

И.М.Гельфанд , А.Ф. Грашин , Л.Н. Иванова, И.Я.Померанчук , Я.А.Смородинский

Д - 598

ФАЗОВЫЙ АНАЛИЗ Р-Р-РАССЕЯНИЯ ПРИ 95, 150 и 310 МЭВ И.М.Гельфанд^{X/}, А.Ф. Грашин^{XX/}, Л.Н. Иванова^{X/} И.Я.Померанчук^{XX/}, Я.А.Смородинский

Д - 598

ФАЗОВЫЙ АНАЛИЗ Р-Р-РАССЕЯНИЯ ПРИ 95,150 и 310 МЭВ

/Доклад на X конференции по физике высоких энергий, Рочестер, 1960 год/

^{x/} миан ссср ^{xx/} итэф ан ссср.

836/5 ng

наловаренный институт акализа песледования БИБЛИОТЕКА

I. <u>Введение</u>

Целью этого сообщения является изложение результатов фазового анализа pp-рассеяния при энергиях 95, 150, 300 Мэв. Анализ производился с помощью нового численного метода /метода "оврагов"/, предложенного И.М.Гельфандом, который позволил существенно продвинуться в выяснении характера приемлемых областей фазового пространства /решений/ и вопроса об однозначности.

При анализе ставились, в основном, три задачи:

1. Выяснить, в какой мере опубликованные в литературе решения /1-3/, выполненные общепринятым градиентным методом, исчерпывают возможные решения. При этом было существенно заново проанализировать допуски для возможных значений фаз, задаваемые обычно матрицей оши бок.

2. Выяснить роль "модифицированного анализа"^{/2,4/}, при котором учитывается полюсной /одномезонный / вклад в амплитуду рассеяния. При этом выяс – нить, в какой мере модифицированный анализ позволяет уточнить значения фаз без увеличения точности экспериментальных данных, и в какой мере он позволяет уменьшить число необходимых опытов^{/5/}

3. Выяснить, возможно ли из существующих экспериментальных данных получить "периферийные" фазы, для которых основной вклад должно давать одномезонное приближение, и проверить тем самым правильность оценки точности одномезонного приближения, полученной путем вычисления двухмезонных фаз⁶.

2. Метод "оврагов"

Подбор фаз, наилучшим образом описывающих экспериментальные данные, обычно производится минимизированием квадратичного отклонения

$$\chi^{2}(\delta) = \sum \left(\frac{\gamma(\delta) - \gamma_{\mathfrak{skcn}}}{4 \mathfrak{skcn}} \right)^{2}.$$
 (1/

Здесь У(д) - значения измеряемых функций /сечения и т.д./ при варьируемых значениях фаз д, Уксп - соответствующие измеренные значения; сумма распространена на все выбранные точки, измеренных кривых. Формально задача сводится, таким образом, к определению локальных минимумов функции /1/ в много лерном фазовом пространстве параметров δ . Ясно, что обследовать равномерно все пространство при большом числе фаз практически невозможно. Уже при 9 параметрах, выбирая лишь 10-15 значений каждого из них, мы приходим к необходимости обследовать около 10¹⁰ точек. Поэтому сейчас общепринят метод случайного бросания ряда точек с последующим спуском по градиенту. Найденные конечные пункты таких маршрутов /локальные минимумы/ и называют решениями. Точность решения оценивается матрицей ошибок /см., например, /1-3//.

Очевидно, что такой метод не дает достаточной гарантии, что найдены все области с низкими эначениями . Кроме того он по существу приспособлен не для выяснения топографии поверхности /1/, что нужно для выяснения неоднозначности решения, а для нахождения отдельных "ямок", которые не обязательно должны отвечать истинным решениям. Метод не удобен и практически, так как маршрут следует за мелкими подробностями рельефа, не имеющими обычно никакого физического смысла, и для него неопреодолимы отдельные "углубления", в которых он и застревает. По этой причине решения, принадлежащие фактически одной области, могут выступать как отдельные решения с небольшими допусками, задаваемыми матрицами ошибок.

Указанные недостатки отсутствуют в методе "оврагов" ^{х/}, характерной особенностью которого являются "скачки" конечной длины вдоль "оврагов" низких значений χ^2 . Если сеть "оврагов" не слишком запутана, то этот метод сравнительно быстро позволяет найти все области с низкими значениями χ^2 : такое положение имеет место у "хорошо организованных" функций, какими обычно оказываются функции многих переменных, встречающиеся в практических задачах.

При выполнении фазового анализа необходимо условится о том, какие решения считать приемлемыми. В этой работе мы принимали, что решение приемлемо, если соответствующее χ^2 не превышает удвоенного среднего математического ожидания χ^2 . Сравнение кривых показывает, что при этом они достаточно хорошо согласуются с экспериментальными. Следует подчеркнуть,

И Подробное изложение метода будет опубликовано отдельно.

что при существующих экспериментальных данных ^{x7} было бы разумным даже ослабить критерий приемлемости, допуская, например, решения со значениями $\chi^2 \leqslant 3 \chi^2$. Очевидно, что это привело бы к некоторому расширению области решений.

3. Учет одномезонного "хвоста"

При составлении квадратичного отклонения /1/ все фазы, соответствующие большим орбитальным моментам, учитывались в одномезонном приближении, как это предложено в работе^{/4/}. Выбор значений моментов, начиная с которых фазы "закреплялись" в одномезонном приближении, производился на основании оценок двухмезонных поправок, полученных Галаниным и др.^{/6/}. Одномезонный "хвост" вычислялся при значении мезон-нуклонной константы $g^2 = 14,5$.

В работах берклиевской группы 92 варьировалась, и ее экспетакже риментальное значение, отвечающее минимуму Х², принималось за экспериментальное значение этой константы. Такую процедуру нельзя признать последовательной. Действительно, замена истинного "хвоста" одномезонным верна лишь для достаточно больших 🕻 , поэтому на каждом этапе вычислений следовало бы искать и малые поправки к вычисленным фазам, варьируя 🗡 по отношению к ним. Так как в действительности вычисленные фазы не варьируются, то необходимые поправки к некоторой степени автоматически учитываются измененением параметра 92. В результате найденное значение должно отличаться от истинного и стремиться к нему по мере увеличения числа варьируемых фаз. если точность экспериментальных данных допускает это. Точность существуюших данных невелика, и уточнение анализа за счет варьирования q выходит за пределы экспериментальных ошибок.

В качестве независимых варьируемых параметров использовались собственные фазы с учетом кулоновского взаимодействия /BB- shifts в обозначениях Стэппа и др. ///. Однако, для удобства введения одномезонного "хвоста"

х/ Отметим, что вновь опубликованные данные для 98 Мэв отличаются от использованных нами на несколько статистических ошибок при некоторых углах рассеяния. Аналогичное положение имеет место, как известно, для деполяризации при 150 Мэв.

и сравнения с одномезонным приближением использовались также действительные части матрицы рассеяния (2:)-' 5³,е.е.

$$\xi_{2} = \mathcal{R}e\left(\frac{1}{2i}S_{1,3}^{2}\right) \quad \gamma_{3}^{2} = \mathcal{R}e\frac{1}{2i}[S_{3,3}^{2} - e^{ig_{3}}]$$

$$\gamma_{3}^{4} = \mathcal{R}e\frac{1}{2i}[S_{3,3}^{4} - e^{ig_{3}}]$$

/ У - кулоновская фаза/, совпадающие с точностью до квадратичных поправок с ядерными фазами / NB в обозначениях Стэппа/,

4. Анализ для 95 Мэв

К началу нашей работы для этой энергии имелись лишь данные о сечении о и поляризации Р, которые были обработаны с пятью варьируемыми параметрами^{x/}

 $\delta_{o}(S_{o}), \delta_{1}(D_{e}), \delta_{1}(P_{o}), \delta_{1}(P_{o}), \delta_{1}(P_{o}), \delta_{1}(P_{e}), \delta_{1}(P_{e}).$

Начиная с F фаз и параметра \mathfrak{S}_2 вводилось одномезонное приближение. При таком анализе была найдена очень большая и сложная область решений. Добавление недавно опубликованных данных по деполяризации \mathcal{D}^{77} не привело к существенному уменьшению области решений.

Полученную область можно очень грубо охарактеризовать, задавая границы изменения фаз, что отвечает примерному заданию 5 мерного описанного параллелепипеда вокруг области решений. При этом мы, естественно, теряем возможность показать некоторые корреляции /не очень существенные/ между границами по разным фазам. В таблице 1 показаны полученные таким способом границы.

Для выяснения возможности определения периферийный фаз анализ был повторен с варьированием 9 параметров /дополнительно **б**и *F* фазы/.

x/ Расчеты для 95 Мэв по сечению и поляризации выполнены совместно с В.А.Боровиковым. При этом размеры области несколько расширились и в минимумах получены значения $\chi^2 = 10$ /при $\chi^2 = 24$ /. Это позволяет думать, что из существующих данных невозможно сколько-нибудь надежно получить параметр смешивания ξ_2 и F фазы и позволяет сделать лишь вывод о том, что одномезонные значения для этих фаз не противоречат эксперименту.

При рассмотрении топографии полученной области видно, что она имеет тенденцию разделиться на две, так как в местах предполагаемого раздела проходит невысокий "хребет" с $\chi^2 \approx 3\chi^2$. Включение данных нового опыта при ведет, по-видимому, к более отчетливому разделению на две области, которые мы назовем областями № 1 и №2. Аналогично анализу для 150 Мэв /см.ниже/ эффективным в этом смысле должно быть измерение вращения поляризации **R**. В качестве примера в таблице 1 приведены решения из области № 1 и № 2.

5. Анализ для 150 Мэв

Был приведен 9-параметрический анализ данных σ , P, D, R/деполяризация взята из работы Гарвардской лаборатории/. В отличие от анализа при 95 Мэв были обнаружены две резко разделенные области, границы которых указаны в таблице 2. Основную роль в получении сравнительно узких областей сыграло включение данных по вращению поляризации R. На меньшую роль деполяризации указывает также то, что при замене данных Гарварда на заметно отличающиеся данные Харуэлла мы получили, в основном, лишь некоторое смещение областей.

Решение, найденное Стэблером и Ломоном^{/3/}, лежит в области № 1, однако подчеркнем, что указанные ими допуски занижены в несколько раз.

Интересным результатом оказались узкие допуски для D и F фаз. Для выяснения роли F фаз были проведены также вычисления, при которых параметр смешивания ξ_2 и все более высокие фазы полагались равными нулю. В другом варианте эти фазы аналогично анализу при 95 Мэв заменялись на теоретические /одномезонные $\xi_2 = -0,075$, $\eta_3^2 = 0,03$, $\delta_3^3 = -0,02$ одно + двухмезонное значение $\beta/6/\gamma_3^4 = 0,015/$. В обоих вериантах не удалось получить решений с $\chi^2 < 150$. Это подтвер ждает правильность узких допусков для этих фаз и указывает на важность не только самих фаз, но и отклонений от одномезонных значений.

6. Анализ для 310 Мэв

Был проведен 9 параметрический анализ данных по σ , P, D, R **A**. Метод оврагов обнаружил все 8 известных решений /точнее соответствующие им области/. Других областей с низкими χ^4 не найдено. Однако, полученные ранее допуски $^{(1,2)}$ оказались в несколько раз заниженными. Решения 1 и 3 лежат в одной области /область № 1/, аналогично решениям 2 и 4 /область № 2/и решениям 5 и 8. Решение 7 четко изолировано от этих трех областей, а решение 6 близко примыкает к области № 1 и отделено от нее "хребтом" с $\chi^2 \approx 130$. В таблице 3 указаны границы областей № 1 и № 2 по удвоенным и утроенным средним значениям $\chi^2 = 26$, а также несколько решений, лежащих за пределами указанных ранее ошибок.

7. Выводы

1. Фазовый анализ, по крайней мере при недостаточно полном наборе экспериментальных данных, дает в качестве решения довольно большие сложные области, которые нельзя описать с помощью указания локальных минимумов и матриц ошибок. Полученные ранее общепринятой методикой допуски для возможных значений фаз существенно занижены.

2. "Модифицированный" анализ не уменьшает кратности решения и не дает возможности уменьшить число необходимых опытов, но приводит к некоторому уменьшению допустимых областей, ослабляя тем самым требования к точности экспериментальных кривых. Сглаживая подгоночные кривые, он позволяет ограничиться также измерениями на небольшом числе углов рассеяния.

3. Области № 1 при разных энергиях являются продолжением одна другой. То же можно сказать об областях № 2. Решения 5-8 и 7 для 310 Мэв при их продолжении к меньшим энергиям исчезают и не дают новых областей, что может служить указанием на их непригодность. Решение № 1 при 95 Мэв дает значения ³Р фаз, близкие к одномезонным, и положительную 'S фазу, что соответствует знаку 'S фазы в области приближения длины рассеяния. Решение № 2 этими свойствами не обладает.

.

4. Существующие данные позволяют с удовлетворительной точностью выделить "слабо периферийные " фазы, соответствующие прицельным параметрам **Y**, **z** μ^{-1} / **D** и **F** фазы при 150 Мэв/. Эти фазы качественно согласуются с теоретическими ^{/6/}, однако количественное сравнение в настоящее время провести невозможно.

5. Для получения однозначного и достаточно точного анализа необходимо проведение дополнительных опытов и дальнейшее повышение точности эксперимента.

Авторы благодарны М.А.Евграфову и И.И.Пятецкому-Шапиро за помощь в разработке методики, С.Л.Гинзбург за неоценимую помощь в расчетах, а также В.А.Боровикову, принимавшему участие в начальной стадии работы.

> Рукопись поступила в издательский отдел 22 августа 1960 года.

Таблица 1

Границы области решений для 95 Мэв и некоторые решения

Фазы	Общие границы обл. № I и № 2	Два решения из обл. № I x ² =20 x ² =24	Решение из обл. № 2 х ² =34
15,	-0,45 0,45	0,17 — 0,35	-0,25
'D ₂	-0, 07 -0, 16	-0,06 - 0,105	0 , I3
³ P.	-0,35 0,6	0,45 — 0,25	-0,23
³ P,	⊷0 , 23 ↔ 0.16	-0,0460,20	0,13
• P2	0,15 - 0,32	0,27 0,28	0 , 28

Таблица 2

Границы областей решений для I50 Мэв и некоторые решения

<u>ଡ</u> 31	Γ раници обл. [№] I $X^2 < 2 \overline{X^2}$	Границы обл. № I х² < 3 х²	Решение из обл. № Г Х² = 37	Границы об. Х² < 3	۲. N2	Решение из обл. №2 Х²= 58
, S,	0.2 - 0.4	0.2 🕶 0.45	0, 296	-0.6 0	I •	-0, 155
, D,	0,09 - 0,16	0,08 - 0,I6	- 0 , I34	0,05 0	, 17	0, I39
۲	0,02 - 0,2	0 0,25	0,132	-0,5 -0	,35	-0,4I5
a D.	-0,350,27	-0,350,27	-0,295	0,04 0	, I3	060 0
С.	0,25 0,3	0,24 - 0,3	0,280	0,3 0	,36	0,32I
้ง	-0,060,02	-0,060,02	-0,034	-0, I -0,	,06	-0,079
1.6	-0,04 0,02		-0,024			0,007
с ц.	-0,02 - 0,07					
	-0,0I - 0,03		0,016			-0,034
2			-0, UUI			-0,007

<u>Таблица 3</u> Границы областей решений для 310 Мэв и некоторые решения

Литература

1.N.P.Stapp, T.J.Ypsilantis, N.Metropolis, Phys.Rev. 105, 302(1957).

2.P.Gziffka , M.H. Macgregor, M.J.Moravcsik, N.P.Stapp, Phys.Rev. <u>114</u>, 880 (1959). M.H.Macgregor, M.J.Moravcsik, N.P.Stapp, Phys.Rev. <u>116</u>, 1248 (1960).

³.R.C.Stabler E.L.Lomon, Nuovo Cimento, <u>15</u>, 150 (1960).

4. А.Ф. Грашин. ЖЭТФ, <u>36</u>, 1717 /1959/.

5. Л.Д. Пузиков, Р.М. Рындин, Я.А. Смородинский. ЖЭТФ. 32,592/1957/.

6. А.Д. Галанин, А.Ф. Грашин, Б.Л. Иоффе, И.Я. Померанчук. ЖЭТФ, <u>37</u>, 1663 /1959/; ЖЭТФ, <u>38</u>, 475 /1960/; Nucl.Phys. <u>17</u>,181, (1960). А.Ф.Грашин, Ю.И.Кобзарев, ЖЭТФ, <u>38</u>, 863 /1960/.

7. E.H.Thomdike, T.R.Ophel, Phys.Rev. Lett., 4, 486 (1960).