0}^{\min (n, m)} \mathrm{P}\left(\frac{R_{1}, \ldots, R_{n-s}}{R_{n-s+1}, \ldots R_{n}}\right) \mathrm{P}\left(\frac{k_{1}, \ldots, k_{m-s}}{k_{m-s+1}, \ldots, k_{m}}\right) \mathrm{P}\left(k_{m-s+1}, \ldots, k_{m}\right)
$$

$$
\begin{equation*}
\cdot \underset{n-s+1}{\delta\left(\vec{k}_{m-s+1}\right) \ldots \delta\left(\vec{l}_{n}-\vec{k}_{m}\right) \cdot} \tag{14}
\end{equation*}
$$

$$
\stackrel{l}{k}_{j}^{0}=+\sqrt{\grave{k}_{j}^{2}+m^{2}} ; \quad \ell_{j}^{0}=+\sqrt{l_{j}^{2}+m^{2}}
$$

Proof : Consider now the matrix element $\left.\overrightarrow{<}_{1}, \ldots \vec{l}_{n}|S| \vec{k}_{1}, \ldots, \vec{k}_{m}\right\rangle$ which, according to (4), may be written as

$$
\langle 0| a\left(\vec{l}_{1}, \ldots a\left(\vec{l}_{n}\right) S a^{+}\left(\vec{k}_{1}\right) \ldots a^{+}\left(\vec{k}_{m}\right)|0\rangle\right.
$$

If all the momenta \vec{k}_{j} and \vec{l}, of various groups were different we could push them immediately through the S-matrix by means of the formulaePTDR (2.20). Then one would obtain the expression PTDR (2.21).

However, we can not restrict ourselves to this case only since the commutations (3) being singular, the cases of coincidence of some \vec{l} with some \vec{k} will bring nonvantshing contributions to occasional further integrations.

Now the coincidences of $\vec{\ell}$ and \vec{k} give rise to some additional terms. Namely, each of the creation operators $a^{+}(\vec{k})$ may contract not with the S-matrix, but with anyone of the annihilation operators $a(\vec{l})$. Hence, it is evident that the whole expression for the matrix element considered must be composed of a sum of terms of the rorm PTDR eq. (2.21), the order of differentiation being successively decreased by 2 , and the factors $\delta(\vec{l}-\vec{k})$ appearing accordingly.

For writing down such expressions explicitly it is convenient to use the symmetrizing operators introduced in 2 . The first of them $P\left(\frac{x_{1}, \ldots x_{S}}{x_{s+1}, \ldots, x_{n}}\right)$ prescribes to sum over all the possible $\frac{n!}{s!(n-s)!}$ divisions of the set $\left\{x_{1}, \ldots, x_{n}\right\}$ into two subsets of s and n-s elements. The divisions differing only by permutations inside on e of the subsets, are to be counted only once. The second operator $P\left(x_{1}, \ldots, x_{n}\right)$ denotes the sum over all $n!$ permutations inside $\left\{x_{1}, \ldots, x_{n}\right\}$. It is easily seen that in terms of such operators the sum mentioned above takes just the form of (14) * (the factor $\boldsymbol{S}^{\boldsymbol{+}}$ may be put under the sign of the valuum expectation value due to the vacuum stability). The upper limit in the sum over \mathcal{S} in the riaht-hand side of (14) is determined by the number of the creation and annihilation operators;

The first summation over symmetrizations P corresponds to dividing the whole set of annithilation operatprs into two subsets: those contracting with creation operators and those contracting with the S-matrix; the second summation $P\left(k_{m-s}+1, \ldots, k_{m}\right)$ corresponds to similar division of the creation operators, Finally, the last sum comes from all possible different combinations of the operators $a(\vec{l})$ and $a^{+}(\vec{k})$ to be contracted.

It is clear that the formula analogous to Lemma 2 will hold also for the matrix elements of the S -matrix variational derivatives of any order - the additional differentiations will come. unchanged under the VEV sign. The situation will be quite different in case of the radiative operators (11). Due to the factor S^{+}an additional expansion in the complete system of functions will be necessary, and the formulae become much more troublesome. Exceptional are the cases when the ket state is the vacuum or one-particle state. Then, in virtue of the stability condition PTDR, I, (6) the operator S^{+}can be absorbed in the ket, and the proof will be the same as for Lemma 2. Thus, one can formulate two more lemmas

* Compare the technique developed in ${ }^{8}$. Its application would make it possible to replace the reasoning by calculation (to say the truth, a complicated one).

By complex conjugation we obtain
Corollary:
$\left.\left\langle\left. 0\right|^{+(n)}\left(z_{1}, \ldots, z_{n}\right) \dagger \vec{k}_{1}, \ldots, \vec{k}_{m}\right\rangle=\int \frac{d y_{1} \ldots d y_{m} e^{-i \sum_{1} k y}}{(2 \pi)^{\frac{8 \mathrm{~m}}{2}} \sqrt{2 k_{1}^{0}} \ldots \sqrt{2 k_{m}^{\circ}}}<0\left|S^{+(n+m)}\left(z_{1}, \ldots, z_{n}, y_{1}, \ldots y_{m}\right)\right| O\right\rangle$

Lemma 4:

$$
\begin{aligned}
& +P\left(\frac{\ell_{1} \ldots \ell_{n-1}}{\ell_{n}}\right)(-i)^{n+n-1} \int \frac{d x_{1} \ldots d x_{n-1} l^{i \sum_{1} \ell x}}{\sqrt{(2 \pi)^{\frac{8(n-1)}{2}}}} \frac{\sqrt{2 \ell_{1}^{0} \ldots 2 \ell_{n-1}^{0}}}{} \Phi^{n+n-1}\left(z_{1}, \ldots, z_{n}, x_{1}, \ldots, x_{n-1}\right) \delta\left(\vec{l}_{n}-\vec{k}\right) .
\end{aligned}
$$

Taking the complex conjugate expression one can obtain from here the eq. of the type of eq. (16).
Up till now we were not concerned with the causality condition. Under the main assumptions of PTDR it was expressed in the form

$$
\begin{equation*}
\frac{\delta}{\delta \phi(x)}\left(\frac{\delta S}{\delta \phi(y)} S^{+}\right)=\frac{\delta S^{(1)}(y)}{\delta \phi(x)}=0 \text { for } x \leq y \tag{18}
\end{equation*}
$$

(The Inequality sign comes from the fact that we consider the asymptotic fields $\phi(x)$ to be out-fields . For the in-fields it would be replaced by the opposite one). Let us prove some new relations following from it .

Lemma 5 : It follows from the causality condition Eq. (18) that

$$
\begin{equation*}
\frac{\delta}{\delta \phi(x)} S^{(n)}\left(y_{1}, \ldots, y_{n}\right)=0 \tag{19}
\end{equation*}
$$

if

$$
\begin{equation*}
x \leq\left\{y_{1}, \ldots, y_{n}\right\} \tag{19a}
\end{equation*}
$$

(The symbol (19a) means that the point x is earlier (or space-like) with respect to all the points y_{1}, \ldots, y_{n})
Proof : Suppose the Lemma is valid up to a certain N. Then

$$
\begin{equation*}
\frac{\delta}{\delta \phi(x)}\left(\frac{\delta^{N} s}{\delta \phi\left(y_{1}\right) \ldots \delta \phi\left(y_{N}\right)} s^{+}\right)=9, \quad \text { if } \quad x \leq\left\{y_{1}, \ldots, y_{N}\right\} \tag{*}
\end{equation*}
$$

Differentiating this equality over $\phi\left(\mathrm{y}_{\mathrm{N}+1}\right)$, one obtains

$$
\frac{\delta}{\delta \phi(\mathrm{x})}\left(\frac{\delta^{N+1} S}{\delta \phi\left(y_{1}\right) \ldots \delta \phi\left(y_{N+1}\right)} S^{+}\right)+\frac{\delta}{\delta \phi(x)}\left(\frac{\delta^{N} S}{\delta \phi\left(y_{1}\right) \ldots \delta \phi\left(y_{N}\right)} s^{+} \cdot S \frac{\delta S^{+}}{\delta \phi\left(y_{N+1}\right)}\right)=0
$$

Hence, making use of the unitarity, PTDR I, (5) and performing the differentiation over $\phi(x)$, one finds that

$$
\begin{gathered}
\frac{\delta}{\delta \phi(x)}\left(\frac{\delta^{N+1} S}{\delta \phi\left(y_{1}\right) \ldots \delta \phi\left(y_{N+1}\right)} S^{+}\right)=\frac{\delta}{\delta \phi(x)}\left(\frac{\delta^{N} S}{\delta \phi\left(y_{1}\right) \ldots \delta \phi\left(y_{N}\right)} S^{+}\right) \cdot \frac{\delta S}{\delta \phi\left(y_{N+1}\right)} S^{+}+ \\
+\frac{N^{N}}{\delta \phi\left(y_{1}\right) \ldots \delta \phi\left(y_{N}\right)} S^{+} \cdot \frac{\delta}{\delta \phi(x)}\left(\frac{\delta S}{\delta \phi\left(y_{N+1}\right)} S^{+}\right)
\end{gathered}
$$

The first term vanishes here $b y(-*)$, the second one - in virtue of eq. (18), if we require that $\mathbf{x} \leq y_{N+1}$ So, if (*) holds for $n=N,(*)$ holds for $n=N+1$, too. Since (*) holds for $n=1$,
Lemma 5 Is proved by induction.
Lemma 5 allows one to increase arbitrarily the number of internal arguments in the causality condi tion eq. (18). It is also possible to increase the number of external arguments :

Lemma 6: It follows from the causality condition that

$$
\begin{equation*}
\frac{\delta^{m}}{\delta \phi\left(x_{1}\right) \ldots \delta \phi\left(x_{m}\right)} s^{(n)}\left(y_{1}, \ldots y_{n}\right)=0 \tag{20}
\end{equation*}
$$

if, at least for one

$$
\begin{gather*}
1 \leq j \leq m \\
x_{j} \leq\left\{y_{1}, \ldots, y_{n}\right\} \tag{20a}
\end{gather*}
$$

The proof is evident.
Both the original form of the causality condition (18) and the corollaries thereof, eqs. (19), (20) contain not only radiative operators but their variational derivatives as well. In some respects that form of the causality condition is more convenient which includes only the operators (1l) themselves. This form is analogous to the "integral" causality condition of the perturbation theory ${ }^{7}$. Such a form is established by

Lemma 7 : It follows from the causality condition that for any $0 \leqslant s \leqslant n$ the radiative operators $s^{n}\left(x_{1}, \ldots, x_{n}\right)$ are factorized in the form

$$
\begin{equation*}
s^{(n)}\left(x_{1}, \ldots, x_{n}\right)=s^{(s)}\left(x_{j}, \ldots, x_{j_{s}}\right) s^{(n-s)}\left(x_{j_{s+1}}, \ldots, x_{j_{n}}\right) \tag{21}
\end{equation*}
$$

if

$$
\begin{equation*}
\left\{x_{j_{1}}, \ldots, x_{j_{s}}\right\} \geq\left\{x_{j}, \ldots, x_{j_{n}}\right\} \tag{21a}
\end{equation*}
$$

holds

Proof: Suppose the Lemma is valid for $n \leq N$ and let the arguments $\left\{x_{1}, \ldots, x_{N+1}\right\}$ be such that

$$
\left\{x_{j_{1}}, \ldots, x_{j_{s}}\right\} \geqq\left\{x_{j_{s}+1}, \ldots, x_{j_{N+1}}\right\}
$$

Expressing $s^{(k)}$ as usual in terms of the variational derivatives, write down the identity

$$
\begin{aligned}
& \frac{\delta^{N+1} S}{\delta \phi\left(x_{1}\right) \ldots \delta \phi\left(x_{N+1}\right)} S^{+}=\frac{\delta}{\delta \phi\left(x_{j_{N+1}}\right)}\left(\frac{\delta^{N} S}{\delta \phi\left(x_{j}\right) \ldots \delta \phi\left(x_{j_{s}}\right) \delta \phi\left(x_{j_{s+1}}\right) \ldots \delta \phi\left(x_{j}\right)}\right. \\
& \left.-\frac{\delta^{N} S}{\delta \phi\left(x_{j}\right) \ldots \delta \phi\left(x_{j}\right) \delta \phi\left(x_{j}\right.} S^{+}\right)-\ldots \delta \dot{\phi}\left(x_{j_{N}}\right) \\
& S^{+} \cdot S \frac{\delta S^{+}}{\delta \phi\left(x_{j}\right)}
\end{aligned}
$$

By supposition, Lemma 7 is valid for the radiative operators of the N -th order. Therefore, one can proceed by applying the Lemma and performing differentiation over $\phi\left(\mathrm{x}_{j_{N+1}}\right)$ in the first term :

$$
\begin{aligned}
& \left.+\frac{\delta^{s} s}{\delta \phi\left(x_{j_{1}}\right) \ldots \delta \phi\left(x_{j_{s}}\right)} s^{+} \cdot \frac{\delta^{N-s+1}}{\delta \phi\left(x_{j_{s+1}}\right) \ldots \delta \phi\left(x_{j}+1\right.}\right) \quad s^{+}+\frac{\delta^{s} s}{\delta \phi\left(x_{j_{1}}\right) \ldots \delta \phi\left(x_{j}\right)} s^{+} . \\
& \frac{\delta^{N-s} S}{\delta \phi\left(x_{j_{s+1}}\right) \ldots \delta \phi\left(x_{j_{N}}\right)} \cdot \frac{\delta s^{+}}{\delta \phi\left(x_{j_{N+1}}\right)} \frac{\delta^{s_{s}}}{\delta \phi\left(x_{j_{1}}\right) \ldots \delta \phi\left(x_{j_{s}}\right)} \cdot s^{+} \cdot \frac{\delta^{N-s_{s}} s}{\delta \phi\left(x_{j_{s+1}}\right) \ldots \delta \phi\left(x_{j_{N}}\right)} s t s \frac{\delta s^{+}}{\delta \phi\left(x_{j_{N+1}}\right)} .
\end{aligned}
$$

Here the first term vanishes by Lemma 5 as the point $\mathbf{x}_{j_{N+1}}$ belongs to the second group in (*) ; the last two terms cancel. Returning to the operators $S^{(K)}$, we see that the Lemma holds also for $n=N+1$. Slince for $n=1$ it is trivial, Lemma 7 is proved by induction.

The integral causality condition eq. (21) is not only necessary, but also sufficient for the fulfilment of the differential condition, eq. (18). Moreover, to obtain the latter eq. (21) must hold only for $\mathrm{n}=2$. Indeed, let us perform the variational differentiation over $\phi(x)$ in the left-hand side of eq. (18):

$$
\frac{\delta}{\delta \phi(x)}\left(\frac{\delta S}{\delta \phi(y)} S^{+}\right)=\frac{\delta^{2} S}{\delta \phi(x) \delta \phi(y)} s^{+}+\frac{\delta S}{\delta \phi(y)} S^{+} \cdot s \frac{\delta S^{+}}{\delta \phi(x)} .
$$

The first term, by eq. (21) is equal to

$$
\frac{\delta S}{\delta \phi(y)} S^{+} \cdot \frac{\delta S}{\delta \phi(x)} S^{+} \text {if } x \leq y \text { and } \frac{\delta S}{\delta \phi(x)} S^{+} \cdot \frac{\delta S}{\delta \phi(y)} S^{+} \text {if } y \leq x \text {, }
$$

whereas the second one - in virtue of the unitarity - will always give $-\frac{\delta \mathrm{S}}{\delta \phi(y)} \mathrm{s}^{+} \cdot \frac{\delta \mathrm{S}}{\delta \phi(\mathrm{x})} \mathrm{s}^{+}$. Thus, we see that once the eq. (21) holds, then

$$
\frac{\delta}{\delta \phi(x)}\left(\frac{\delta S}{\delta \phi(y)} S^{+}\right)= \begin{cases}=\left[\frac{\delta S}{\delta \phi(x)} S^{+}, \frac{\delta S}{\delta \phi(y)} S^{+}\right]_{-} ; & x \geq y \tag{22}\\ =0 & ;\end{cases}
$$

Thereby we proved

Lemma 8 :For the differential causality condition to hold it is sufficient that the integral causality condition would be fulfilled in the form

$$
\begin{equation*}
s^{(2)}\left(x_{1}, x_{2}\right)=s^{(1)}\left(x_{j}\right) s^{(2)}\left(x_{j_{2}}\right) \quad \text { if } \quad x_{j_{1}} \geq x_{j_{2}} \tag{23}
\end{equation*}
$$

Why is condition eq. (23) sufficient for the derivation of eq. (18), while in perturbation theory it had been necessary to require ${ }^{7}$ a fulfilment of the integral condition for all n ? The reason is that now our radiation operators $S^{(k)}$ depend not only upon the arguments x_{1}, \ldots, x_{k} written in explicit form, but are the functionals $\dot{\phi}(x)$ as well. This latter functuonal dependence connects the operators $s^{(k)}$ of different orders with each other.

The results of the investigation we have performed may be formulated in the form of
Theorem 1: The causality conditions in the forms eq. (18) and eq. (23) ore equivalent. The relations between the operators $S^{(\mathrm{k})}$ follow from either of them. These relations are expressed by eqs. (19), (20) and (21).

3. Coupled Equations for the Coefficient Functions.

Various forms of the causality condition obtained in the previous section were the operator equations. In many respects it is better to deal not with the operators but with the c-functions - the coefficient functions or matrix elements. The relations proved above allow us to derive a number of equations for these functions.

Note that the causality condition in the torm eq. (21) may be written (by neglecting possible coinci dences of the arguments, cf. below) as the equality

$$
\begin{align*}
& \frac{\delta^{n_{S}}}{\delta \phi\left(z_{1}\right) \ldots \delta \phi\left(z_{n}\right)}=P\left(\frac{z_{1}, \ldots, z_{s}}{z_{s+1}, \ldots, z_{n}}\right) \theta\left(z_{1}, \ldots, z_{s} ; z_{s+1}, \ldots, z_{n}\right) \tag{24}\\
& \cdot \frac{\delta^{s} S}{\delta \phi\left(z_{1}\right) \ldots \delta \phi\left(z_{s}\right)} s^{+} \cdot \frac{\delta^{n-s} s}{\delta \phi\left(z_{s+1} 1^{h} \ldots \delta \phi\left(z_{n}\right)\right.} s^{+}
\end{align*}
$$

where $\Theta\left(z_{1}, \ldots, z_{s} ; z_{s+1}, \ldots, z_{n}\right)$ is equal to 1 , if all $z_{1}{ }^{0} \ldots, z_{s}{ }^{0}$ are greater than all $z_{s+1}{ }^{0}, \ldots, z_{n}{ }^{0}$ and is equal to zero in the opposite case. If one takes the VEV of this equality, then in the left-hand side will appear the function $(-i)^{n} \Phi^{n}\left(z_{1}, \ldots, z_{n}\right)$ by Lemma 1 . On the other hand, the right-hand side Is to be expanded in the complete system of states making use of eq. (4). In doing this, we meet two possibilities.

If the first subset in eq. (24) contain sonly one argument $s=1$ then the unitarity property of the S-matrix makes possible to put the first factor of the right-hand side in the form

$$
\frac{\delta S}{\delta \phi\left(z_{1}\right)} S^{+}=-S \frac{\delta S^{+}}{\delta \phi\left(z_{1}\right)}
$$

After this by the Corollary of Lemma 3 it may be expressed in terms of the functions $\quad{ }^{*} \Phi^{\nu}\left(z_{1}, \ldots z_{\nu}\right)$ The second factor will just have the form reducing to the coefficient functions Φ^{ν} by Lemma 3. Thus we obtain

$$
\begin{aligned}
& \Phi^{n}\left(z_{1}, \ldots, z_{n}\right)=P\left(\frac{z^{1}}{z_{2}, \ldots, z_{n}}\right) \Theta\left(z_{1} ; z_{2}, \ldots, z_{n}\right) \sum_{m=0}^{\infty} \frac{1}{m!} \int d x_{1} \ldots d x_{m} d y_{1} \ldots d y_{m} \\
& \cdot \int \frac{d k_{1} \ldots d k_{m}}{(2 \pi)^{3 m} 2 k_{1}^{\circ} \ldots 2 k_{m}^{\circ}} e^{-i \sum_{1}^{n} k(y-x)} \Phi^{* m+1}\left(z_{1}, y_{1}, \ldots, y_{m}\right) \Phi^{m+n-1}\left(x_{1}, \ldots, x_{m}, z_{2}, \ldots, z_{n}\right)
\end{aligned}
$$

Noting no w that according to eqs. (6), (8), the integrals over each of \vec{k}

$$
\frac{1}{(2 \pi)^{3}} \int \frac{d \vec{k}_{j}}{2 k_{j}^{\circ}} e^{-i k_{j}\left(y_{j}-x_{j}\right)}=-i \mathscr{D}^{(-)}\left(y_{j}-x_{j}\right)
$$

reduce to the functions $\mathscr{D}^{(-)}(y-x)$ we are led to an infinite set ot coupled equations for the functions Φ^{ν}

$$
\begin{align*}
& \Phi^{n}\left(z_{1}, \ldots, z_{n}\right)=P\left(\frac{z_{1}}{z_{2}, \ldots, z_{n}}\right) \Theta\left(z_{1} ; z_{2}, \ldots, z_{n}\right) \sum_{m=0}^{\infty} \frac{(-i)^{m}}{0 m!} \int x_{1} \ldots d x_{m} d \mho_{1} \ldots d y_{m} \\
& \cdot \Phi^{*}+m\left(z_{1}, y_{1}, \ldots, y_{m}\right) \mathscr{D}^{(-)}\left(y_{1}-x_{1}\right) \ldots D^{(-)}\left(y_{m}-x_{m}\right) \Phi^{n-1+m}\left(x_{1}, \ldots, x_{m}, z_{2}, \ldots, z_{n}\right) \tag{25}
\end{align*}
$$

This set is analogous to the " system A" derived by Lehman, Symanzik and Zimmerman ${ }^{/ 4 /}$ starting from other basic assumptions.

Another possibility, or, to be more exact, another set of possibilities is realized if we choose $1<s<n-1 \ln$ (24). Then the unitarity condition may not be used to bring the first factor of the
right-hand side of eq. (24) to the form allowing the application of the Corollary of Lemma 3. In order to re duce the right-hand side to the functions Φ^{ν} we have but to resort to the division into three factors, i.e., to use the expan sion in the complete system of states two times. Then we shall come to the set

$$
\begin{align*}
& \Phi^{n}\left(x_{1}, \ldots, x_{n}\right)=P\left(\frac{x_{1}, \ldots, x_{s}}{x_{s+1}, \ldots, x_{n}}\right) \Theta\left(x_{1}, \ldots, x_{s} ; x_{s+1}, \ldots, x_{n}\right) \sum_{n=0}^{\infty} \sum_{\nu=0}^{\infty} \sum_{\mu=0}^{\infty} \frac{i^{n+\nu+\mu}}{n!\nu!\mu!} \\
& \cdot \int d z_{1} \ldots d z_{r} d u_{1} \ldots d u_{\nu} \int d u_{1}^{\prime} \ldots d u_{\nu}^{\prime} \quad d v_{1} \ldots d v_{\mu} \int d z_{1}^{\prime} \ldots d z_{n}^{\prime} d v_{1}^{\prime} \ldots d v_{\mu}^{\prime} . \\
& . \Phi^{s+n+\nu}\left(x_{1}, \ldots, x_{s^{\prime}}, z_{1}, \ldots, z_{n}, u_{1}, \ldots, u_{\nu}\right) \mathscr{D}^{(-)}\left(z_{1}-z_{1}{ }^{\prime}\right) \ldots \mathscr{D}^{(-)}\left(z_{n}-z_{n}^{\prime}\right) \mathscr{D}^{(-)}\left(u_{1}-u_{1}\right) \ldots \mathscr{D}^{(-)}\left(u_{v}-u^{\prime}\right) . \\
& \text { - } \stackrel{\Phi}{\mid}^{\nu+\mu}\left(u_{1}^{\prime}, \ldots, u^{\prime}{ }_{\nu}, v_{1}, \ldots, v_{\mu}\right) \mathfrak{D}^{(-)}\left(v_{1}-v_{1}^{\prime}\right) \ldots \mathscr{D}^{(-)}\left(v_{\mu}-v_{\mu}^{\prime}\right) . \tag{26}\\
& \text { - } \Phi^{n-s+n+\mu}\left(z_{1}^{\prime}, \ldots, z^{0}, v_{1}^{\prime}, \ldots, v_{\mu^{\prime}}^{\prime} x_{s+1}, \ldots, x_{n}\right)
\end{align*}
$$

(strictly speaking, this is a set of sets correspondingly to the choice of the value of s). The structure of the set obtáned may be visualized by the graphic scheme

Fig. 1

An infinite set of eq. (25) is much simpler than the set, eq. (26). However, to find the functions $\Phi^{\prime \prime}$ one cannot restrict oneself only to this set. The reason for this lies in the following, very essential circumstance. When in the previous section we wrote down different forms of the causality conditions eqs. (18)-(23), we have always used strict inequalities between the coordinates-e.g., the equality (23) is valid only if $x_{1} \leqslant x_{2}$ or if $x_{2} \leqslant x_{1}$, but not for $x_{1}=x_{2}$. Therefore, expressions (21) or (23) determine the functions $\Phi^{\nu}\left(x_{1}, \ldots, x_{\nu}\right)^{1}$ not for all the values of the arguments:if any two points entering different subsets in the condition 2la (or two points in condition (23)) coincide, then the corresponding value of Φ^{ν} remains undertermined. Therefore, it is necessary to introduce adititional terms ('"counterterms") in the right-hand sides of eqs. (25) and (26) corresponding to such coincidences of the arguments*.

A consistent tre atment of these counterterms seems to lead to great combinatorial difficulties. If, however, we shall allow ourselves to use simultaneously the sets, eq. (26) for all the values s, then it is easy to see that a set of points $x_{1}, \ldots x_{n}$ will permit no divisions eq. (21a), only if all of them coincide. In other words, for each function Φ^{ν} it will be necessary to introduce only one counterterm - the remai ning one being taken account of cutomatically by one of the eqs. (26). At the scme time, however, one has to resort to a peculiar "equillbristics" - to obtain one and the sa me function it is necessary to use different sets of equations depending upon the value of the arguments.

Still another set of equations may be obtained from condition eq. (23) which, according to proof, is sufficient for the fulfilment of the causality. A great advantage of this set is that it contains only one θ^{-}function. Therefore, one may hope that the combinatorial difficulties will disappear. However, in this case one cannot restrict onese lf to the VEV of the operator condition to obtain a closed set, it will be necessary to consider the matrix elements between all the states. Such a set was studied by M.K. Polivanov and the author elsewhere. Therefore we will not write it down here.

[^1]```
0бпединеинаі пмститут адернах шссведодаий БИБЛНОТЕНА
```


## 4. Functional Expansion of the Scattering Matrix

In the previous section we established some infinite sets of coupled equations for the coefficient functions $\Phi^{\nu}$, entering the functional expansion, eq. (10), of the scattering matrix in the normal products of the asymptotic fields. An attempt to solve these equations even approximately, leads to enourmous difficulties. Yet we shall s ee now that some evidence about the functional expansion may beobtained in another way. Indeed, we will show that all the coefficient functions may be expressed in terms of the VEV of the T- products of a certain set of operators. At the same time it will turn out that the structure of the functional expansion (10) closely resembles that of the functional expansion In powers of the "switching on and off" function, or roughly speaking, of the usual perturbation theory expansion.

Let us turn a gain to the radiative operators eq. (11). The causality condition is expressed in terms of of them by eq. (21). On the other hand, if $n$ variational differentiations of the unitarity condition PTDR, I, (5) are performed; then the require ments

$$
\begin{equation*}
\sum_{m=0}^{\infty} P\left(\frac{x_{1}, \ldots, x_{n-m}}{x_{n-m+1}, \ldots, x_{n}}\right) s^{(n-m n)}\left(x_{1}, \ldots, x_{n-m}\right) s^{+(m)}\left(x_{n-m+1}, \ldots, x_{n}\right)=\delta_{n 0} \tag{27}
\end{equation*}
$$

will be imposed upon the operators $S^{(n)}$

Now we may forget about the way (11) of forming the radiative operators $\mathrm{S}^{(\mathrm{n})}$ and set a purely algebraic problem of finding a general form of the operators satisfying the condition (21) and (27). Now, the conditions (21) and (27) are Just those imposed on the operator coefficient functions entering the $S$-matrix expansion in powers of the "switching on and off function". $g(x)$ (see ${ }^{2},(18,1)^{7}$, eq. (1). The condition (21) coincides algebraically with the "integral causality condition". /7/ from , whereas condition (27) is the unitarity condition $/ 18.9 /$ from $^{2}$.

Thus, it turns out that the problem of finding a general form of the radiative operators $S^{(n)}$ is Identical with that of finding $a$ general forn of the coefficient functions of the scattering matrix in the perturbation theory. The latter problem has been solved in 2 , and, just for case of the cousality condition analogous to eq. (21), in ${ }^{7}$. It has been shown that all the condicions (21) and (27) are compatible and each of the operator functions $S^{(n)}\left(x_{1}, \ldots x_{n}\right)$ is expressed in terms of the lower order operator functions up to its anti-hermition part for all arguments colnciding. This latter may be given arbitrary value.

Therefore, in our cose the general expresston for $S^{(n)}$ will be of the form

$$
\begin{aligned}
& \quad s^{(n)}\left(x_{1}, \ldots, x_{n}\right)=(-i)^{n} T\left[\Lambda_{1}\left(x_{1}\right) \ldots \Lambda_{1}\left(x_{n}\right) \cdot\right]+ \\
& +\sum \frac{(-i)^{m}}{m!} \quad P\left(x_{1}, \ldots, x_{\nu_{1}}\left|x_{\nu_{1}}+1, \ldots, x_{\nu_{1}}+\nu_{2}\right| \ldots x_{\nu_{1}}+\ldots+\nu_{m-1}+1, \ldots, x_{n}\right) \\
& 2 \leqslant m \leqslant n-1 \\
& \nu_{1}+\ldots+\nu_{m}=u \\
& \nu_{j} \geqslant 1 \quad . T\left(\Lambda_{\nu}\left(x_{1}, \ldots, x_{\nu_{1}}\right) \ldots \Lambda_{\nu_{m}}\left(x_{\nu_{1}+\ldots+\nu_{m-1}+1}, \ldots, x_{n}\right)\right.
\end{aligned}
$$

where

$$
P\left(x_{1}, \ldots, x_{\nu_{1}}|\ldots| \ldots x_{n}\right)-
$$

is ${ }^{2}$ the operator of summation over all possible $\frac{n!}{v_{1}!\ldots v_{m}!}$ divisions of the set of $n$ points
into m subsets with $\nu_{1}, \nu_{2}, \ldots, \nu_{\mathrm{m}}$ points in each.
The operators $\Lambda_{\nu}$ are arbitrary operators with the properties:
(1) locallty :

$$
\begin{equation*}
\Lambda_{\nu}\left(x_{1}, \ldots, x_{\nu}\right)=0 \quad \text { except the case } \quad x_{1}=x_{2}=\ldots=x_{\nu} \tag{29}
\end{equation*}
$$

(2) hermiticity

$$
\begin{equation*}
\Lambda_{\nu}^{+}\left(x_{1}, \ldots, x_{\nu}\right)=\Lambda_{\nu}\left(x_{1}, \ldots, x_{\nu}\right) \tag{30}
\end{equation*}
$$

(3) symmetry

$$
\begin{equation*}
\Lambda_{\nu}\left(x_{a_{1}}, \ldots, x_{a_{\nu}}\right)=\Lambda_{\nu}\left(x_{1}, \ldots, x_{\nu}\right) \tag{31}
\end{equation*}
$$

and (4) commutativity in spacelike points:
$\left\{\begin{array}{l}\text { if } \\ \end{array}\right.$

$$
\begin{gather*}
{\left[\Lambda_{\nu}\left(x_{1}, \ldots x_{\nu}\right) ; \quad \Lambda_{\mu}\left(y_{1}, \ldots, y_{\mu}\right)\right]_{-}=0}  \tag{32}\\
\left(x_{1}=\ldots=x_{\nu}\right) \sim \quad\left(y_{1}=\ldots=y_{\mu}\right)
\end{gather*}
$$

They reflect the just mentioned orbitroriness of choosing the values of the radiative operators $\mathrm{S}^{(\boldsymbol{\nu})}$ for the colnciding orguments. The first of the operators $\Lambda$ coincides with the current operator

$$
\begin{equation*}
\Lambda_{i}(x)=j(x)=i S^{(1)}(x) \tag{33}
\end{equation*}
$$

There is yet one point to be emphasized. When using eq.(28), it is to be understood that we fix somehow for each $\nu$ the arbitrariness contained in the definition of the T -product for the coinciding arguments (the integration rules near zero). In doing this we should keep the unitary condition fulfilled. Only after this do we add the operator $\Lambda_{\nu}$. Therefore, one can say that the operators $\Lambda_{\nu}$ contain all the arbitrariness of the T-pro ducts. They play the part of the counterterms which were told about above in connection with infinite sets of equations. Should we not like to separate the counter terms, then it would be sufficient to restrict our selves in eq. (28) to the T-product of the currents, but in every case of the colnciding arguments the arbitrariness would arise*.

Since (Lemma 1) the coefficient functions $\Phi^{n}$ of expansion (10) are obtained by taking the VEV of the radiative operators $S^{(n)}$ then, with the aid of (28), they mory be expressed also in terms of the successive operators $\Lambda_{1}, \ldots, \Lambda_{\nu}, \ldots$ :


* Note, that according to our copproach the counter terms play a more noticeable role than in the perturbation theory. If in the perturbation theory they were essential practically only for the problems related to the infinities and renormalizations, then, here, - as one can be easily make sure by using the perturbation theory expression for the current, the operators $\Lambda_{\nu}$ with $\nu>1$ will contribute to the processes which do not involve divergencies, e.g., in the Compton effect in the lower order. This is caused by the fact that the main term here ((28) or (34)) is T -product of currents, and not of Lagrangians.


## 5. Discussion,

Expressions (28) and (34) obtained for the radiative operators and coefficient functions of the $S$-matrix considerably clear up the structure of the functional expansion (10i of the scattering matrix. In particular, they may prove to be a valuable tool for the attempts to find an approximate solution of infinite equation systems for the functions $\Phi^{\nu}$. In no way, however, they can claim to resolve the fundamental problem to find a scattering matrix without perturbation theory. :-

Indeed, first of all in the perturbation theory the expression externally identical to eq. (28) solves the problem of only the formal construction of the scattering matrix. We have to speak only about the formal construction since its Immediate application would lead to the divergent expres sions when the arguments of the T-products coincide. As is well-known, a further step is to impose the condition of the absence of divergencies upon the whole sum analogous to the sum eq. (28). At the same time one is able to demons trate (see ${ }^{2}$, Sec. 26 ), that such $\alpha$ condition may be be always satisfied by appropriately choosing the arbitrary operators $\Lambda_{\nu}$. In our case this would be still done.
However, the main difference of our formulae from the perturbation theory expansion consists in another point. In the perturbation theory the quasilocal operators $\Lambda_{\nu}$ are dependent only upon the coordinates $x_{1}, \ldots, x_{\nu}$ (strictly speaking upon the free field operators at these, coinciding points). In our case the operators $\Lambda_{\nu}$ depend not only upon the coordinates $x_{1} \ldots, x_{\nu}$ but also functionally upon $\phi(y)$ :

$$
\begin{equation*}
\Lambda_{\nu}\left(x_{1}, \ldots, x_{\nu}\right)=\Lambda_{\nu}\left(x_{1}, \ldots, x_{\nu} \mid \phi(y)\right) \tag{35}
\end{equation*}
$$

The same holds, evidently, for the operators $S \quad(n)$. But we do not know yet anything about this dependence in detail; it is only clear that it. will connect the operators of different orders.

By taking into account this circumstance formula (28) expresses the operators $S{ }^{(n)}$ for a certain "fixed" $\phi(y)$ in terms of products of the operators' $\Lambda_{\nu}$ related to the same "value". $\phi(y)$ therefore, in terms of $\Lambda_{1}(\ldots \mid \phi(y))$ with any $\phi(y)$ (the sum over the complete system!).Therefore; in order eqs. (28), (34) could serve as a basis for solving the problem of finding the scattering matrix without the perturbation theory, it is still necessary to clear up the character of the functional dependence of the operators $\Lambda_{\nu}$ upon $\phi(y)$ : This problem mary be the subject of another investigation which will be performed elsewhere.

In conclusion the outhor wishes to thank N.N.Bogolubov and M.K. Polivanov for the constant interest in the investigation and for a valuable discussions.

## References

1. Н. Н. Богол юбов, Нзв. АН СССР, сер.физ. 19 , 237 /1955/.
2. Н.Н.Боголюбов и Д.В.Ширков, Введение в теорию квантованных полей. М.Гостехиздат /1957/.
3. H. Lehmann, Nuovo Cimento, 11, 342 , (1954).
4. H.Lehmann, K.Symanzik and W.Zımmermann, Nuovo Cimento, 1, 205 (1955).
5. W.Helsenberg, Zs.f.Phys. 120, 513, 673 (1943).
6. Н.Н.Боголюбов, В.В.Медведев и М.К.Поливанов. Вопросы теории дисперспонных соотношений. М. Физматгиз / 1958 /.
7. Б.В.Медведев, ЖЭТФ 31, 791/1956/.
8. В. П. Вонч-Бруевич и Б.В.Медведев, ЖЭТФ 25, 410/1953/.

[^0]:    * Hereafter referred to as PTDR.

[^1]:    * The formal use of the sets, eqs. (25), (26) without taking account of this circumstance, may lead to well-known divergences. They arise due to the multiplication of $\theta$-functions by the functions insufficiently regular near zero. As shown in PTDR; sec. 4,5 this is equivalent to an incorrect application of the integral Cauchy formula to the Fourie r-transforms; not tending towards zero at infinity.

