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Abstract . . The properties of the scatterin~ matrix are investi~ated by 
the axiomatic approach, without the perturbation theory. S­
matrix is presented as a series of the normal products of 
asymptotic field operators. Formulae are established formal­
ly expressin~ the coefficient functions of such an expansion 
in terms of chronolo~ical products of the current operator and 
some sequence of operators A • Some itJfinite sets of coup­
led equations are also derived for these coefficient functions. 

1. Introduction. Notations. 

The usual approach to the quantum field theory based on the Hamiltonian formalism encounters a num­
ber of well-known difficulties. The most ·important one is the impossibility to go beyond the limits of the 

perturbation theory: one of the basic stones of the theory- the removing-of-:divergences prescriptions -can­

not be even formulated otherwise than in tenns of successive powers of small coupling parameter. 

This circumstance has stimulated the attempts to attack-the problem from the very opposite end. Namel'6 

instead of writing down the Lagrangian or the equations of motion and trying to solve them, one attempts to . . . 
formulate those physically evident basic requirements which the solutions must satisfy, and to find all 

the totality of solutions satisfying these requirements. Assuming furthermore the perhirba tion theory and 

the hypothesis of the adiabatic switching on and off the interaction to be valid such a method was systema-

tically employed by Bogolubov1 and by Bogolubov and Shirkov 2• It may he seen , that this method 

leads then to the conclusions essentially coinciding·with those obtained with theHamiltonian one. 

Without these simplifying assumptions such a method- it is often called "axiomatic" one, though this 

name doesn1t seem to us the best- has been intensively developed recently in connectior. v.ith the disper­

sion relations - the only exact result in the quantum field theory. 

The basic physical principles of the axiomatic method may be formulated in different ways. So, for ln.­

stance. we could require from the very beginning the Heisenberg fields commuting on any space-like hyper­

surface to exist at each point. The attempts in this direction have been made in the papers by Lehmann , 

Symruizik, Zimmermann and other authors (· see3,4 and numerous further investigations ). On the other 
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hand, we can follow the programme suggested by Heisenberg5 and restrict ourselves to treating the scat­

tering matrix. The latter way was chosen by Bogolubov, Polivanov and the author6* in connection with 

the theory of dispersion relations. 

It is to be emphasized at once that we are not quite exact when saying we ·,follow the original Heisen -
berg programme. In point of fact, the manifold of objects under stl.!dY and the system of the basic physical 
principles will now be wider, but the class of the admissible theories becomes more narrow. Namely, the 
Heisenberg programme is dealing with the "on- the-energy-shell" S-matrix elements only, which correspond 
to transitions between the asymptotic stable states, i.e. transitions in which the total energy and momenturr 
are conserved and the squares of all initial and final 4-momenta are equal to the corresponding masses. The 
manifold of such matrix elements can be expressed as a functional series of the form PTDR, eq. /2.14/ in 
the creation and annihilation operators or, instead, as a functional expansion of the form PTDtt, eq. /2.15/ 
(or eq. /10/ below ) i.e. expansion in the normal products of the asymptotic fields satisfying the equation 

( 0 - m2) ¢ (x) = 0. ( 1 ) 

However, we cannot formulate the condition for exact causality making use of the scattering matrix on 

the energy shell only (one may see this already from the fact that we can't construct a four-dimensional 

8-function from the solutions of equation (1) ). Hence, it would be impossible to distinguish between the 

theories with the exact and with the macroscopic causality. To be able to" formulate the exact causality con­

dition, one has unavoidably to extend the functional expansion ( 10) and to treat it as defined on the class 

of arbitrary functions ¢ (x) not necessarily satisfying the equation (1). 

This brings the method of PTDR closer to those adopting the existence of Heisenberg fields. In the 

latter case, however, the class of admissible theories becomes still more narrow, there being no need of it 

physically. 

We shall start from the system of basic principles as formulated in PTDR, Sec.2. For the sake of sim­

plicity let'us consider one self-interacting scalar (or pseudo-scalar) field 

1 dk . . 
¢(x)=--· J _:::._ { tkx (+) -tkx (-) 

(
2

TT)3(2 ..['2P e a (k) + e a (!£)I; ( 2) 

k0 = + /?+ m
2
• 

·············································· ·······················' 

* Hereafter referred to as PTDR. 
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Here a(±) (~)are the creation I annihilation operators for the asymptotic particles (strictly speaking out­

particles), with the usual commutation relations 

( 3) 

Let us assume that there are no bound states. Then one may take the manifold of states such as 

I k . (+) k (+) (k 
-1' ... ,Jn>= a (_1) ••• R -n) I 0> ( 4) 

as a complete system provided by the requirement PTDR, I, (4) . Then the equation 

. 00 1 
<a I ABI {3>=:£ -·Jds ••• ds <aiAis , ... ,s ><._s

1
, ... ,_ss I B I ,8> ( 5) 

s = 0 s! --1 - s -1 - s 

holds for any two operators A and B. 

We shall write the four-dimensional Fourier-transformation in the form 

l ikx- - ikx 
.F(x) =- J e- F(k) dk; F (k) = J e F(x) dx. 

(2rr)4 
( 6 ) 

and exploit similar formulae for many arguments. 

Define 

<Oic/J(x) ¢ (y) 1 0> ""-w<-\ x- y ) 

[cp( x ), cp(y )l_= -iD (x. - y).,, ( 7 ) 

-<OI¢<r )¢< x) 1 O> =- w(+ J ex- r); 

Then by eq. (2), (3) and (6), 

( 8 ) 



Note, that in our notations 

[i'j.-) (-k) ] * = i)(+) ( k ) ; 

[D(-)(x)J* = v<+) (x ) ; 
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v<-\~k) = -v <+) < k ) ; 
nH(-x) =- v(+J (x ). 

2. Some Properties of Scattering Matrix. 

( 9) 

The main quantity we are going to deal with is the scattering matrix out of the energy shell. We shall 

write it down as a functional expansion in the normal products of the asymptotic fields 

s = I. -c-il 
n = 0 n! 

· raxr·· ax rrPCx1 , ••• , xn>: c/J (x1J ••• ¢ (xn> ! 
n 

( 10) 

Here the coefficient functions <IJn (x
1

, ... ,x ) are c-functions symmetrical in all their arguments. Let us . , n 
emphasize that we don't intend the functions cp (x) here to be restricted by the condition e q. {!).Per-

forming variational differentiations one may obtain 'from the scattering matrix a sequence of operators de­

pending upon the space - like points. However, it is more useful to consider not the variational deriva -

tives themselves, but the radiative operators: 

o n S 

s(n)(Xl, ••• , Xn) = ocp (Xl) ••• ocp(xn) s~ ( 11) 

Now ,we are going to prove some Lemmas which establish the relations between the vacuum expecta­

tion values (VEV) of these radiative operators, S-matrix's coefficient functions and their matrix elements. 

Lemma l. The coefficient functions of the scatteringmatrix coincide (up to a factor) with the VEV 

of the radiative operators {11) 

on s 
n ( .n Oj · S + I 0 - .n OIS(:t)( 1 <fJ x1, ••• , xn) = z < >- 1 < x1 , ••• , xn) 0>. 

ocp(xl ) ••• ocp ( xn) 
(12) 

Proof: Taking the n-th variation derivative of the expansion (10), we get 
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o~ after the renumeration of the variables 

After taking the VEV only the term without normal products survices in the right-hand side 

a"s 
i" <0] . I 0> = in(-i)n ct>n(x1, ••• ,~) • 

8cp(x1) ••• Bcp( ~ ) 

Thus, to prove the eq.(l2), it remains but to introduce the operator S +under the VEV sign in the left­

hand side. This can be done in virtue of the vacuum stability condition PTDR I, (6). 

Corollary : The scattering matrix can be written down in the form 

oo 1, 8ns 
S"' I, -fdx1 ••• dxn <Oj- . s+!O> ..!..( ) ..~., ( ) (13) 

n=On! () :'~"x1 ···'~" xn 
. Bcp x 

1 
•• • Bcp(xn 

Lemma I expresses the coefficient functions of the scattering matrix in terms of the VEV of the ope -

raters (11). Let us now express (on the energy shell) the matrix elements of the 8-matrix in terms of the 

same expectation values as well. To this end we will establish the 

Lemma 2: 

<f 1 I -+ "fl min(n,m) f 1' ..• ,fn-s Jc 1' .•• , km-s 
1, .• , n IS Jk1•···• km>= I. P( .) P ( ) P (k 1, ... ,k ). 

s- 0 e p k k m-s+ m 
- n-s+1•···'-tl m-s+1•···• m 

... ... ... 
• B(f ..-k 1) ••• a(f - km ) • 

·n-&t-1 m-s+ n 

(14) 

a" +m -2ss 

..!!n.±ml. - 3s Jiio o o o 
(217) 2 • 2e 

1 
••• 2f n-s 2k 1 ••• 2k m-s 

<01-·---------
Bcp( x1) ···Bcp(xn-s) Bcp(y 1 ).;.acp(ym_J 



0 T-.-2 2. k.==+yk.+ m , 
1 1 

8 

:0 !;2 2 
e.==+ v'e .+ m 
1 1 

... ...., .... .... 
Proof: Consider now the matrix element <~, ... tn 1 s 1 k1, ... , km> which, according to (4~, may be 

written as 
-+ -+ +-+ +-+ 

<OI a(e 
1 

J ... a r e n> sa r k1J ... a r kmJ 1 o >. 

-+ -+ 
If all the momenta k j and e j of various groups were different we could push them immediately through 

the S-matrix by means of theformulaePTDR (2.20). Then one would obtain the expression PTDR (2.21). 

However, we cannot restrict ourselves to this case only since the commutations (3) being singular, 
. -+ I -+ 

the cases of coincidence of some e with some k will bring nonvanishing contributions to occasio-

nal further integrations. 
-+ -+ 

Now the coincidences of e and k give rise to some additional terms. Namely,_each of. the creation 
+ + operators a ( k) may contract not with the s-matrix, but with anyone of the annihilation operators 

-+ 
a( e ). Hence, it is evident that the whole expression for the matrix element considered must be composed 

of a sum of terms of the 10rm PTDR eq. (2.21), the order of differentiation being successively decreased 
... -+ 

by 2, and the factors . 8 ( e - k ) appearing accordingly. 

explicitly it is convenient to use the symmetrizing opera-
x1''" xs n' 

) prescribes to sum over all the possible '( · ) 1 · • &n~. 

x,g+1•·"'~ 

For writing down such expressions 

tors introduced in ·2 • The .first of them P ( 

divisions of the set I x
1
, ... ,xnl into two subsets of s and n-s elements. The divisions differing only 

by permutations inside one of the subsets, are to be counted only once. The second operator P( x1, ... ,~) 

denotes the sum over all ... ! permutations inside I x1, ... , x l . It is easily seen that in terms of such 
o~erators the sum mentioned above takes just the· form ot (14l * (the factor S-t · may be put under the 
sign of the vaeuum expectation value due to the vacuum stability). The upper limit in the sujn over S 
in the riaht-hand ·side of (14) is determined bv the number of thA creation and annihilation operators; 

The first summation over symmetrizations P corresponds to dividing the ·whole set of annihilation ope­
ratprs into two subsets: those contractinq with creation operators and those contracting with the S-matrix; 
the second summation P (km-s + 1, ... ,km> corresponds to similar division of the creation operators, 

-+ -+ 
Finally, the last sum comes from all possible different combinations of the operators a ( e ) and a+ ( k) 

to be contracted •. 
It is clear that the formula analogous to Lemma 2 will hold also for the· matrix elements of the S- matrix 

variational :lerivatives of any order - the additional differentiations will come. unchanged under the VEV · 

sign. The .situation will be quite different in case of the radiative operators (11). Due to the factors+ an 

additional expansion in the complete system of functions will be necessary, and the formulae become much 

more troublesome. Exceptional are the cases when the ket state is the vacuum or one-particle state. Then, 
. . + 

in virtue of the stability condition PTDR, I, (6) the operator S can be absorbed in the ket, and the proof 

will be the same as for Lemma ,2. Thus, one can formulate two more lemmas 

* Compare the technique developed in 8 . Its application would make it possible to replace the 

reasoning by calculation (to say the truth, a complicated one). 
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Lemma 3: 

(15) 

By complex conjugation we obta-in 

Corollary: 

(16) 

Lemma 4: 

n 
if(ex-ky) 

.... .... ( "' .... , ,.+n .+ .1 <e1, ... , en\S (z , ... ,z)\k>=(-1) 
1 " 

,dxl' •• dxn dy e ,.+m-l 

S(n+l) - cD' (zl''"'zix , ... ,xn,y)+ 
(21T) ___ 2 ___ Jii/ ... 2e no. 2 k o 1 

(17) 

Taking the complex conjugate expression one can obtain from here the eq. of the type of eq. (16). 

Up till now we were not concerned with the causality condition. Under the main assumptions of PTDR 

it was expressed in the form 

8 8S + 8S(1)(y) 
-- (-- s ) = --=--:--~-
8 cp( x) 8 cp( y) 8 cp (x) 

=0 for x ~ y. (18) 
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(The inequality sign comes from the fact that we consider the asymptotic fields ¢ ( x) to be out-fields . 

For the in-fields it would be replaced by the opposite one). Let us prove some new relations following from 

it • 

Lemma 5 : It follows from the causality condition Eq. (18) that 

a (n) 
-s (y' ... , Y) 

a¢( x) 1 n 0' 
(19) 

if 

. x 5:-1 Yl''"' ynl (19a) 

(The symbol (19q\) means that the point x is earlier (or space-like) with .. respect to all· the points y
1 

, ... ,y ~ 
:. . n 

Proof : Suppose the Lemma is valid up to a certain N. Then 

.. ··~ 
N 

a a s 
---<•----
a¢( x ) a¢rr

1
) ... a¢(rN> 

s+) = o 
' if X s I y1''"' YNI ( *) 

Differentiating this equality over ¢ (y ), one obtains 
N + l 

N+1
5 

N 
" a 
~( ----
arp(x) arp(y 1) ... a¢ (y N + 1') 

+ a a s 
s )+ ·------

arp(x) arp(y 
1

) ... arp(yN) 

+ 
as 

S+· S ) = 0 

arp(y N+ 1) 

Hence, making use of the unitarity, PTDR I, (~) and performing the differentiation ove~ ¢ (x), one 
finds .that 

aN +1 S 
a --·(·------

arp(x) a¢(Y1) ... a¢(yN +1) 

N 
+- a a s + as + 

SJ =--( ·S )·- S + 

N 
a s 

arp(x) arp(y 1) ... 8¢(yN) arp(y N +1) 

+ a as + +--- s. . ( s ) . 
arp(y ) ... a¢ rr > 

1 N 
arp(x) arp(y ) 

N +1 

.... 
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The first term vanishes here by( -lf) , the second one - in virtue of eq. (18), if we require that ·x S Y N+ 
1 

So , if (it-) holds for n = N, (it-) holds for n = N + 1, too. Since (-K) holds for n= 1, 

Lemma 5 is proved by induction. 

Lemma 5 allows one to increase arbitrarily the number of internal arguments in the causality condi -
tion eq. (18). It is also possible to increase the number of external arguments 

Lemma 6: It follows from the causality condition that 

0, (20) 

if, at least for one 1 <; <m, 

x.<{ y, ... ,yl 
1 - 1 n (20a) 

The proof is evident. 

Both the original form of the causality condition (18) and the corollaries thereof, eqs. (19), (20) con., 
tain not only radiative operators but their variational derivatives as well. In some respects that for;n of 

the causality condition is mo!e convenient which inclulies only the operators.pl) themselves. This foxm 

is analogous to the "integral'' causality condition of the perturbation theory . Such a form is established 
by 

Lemma 7 :It follows from the causality condition that for any 0~ s ~ n the radiative operators 

are factorized in the form 

(n) (s) fn-s) 
S (x1, ... ,xn) = S (xi , ... , xi ) S (x. , ••• , x. ) 

1 s 1S+1 1n 
(21) 

if 

X, , ... , x. 
11 Is ::;:: I x

1
. , ... ,x

1
. I 

s+1. n (2la) 

holds 
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Proof : Suppose the Lemma is valid for n < N and let the arguments I x· , ••• , x I be such that 
-- · 1 N+ 1 

I xi , ... , x, I :.d xi ,· ... , x. l . 
1 Is s+1 1 N+1 

. ( "* ) 

Expressing S(k) as usual in terms of the variational derivatives, write down the identity 

l+ 1s aN s 
+ a < . s+) -· s = . 

iJ¢(x1) ... a¢(xN+.1 ) acp(x
1• ) a¢(x

1
• ) ... acp(xj ) acp(xj } ... acp(XJN) 

N+1 1 s s+ 1 

aN s 
s+. 

as+ 
s-----:-- . . 

a¢(xj ) ... acp(xj ) a¢(xj ) ... aip(xj ) 
1 s s+1 N 

a¢ (x, ) 
1
N-+ 1 

By supposition , Lemma 7 is valid for the radiative operators of the N-th order. Therefore, one can pro-

ceed by applying the Lemma and performing differentiation over ¢ (x. ) in the first term : 
1N+ 1 

s S a N-s S a a ' +) + =----·< ·S • S + 
8¢(xiN+ 1) a¢(x

11
) ... a¢(xj

8
). acp(x, ) ... a¢ (xi ) 

1s + 1 N 

a8 s aN·s +1 s s+. _____ _ a s s 
s++------ s +, +------

a¢(xj ) ... a¢(xr ) 
1 s 

a¢(x . ) ... a¢(xj + ) 
1S+1 N 1 

a¢rx1 ) ... acp(xj ) 
1 s 

aN·s S as+ a 8 S Fl- 8S · as+ 

----- s+. sts---
acp(xj ) ... acp(XjN 

S+ 1 
) ' a¢(xj . ) a¢(x

1
• ) ... acp(xj ) 

N+1 1 s 
. a¢(x1S+

1
) ... acp(XjN) a¢(xjN+

1
) 

Here the first term vanishes by Lemma 5 as the point x1 · belongs to the second group in ( *) ; 
~+ 1 

the last two terms cancel, Returning to the operators S( ) , we see that the Lemma holds also for n = N +!. 

Slnce for n = ~ it is trivial, Lemma 7 is proved by induction. 
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The integral causality condition eq. (21) is not only necessc;xry, but also sufficient for the fulfilment 
of the differential condition, eq .. (18). Moreover, to obtain the latter eq. (21) must hold only for n = 2. 

Indeed, let us perform the variational differentiation over ¢(x) in the left-hand side of eq. (18): 

a 
---<---
a¢(x) arp(y) 

as 
2 

S+. = a s s + + as as+ 
J ----s +._s---

a¢(x)a¢(y) a¢ (y) . a¢(x) 

The first term, by eq. (21) is equal to 

.as + a s + 
s·-·S if 

arp(y) a ¢(x) 
x ~y and 

as 

arp(x) 

+ as + 
s ·---'5 if 

a¢ (y) 
y < X 

aS + BS +· whereas the second one- in virtue of the unitarity -·will always give - --· S ·- S • Thus, we 
a¢(y) arp(x) 

see that once the eq. (21) holds, then 

X > y 

X < y 
(22) 

Thereby we proved 

Lemma 8 :For the differential causality condition to hold it is sufficient that the integral causality 
condition would bA fulfilled in the form 

(1) (2) 
S (xj ) S (x. ) 

1 12 
if > (23) 
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Why is condition eq. (23) sufHcient for the derivation· of eq. ( 18) , while in perturbation theory it had 

been necessary to require 7 a fulfilment of the integral condition for all n ? The reason is that now our 

radiation operators s<k) depend not only upon the arguments XI''"' xk written in explicit form, but are the 

functionals ¢(x) as well . This latter functuonal dependence connects the operators iJc>of different orders 

with each other. 

The results of the investigation we have performed may be formulated in the form of 

Theorem 1: The causalit~ conditions in the forms eq. (18) and eq. (23) are equivalent. The relations 

between the operators S(k follow from either of them .• These relations are expressed by eqs. (19), (20) 

and (21). 

3.Coupled Equations for the Coefficient Functions. 

Various forms of the causality condition obtained in the previous section were the ope~ator equations. 

·In many respects it is better to deal not with the operators but with the c-functions- the coefficient func­

tions or matrix.elements. The relations proved above allow us to derive a number of equations for these 

functions. 

Note that the causality condition in the 1orm eq. (21) may be written (by neglecting possible coinci -

dences of the arguments, cf. below) as the equality 

flS zl, ... ,zs ) • 
= p (----·) 8 (z1''"' zsi zs +1' ... , zn 

zs+l'"''zn 8cp(z 1) ... 8cp(zn) 

(24) 

88 5 
s+. 

an-s s 
s+, 

8cp(z 
1

) ... 8cp(z
8 

) 8¢( z &+ 1A .. • 8¢( z n) 

where(-) (z
1 

, ... , z ; z , ... , z ) is·equal to 1, if all z1~ ••• , z 0 are greater than all z 0

1, ... , z 0 

s S+l n s . s+ n 
and is equal to zero in the opposite case. If one takes the VEV of this equality, then in the left-hand 

side will appear the function (-i)n <I>n(z1, ... , zn)) by Lemma l. On the other hand, the right-hand side 

is to be expanded in the complete system of states making use of eq. (4). In doing this, we meet 

.two possibilities. 

If the first subset in eq. (24) contains only one argument s = 1 then the unitarity property of the 

S-matrix makes possible to put the first factor of the right-hand side in the for~ 
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8S 
+ ----·s =-:s ----

* After this by the Corollary of Lemma 3 it may be expressed in terms of the functions cf>11 ( z 
1
, ••• z'll) 

The second factor will just have the form reducing to the coefficient functions cf> 11 by Lemma 3. Thus 
we obtain 

~ 

Noting now that according to eqs. (6), (8), the integrals over each of k 

d~ e-ikj(Yj.;...xj) =-iTJ(-)'(Y.-x.) 
(277)3 1 2k0. J 1 

1 

1 

reduce to the functions T;(-)(y-x) we are led to an infinite set ot couoled equationsfor the functions <1>11 

(25) 

This set is analogous to the 11 system A 11 derived by Lehman, Symanzik and Zimmerman141 starting 
from other basic assumptions. 

Another possibility, or, to be more exact, another set of possibilities is realized if we choose 
1 < s < n - 1 in (24) . Then the unitarity condition may not be used to bring the first factor of the 
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right-hand side of eq.(24) to the form allowing the applica lion of the Corollary of Lemma 3. In order to re -
duce the right-hand side to the functions .J>V we hove but. to resort to the division into three factors, i •. e., 

to use the expansion in the complete system of states two times. Then we shall come to the set 

x1, ... , x oo oo oo 

<l>n(x , ... ,x ) = P ( s . ) 8(x1, ... , xs; ·xs+1''"' Xzt) ~ I ~ 
1 n 11= 0 v=0 1-L=O 

xs+1''"' Xn · 

...t-V+IL 

11! v i IL ! 

·fdz1 ... dz,.du1 ... du vf du'1' .. du~ dv1 ... dviLJdz'1 ... dz11' dv'1 .. dv~ 

if..s+ 11 + v(x ) al-)(z 'J ,./-) (z 1) CTI(-)( " CTI(-)( , 
• 'l' 1''"' X

8
,z1,, .. , Z111 U1'"'' UV. ;v J" z1 ... :tJ 11-z 11 ;v UJ"Ul. 1, .. ;v UV -q;) • 

(26) 
* V+!L ( ' t CTI(-)( 1 CT\(-) ( I) 
<I> u 1''"' u v' v1''"' VIL ) ;v vr v1) ... ..v . v - v IL . ~ IL. 

I if.. n-s +II + IL (z' . z'' v'1'"'' v ' xs +1 • :'1' 1''"' II . "IL , ... , xn) 

(strictly speaking, this is a set of sets correspondingly to the choice of the value of s). The structure of 

the· set obtained may be visualized by the graphic scheme 

= [er;1;n-~J-----'< 
V,J4 @ 

Fig. 1 

...:.. 
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An infinite set of eq. (25) is much simpler than the set, eq. (26). However, to find the functions <I> 
F 

one cannot restrict oneself only to this set. The reason for this lies in the following , very essential 

circumstance. When in the previous section we wrote down different forms of the causality conditions 

eqs. ( 18)-(23), "'(e have always used~ inequalities between the coordinates- e.g., the equality (23) 

is valid only if x
1 

< x
2 

or if x < x ·, but not for x == x • Therefore , expressions (21) or 
~ v 2~ 1 1 2 

(23) determine the functions tlJ (x
1

, ... , xl-' ) not for all the values of the arguments:!£ any two points 
entering different subsets in the ;:x,nditlon 2la (or two points in condition (23)) coincide, then the corres­

ponding value of tllvremains underte~mined. Therefore, it is necessary to introduce additional terms 

('~counterterms") in the right-hand sides of eqs. (25) and (26) corresponding to such coincidences of the 

arguments*. 

A consistent treatment of these counterterms seems to lead to great combinatorial difficulties. If, 
however, we shall allow ourselves to use simultaneously the sets, eq. (26) for all the values s, then it is 

easy to see that a set of point~: x1" .. xn will permit no divisions eq. (2la), only if all of them coincide. In 
other words, for each function <I>V it will be necessary to introduce only one counterterrr. -the remai­

ning one being taken account of automatically by one of the eqs. (26). At the same time, however, one 

has to resort to a peculiar "equilib ristics" - to obtain one and the sa me function it is necessary to use 

different sets of equations depending upon the value of the arguments. 

Still another set of equations may be obtained from condition eq. (23) which, according to proof, is 

sufficient for the fulfilment of the causality; A great advantage of this set is that it contains only one 

rr function. Therefore, one may hope that the combinatorial difficulties will disappear. However, in this 

case one cannot restrict onese If to the VEV of the operator condition to obtain a closed set, it will be 

necessary to consider the matrix elements between all the states. Such a set was studied by M.K. Poliva­

nov and the author elsewhere. Therefore we will not write it down here. 

* The formal use of the sets , eqs. (25), (26) without taking account of this circumstance, may lead to 
well-known divergences. They arise due to the multiplication of 0-functions by the functions insuf­
ffciently regular near zero. As shown in PTDR; sec. 4,5 this is equiValent to an incorrect application 
of the integral Cauchy formula. to the Fourie r-transforms1 not tending towards zero at infinity. 

r 06l.e,lllnteuHT:Lit WfCTUTyr I I Ut\CPHMX HCCieJ',lOB.!lHHtl 

1 6M611HOTEKA 
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4. Functional Expansion of the Scattering Matrix 

In the previous section we established some infinite sets of coupled equations for the coefficient 
funCtions ct>v , entering the functional expansion, eq. ( 10), of the scattering matrix in the notmal 
products of the asymptotic fields. An attempt to solve these equations even approximately, leads to 
enourrrous difficulties. Yet we shall see now that some evidence about the functional expansion may be· 

obtained in another way. Indeed, we will show that all the coefficient functions may be expressed in 
terms of the VEV of the T- products of a certain set of operators. At the same time it will turn out 

' 1~ 
that the structure of the functional expansion (10) closely resembles that of the functional expansion 

in powers of the "switching on and of£11 function, or roughly speaking, of the usual perturbation theory 

expansion. 

Let us turn again to the radiative operators eq. (11). The causality condition is expressed in terms of 

of them by eq. (21). On the other hand, if n variational differentiations of the unitarity condition PTDR, 

I, (5) ·are performed , then the requirements 

OQ 

I 
m =0 

x1''"' xn-m (n-m) +(m) ( ) = 8 
P ( , ) S_ (x , ... , x ) S xn-m+ 1'"'' xn nO 1 n-m 

xn-m+1 , ... , xn 
(27) 

will be imposed upon the operators S (n) 

Now we may forget about the way (11) of forming the radiative operators S(n} and set a purely alge­

bra ic problem of finding a general form of the operators ·satisfying the condition (21) 'and (27).,Now, the 

conditions (21) and (27) are just those imposed on the operator coefficient function!? entering the 

S-matrix expansion in powers. of the "switching on and off function" . g(x} (see 2 ' • (18.11 7., eq. (1). 

The condition (21) coincides algebraically with the "integral causality condition" . /7/ from , whereas 

condition (27) is the unitarity ~ondition /18.9/ from 2 . 

Thus, it turns out that the problem of finding a general form of the radiative operators s\tlJ is iden­

tical with ttat of finding a general fonn of the coefficient functions of the scattering matrix in the pertur­
bation theory. The latter problem has beim solved in 2 , and, just for case of the causality condition 
analogous to eq. (21), in 7• It has been shown that all the condiL1ons (21) and (27) are compatible and 

each of the operator functions ·s (~' (x 1, ... x") _is expressed in terms of the lower order operator functions 
up to itf' an ti-herrnitian part for all arguments coinciding • This latter may be given arbitrary value. 
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Therefore, in our case the general expression for S(n) will be of .the form 

,m 
(-t) 

+ ~--· 
m! 

2~ ~n -I 

vi+ ••• +v m = r• 

where P(xi , ... , x I • •. I ... x ) -, v
1 

n 

2 
is the operator of summation over all possible 

n! 
divisions of 

v I 1 ... ''m! 

into m subsets w~th vl' v2, ... , vm points in each. 

The operators A are arbitrary operators with the properties : v 

( 1) locality : 

A (xi ... , x ) = 0 
v ' v 

except the case 

( 2) h ermiticity 

+ 
A v(xi, .. , xv ) = Av (xi'"""' x v) 

( 3) symmetry 

and (4) commutativity in spacelike points: 

i\ (yi''""I y ) l 
ll IL • 

(x = ... == x ) tV I v - ... y Ill 

(28) 

the set of n points 

(29) 

(30) 

(31) 

(32) 
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They reflect the just mentioned arbitrariness of choosing the values of the radiative operators Stv) for the coinciding 

arguments. The first of the operators Acoincides with the current operator 

Al(x)= Kx) = ;sf1J(x) (33) 

There is yet one point to be emphasized. When using eq.(28), it is to be understood that we fix somehow for 
each 11 the arbitrariness contained in the definition of the T-product for the coinciding arguments (the inte­
gration rules near zero).In doing this we should keep the unitary condition fulfilled.Only after this do we 
add the oper_ator Av· Therefore. one can say that the operators A11 contain· all the arbitrariness of the T -pro -
ducts. They play the part of the counterterms which were told about above in connection with infinite sets of 
equations. Should we notlike to separate the counter terms, then it would be sufficient to restrict our -
selves in eq. (28) to the T-product of the currents, but in every case of the coinciding arguments the arbi-
trariness wouldarlse *. . . 

. n . 
Since (Lemma 1) the coefficient functions <I> of expansion (10) are obtained by taking the VEV of the radiative 

operators S\ii) 'then, with the aid of (28), they max be expressed also In terms of the successive ~perators 
Al'.'"' '\, I ... : 

+ I 
2~ ni ~ n­

Iv=n 

<t>" (x1, ... , xn) = < 0 I T [Kx1) ... i(9 ] I 0•> ·· + 

.n-m 
1 

m! P (xl''''' x 1 ... 1 ... , xn) <01Tt:A
11 

. (x1, ... ,x . . .J .... A11 ( ... ,xn> liO>+ 
. vl 1 ~ m 

n-1 
+ i <OI A+ (x 1, ... , 'S-J) I 0 >. 

(34) 

*Note, that according to our approach the counter terms. play a more noticeable role than in the perturbation theory. 
If in the perturbation theory they were essential practically only for the problems related to the infinities and renor­
malizations, then, here,:.. as one can be easily.~~ sure by usirig the perturbation theory expression for the cur­
rent, the operators A11 with 11 > 1 will contribute to the processes which do not involve div~:_q:ericies, 
e.g., "in the ~IIJrton effect in the lower order. This is caused by the fact that the main term here ((28) or (34)) 
is T-product of currents, and not of Lagrangians. · 
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5.: Discussion, 

Expressions (28) cmd (34) obtained for the radiative operators cmd coefficient functions of the S-matrix consi­

derably clear up the structure of the functional expansion ( 10) of the scattering matrix. In particular, they may prove 

to be a valuable tool for the attempts to find em approximate solution of infinite equation systems for the functions 
v . . . 

1> • In no vvcry, however, they ccm claim to resolve the· fundamental problem to find a scattering matrix without 

perturbation theory. 

Indeed, first of all in the perturbation theory the expression externally identi9al to eq. (28) solves the problem 

of only the formal construction of the scattering matrix. We have to speak only about the formal construct;ion since its 

immediate application would lead to the divergent expressions when the arguments of the T-products o:iincide. As is 

well-known; a further step is to impose the condition of the absence of di.vergencies upon the. whole sum analogous 
' 2 . 

to the sum eq. (28). At the same time one is able to demonstrate (see ·,Sec. 26) ; that such a condition may be 

be always satisfied by appropriately choosing the arbitrary operators A • In our case this would be still v 
done. · . · 

· However, the main difference of our formulae from the perturbation theory expansion consists in another ·point. 

In the ~rturbation theory the quasilocal operators A v are dependent only upon the coordinates X 1, ... , ~A stricti y spea-

king upon the free field operators at these, coinciding points). · In our case the operators 

only,up::;n the coordinates ;e 1 ... , :>), but also functionally u~n ¢J..-}J) : 
A 

v 
depend not 

Av(xl''"' xJ = Av (xl'"'' ~~ 9 !YJ) (35) 

The same holds, evidently, for the operators S (n). But we do not know yet anything about this dependence in 

detail; it is only clear that it will connect the operators of different orders. 

By taking into account this circumstance formula (28) expresses the operators s(n) for a certain 11fixed11 d>(y) 

in terms of products of. the operatorf:! 1\v related to the same 11value11
. 9iJ..J therefore, in terms of A

11
(,..j ¢(y)) 

with cmy ¢(y) (the sum over the complete system!).Therefore; in order eqs~ (28), (34) could serve as a basis for 
solving the problem ot finding the scattering matrix without the perturbation theory, it is still necessary to clear up 

the character of the functional dependence of the operators A upon ¢(y) • This problem may be the subject v . . 
of another investigation which will be performed elsewhere. 

In conclusion the author wishes to thank N.N.Bogolubov cmd M.K.Polivcmov for the constant interest in the investi­

gation cmd for a valuable discussions. 
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