

N.P.Klepikov\*, V.A.Meshcheryakov, S.N.Sokolov

**D-584** 

ANALYSIS OF EXPERIMENTAL DATA ON THE TOTAL CROSS SECTIONS FOR PION-PROTON INTERACTION

\* Physical Faculty of the Moscow State University

946/9 YG

объединенный институт плерных бсогодованей БИБЛИЮТЕКА

#### 1. EXPERIMENTAL DATA

Pion scattering by protons is at present one of the most extensively studied processes invol ving strong interactions. The experimental data available in this field are so rich that they allow to make a complete joint analysis of all the information and to find some of the characteristics of this process with a considerably higher accuracy than by means of partial analyses. This paper is concerned, first of all, with the analysis of all the data on the total cross sections of the interac tion of pions with protons, since, on the one hand, the total cross sections include the major part of the information about the process under study and, on the other, they are investigated experimentally most fully.

A complete list of all whatever reliable experimental results on the total cross sections which have been available to the authors of this paper by March 1960 is given in Tables 1 and 2. Yet, some remarks should be made concerning the layout of the material and on the nature of some of the quantities included.

In Column 1 are indicated the numbers, according to the list of references, to the papers in which the data analysed here are published, mentioned, or corrected. The references to experimental papers  $^{1-74/}$  are given strictly chronologically. Therefore, to a certain extent, one can judge by the number of the reference, when the paper was written. The limiting values of the cross sections at zero kinetic energy of the pions have been calculated according to the results of the analysis  $^{75/}$  the author of which made use of the papers  $^{18, 20, 24, 26, 28, 37, 43, 46, 50/}$  of our list and of some other independent data. We deliberately excluded, as well, some papers pertaining to the total cross sections only indirectly and, besides, giving insignificant information on them. Excluded are also all the data on scattering of negative pions from paper  $^{61/}$  since it is well-known that the energy of the incident particles has been determined there utterly incorrectly. The authors of the present paper hope that they missed nothing and did not repeat the results of the same measurements . We apologize beforehand to the authors of the experimental papers for possible inaccuracy in treating the data that may be caused by an incomplete or, in our opinion, by an obscure description of experiments.

Column 2 presents the estimates of the mean kinetic energy of a pion beam and /below/ the estimate of the standard deviation of this mean value. Most of the authors of the experimental papers fail to give the data on the error in the estimation of this mean energy, therefore, the data listed were obtained partially by an additional analysis of the conditions of some experiments. Not all the figures for the standard deviation of the mean energy are quite reliable, but the major part of them produces no effect upon the results of the analysis (see discussion of Column 4). The values of halfwidth of the energy distribution of the particle beam usually mentioned by the authors are not presented in the Table since the corrections to the original data which are due to the curvature of the ivestigated cross section in the band of the beam width are almost everywhere negligibly small. In some cases necessary corrections to the energy averaging were included into the tigures given in Column 6.

In  $C_0$  lumn 3 are listed the estimates of the total cross sections for pion interaction with protons which were reported by the authors of the experimental papers or obtained by combining the published data. Below are given the estimates of the standard deviations of these cross sections.

Column 4 shows the standard deviations of the cross sections caused by the errors in the determination of the mean energy of the beams (confluent errors). These standard errors were determined according to formulae of chapter 3 (confluent analysis) of paper  $\sqrt{76}$ ; it became possible to neglect everywhere the terms due to the curvature. Then  $S_c(e^{\circ}) = S_{\varepsilon} \left| \frac{dG}{d\varepsilon} \right|$  where the derivative has been found on the basis of the results of a preliminary analysis of all the data. To take into account the confluent error, its square must be added to the square of the error given by the author. Therefore, the confluent errors are indicated only in the cases when they yield not too small a contribution to the final error. For negative mesons these errors are almost everywhere small, they affect the final results but slightly, and at the present stage of the analysis it does not seem reasonable to take them into account.

In Column 5 are indicated the corrections on the Coulomb pion-proton scattering and on the inter ference of this scattering with the nuclear one for the results of transition measurements. These corrections were calculated by using the formulae of paper  $^{/77/}$  and the preliminary data on the angular distributions of the pion - proton scattering. The corrections are not indicated for the cases when they had been already introduced by the authors of the experimental papers, when they turned out to be small or when the measurements were so inaccurate that they are not worth correcting.

Column 6 presents other corrections introduced into the initial cross sections, namely, the corrections on the small-angle nuclear scattering of particles not inducing any weakening of the beam due to the finite dimensions of the counters or which cannot be reliably identified in nuclear emulsion plates. In the same Column are also given the corrections arising from a specification of the data on the angular distributions which were used in calculating the corrections just mentioned, as well as the corrections on the averaging over particle energies.

In the cases when the total cross sections were obtained as a result of the measurement of the angular distributions of elastic pion scattering and charge-exchange scattering, a complete analysis of the angular distributions has been made anew with the introduction at each point of corrections on Coulomb scattering and interference, on the errors in the determination of the angles and on the averaging over the scattering angles. There was no need in repeating the analysis only when all the necessary corrections were introduced by the authors of an experimental paper. In some cases the analysis could not be repeated since relevant papers did not contain the necessary information. The tables of the coefficients of the angular distributions and the analysis of their energy dependence will be given elsewhere. Also, we are going to take into account the results of all relative measurements of angular distributions normalized to some values of the total cross sections. Such measurements, of course, could not be used in the present paper.

In Column 7 are enumerated the final estimates of the cross sections and (below) the estimates of the standard deviations of these cross sections.<sup>2</sup>A part of the data is excluded from a further analysis since either the corresponding points fall out of the groups determined by the latest most accurate measurements, or the data have a relatively great error and a very small weight in all the ensemble of the data, or it became known that in obtaining these experimental results the assumptions used turned out later to be incorrect, or, finally, as it is often the case, there is a combination of these unfavourable circum - stances. It was considered reasonable to exclude these data from the analysis, rather than to correct them by means of a displacement or of an increase of their errors, since the latter procedure is quite ambiguous.

It is necessary to explain in more detail the reasons for which some points were excluded from the analysis. At low energies three points are excluded from the data for  $G_t^+$ : the point from paper  $^{/43/}$ has already been accounted for in the determination of the cross section at E = 0; the point from paper cannot be reliably corrected for Coulomb scattering and for small-angle scattering; the point from paper  $^{/57/}$  falls out. At low energies 6 points are excluded from the data for  $\mathfrak{F}_{t}$ . Out of these the point from paper  $\frac{20}{15}$  is taken into account in the determination of the cross section at E = 0, two points  $\frac{56}{56}$ fall out, and three are very weak. The point for  $\mathbf{5}_{t}$  at 333MeV from the paper is excluded from the analysis since it falls out of a group of points found later on by the same authors and, besides, it is de termined from angular distributions, which do not agree well with dispersion relations (see /78/). All the points from paper  $^{47/}$  are excluded from the data for  $\mathbf{5}_{t}^{-}$  at high energies, as the major part of them is it in sharp contradiction with the latest and more accurate measurements in this region; the data for 5 from the same paper do not disagree with other experiments and are included in the analysis. The points of the report /68/ were excluded from the final variant of the analysis as they seem to be preliminary results of paper <sup>/71/</sup>. The reasons for excluding other points neglected are indicated above and evident from the figures.

As the electronic computer used at an early stage of the analysis had an insufficient extent of memory, some points at the same or at very close energies were combined . Such combinations of points are denoted by parentheses.

In Column 8 are presented the values of the momentum in the center-of-mass-system (in the units of ), because just this quantity enters the interpolating expressions as an argument.

In Column 9 are given the values of  $A_{\overline{g}} \frac{\delta_t}{4r}$ ; this ratio enters into further formulae, and is convenient for operating with scattering angular distributions.

Finally, in Column 10 are given the weights with which the individual points enter the analysis. The weights were calculated by the formula  $\mathbf{w} = \left(\frac{4\pi}{S_c}\right)^2$ . For all the points excluded from the analysis a zero weight is indicated. In the course of the analysis the limiting cross sections at  $\mathbf{E} = \mathbf{0}$  were assumed to be exact.

In Fig. 1 are shown all the points included into the list for  $\mathbf{6}_{\boldsymbol{\epsilon}}^+$  at the energies from zero up to 376 MeV, in Fig. 2, from 335 MeV up to 3.86 Be V. In Fig. 3 are plotted all the points for  $\mathbf{6}_{\boldsymbol{\epsilon}}^-$  from zero up to 373 MeV, in Fig. 4, from 363 MeV up to 6.66 BeV. The experimental points included into the analysis are indicated by full circles, the excluded ones, by empty ones. For each point the standard deviations  $S_{\boldsymbol{\epsilon}}$  and (for  $\boldsymbol{\tau_1}^+$ )  $S_{\boldsymbol{\epsilon}}$ , and the reference number of the experimental paper are shown. The standard deviations smaller than the radius of a circle are not plotted.

-

## Table 1

Experimental data on the total scattering cross sections of positive pions on protons

| Refere                | nce ±ς  | <u>ج</u><br>جار       | Sc                                     | Coulomb  | Other          | و<br>₹؟             | <i>h</i>                                                                                                                                                                                                                           | A,                                                                                                                                                                                                                                  | W                                        |
|-----------------------|---------|-----------------------|----------------------------------------|----------|----------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
|                       | MeV     | Oriainal<br><b>mb</b> | mв                                     | mb       | m <sup>8</sup> | is Final<br>mb      | . (                                                                                                                                                                                                                                | mb/ster                                                                                                                                                                                                                             | (mb<br>/ster)                            |
| <u>1</u>              | 2       | <b>3</b>              | 4                                      | 5        | 6              | 1.00. <b>7</b> .1.1 | 8                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                     | 10                                       |
| 75                    | 0       | 2,76                  |                                        | -        |                | 2.76                | 0                                                                                                                                                                                                                                  | 0.220                                                                                                                                                                                                                               |                                          |
|                       |         | 0,53                  |                                        |          |                | 0.53                | Ŭ                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                     |                                          |
| 43                    | 21,5    | 3,0                   | je s                                   |          |                | 3.0                 |                                                                                                                                                                                                                                    | an in a                                                                                                                                                                                                                             | •                                        |
| 1840 -                | 2       | I,0                   | 1.1                                    |          | *              | I.0                 |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                     |                                          |
| I6                    | 33      | 6,4                   |                                        | i englis |                | 6.4                 |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                     | 0                                        |
|                       | et .    | 2 <b>,</b> I          |                                        |          |                | 2.I                 |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                     | ente Ville<br>La mente de la composition |
| 15                    | 37      | II,8                  |                                        |          | 0,75           | I2,6                | 0.655                                                                                                                                                                                                                              | I.Ó                                                                                                                                                                                                                                 | TOO                                      |
|                       | 0,5     | I,0                   | 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | <b>6</b> | 0,75           | I,2                 |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                     | 100                                      |
| 57                    | 37      | 6,5 8                 | angular                                |          |                | 6,5                 | an di tan                                                                                                                                                                                                                          |                                                                                                                                                                                                                                     | 0                                        |
|                       |         | 0,5                   |                                        | . 4      |                | 0,5                 | n de la sur de la su<br>Nota de la sur de la s |                                                                                                                                                                                                                                     | d The                                    |
| 42                    | 38      | 8,8                   | angular                                |          |                | 7,9                 | 0,664                                                                                                                                                                                                                              | 0,63                                                                                                                                                                                                                                | .83                                      |
|                       |         | 0,9                   |                                        | •        |                | I,4                 |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                     |                                          |
| II                    | 40      | IO,9 0,9              | 9 angula                               | ir       |                | 13,3                | 0,683                                                                                                                                                                                                                              | I,06                                                                                                                                                                                                                                | 29                                       |
|                       | 3       | 3                     |                                        |          |                | 2,3                 |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                     | an ta Tanan<br>Marina                    |
| 16                    | 44      | 9,8 I,5               | 5                                      |          | 2,6            | 12,4                | 0,718                                                                                                                                                                                                                              | 0,99                                                                                                                                                                                                                                | 467 <b>21</b> 88                         |
|                       | 4       | I,5                   |                                        |          | I <b>,</b> 7   | 2',7                |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                     |                                          |
| 18                    | 45      | 12 0,9                | ) angula                               | r .      |                | IO                  | 0,727                                                                                                                                                                                                                              | 0,8                                                                                                                                                                                                                                 | 34                                       |
|                       | 3       | 3                     |                                        |          |                | 2,2                 |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                     | 8 A 11                                   |
| <b>,</b> , <b>7</b> . | 53      | 20                    | angula                                 | .r       |                | 19,2                | 0,794                                                                                                                                                                                                                              | I,53                                                                                                                                                                                                                                |                                          |
|                       | IO      | 4                     | , ÷                                    | / .      |                | 3,6                 |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                     |                                          |
| 4                     | 56      | 20                    |                                        |          |                | 20 ک                |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                     |                                          |
| -                     | 2,7     | 10                    |                                        |          |                | 10                  |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                     |                                          |
| 10                    | 56      | 17,6 2,5              | 0,34                                   |          | I,3            | 19,2                |                                                                                                                                                                                                                                    | ne<br>Literatura                                                                                                                                                                                                                    |                                          |
|                       | 4       | 2,2                   |                                        |          | I,3            | 3,6                 | <b>≻0,830</b>                                                                                                                                                                                                                      | <b>I,</b> 3I                                                                                                                                                                                                                        | 54                                       |
| 20                    | 28      | 15,8 I,9              | angula                                 | r        |                | I5,5                |                                                                                                                                                                                                                                    | in di seconda di second<br>Seconda di seconda di se |                                          |
| 2                     | ر<br>58 | 1,5<br>27.8           | •                                      |          | <b>-</b>       | 2 /                 |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                     |                                          |
| -<br>                 |         | 2.5                   |                                        | •        | T              | 28,8                |                                                                                                                                                                                                                                    | ·                                                                                                                                                                                                                                   | 0                                        |
| 16                    | 70      | T9.0 4 5              | О ТА                                   |          | 2.00           | 2,5                 |                                                                                                                                                                                                                                    | ·                                                                                                                                                                                                                                   |                                          |
| . – -                 | 5       |                       | 0,14                                   |          | 2,20           | 21,4                | 0,924                                                                                                                                                                                                                              | I,7I                                                                                                                                                                                                                                | 5,2                                      |
| 24                    |         | <b>~ , U</b>          |                                        |          | т,8            | 2,5                 |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                     |                                          |

| I  | 2             | 3          | 4 5                                                                                                        | 6                                                                                                                                                                                                                                   | 7 8             | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10  |
|----|---------------|------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 8  | 75            | 41         |                                                                                                            | 4                                                                                                                                                                                                                                   | 45              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0   |
|    | I,7           | 15         |                                                                                                            |                                                                                                                                                                                                                                     | 15              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| 9  | 78            | 3I 3,      | I angular                                                                                                  |                                                                                                                                                                                                                                     | <b>3I 0,98I</b> | 2,47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9,9 |
|    | 3             | 3          | an an Araba an Araba.<br>An Araba an Araba an Araba an Araba<br>Araba an Araba an Araba an Araba an Araba. |                                                                                                                                                                                                                                     | . 4             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| 5  | 79            | 48         | 0,2                                                                                                        | 0,1                                                                                                                                                                                                                                 | 48,3 0,988      | 3,84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I,6 |
|    | 7,5           | IO         |                                                                                                            |                                                                                                                                                                                                                                     | IO              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| 4  | 82            | 50         |                                                                                                            |                                                                                                                                                                                                                                     | 50 I,008        | 3,98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,9 |
|    | I,3           | 13         |                                                                                                            |                                                                                                                                                                                                                                     | 13              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| 54 | 83            | 34 5,      | 6 angular                                                                                                  |                                                                                                                                                                                                                                     | 34,5 I,0I5      | 2,75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3,3 |
|    | 5             | 4          |                                                                                                            |                                                                                                                                                                                                                                     | 6,9             | en de la constante<br>Anna de la |     |
| 53 | 100           | 62,4       | angular                                                                                                    |                                                                                                                                                                                                                                     | 59 I,I26        | 4,69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,4 |
|    | 5             | 8          | 1                                                                                                          |                                                                                                                                                                                                                                     | 8               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| 5  | 109           | 80 2,      | ,8 0 <b>,</b> 4I                                                                                           | 7,6                                                                                                                                                                                                                                 | 88              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
|    | I,5           | IO         |                                                                                                            | $(x_1)^{(4)} \in (X_1)^{(4)} \in \mathbb{R}$                                                                                                                                                                                        | 11,4/1,187      | 6,36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4   |
| 6  | IIO           | 74,5 5,    | 7 angular                                                                                                  |                                                                                                                                                                                                                                     | 76,4            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| •  | 3             | 5          |                                                                                                            |                                                                                                                                                                                                                                     | 7,7)            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 30 | 113 II3       | 79 5,      | 7 angular                                                                                                  |                                                                                                                                                                                                                                     | 80 I,207        | 6,37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3,8 |
|    | 3             | 5          |                                                                                                            | • .                                                                                                                                                                                                                                 | 6,5             | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| 5  | <b>II</b> 5   | 95         | I,7                                                                                                        | 2,I                                                                                                                                                                                                                                 | . 99 I,2I9      | 7,88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,7 |
|    | I             | I5         |                                                                                                            |                                                                                                                                                                                                                                     | 15              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| 4  | II8           | 9I         |                                                                                                            |                                                                                                                                                                                                                                     | 9I I,237        | 7,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3,7 |
|    | 0,23          | 6          |                                                                                                            |                                                                                                                                                                                                                                     | <u>.</u> 6      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| 52 | <b>1</b> 20 - | 96,6 I     | I angular                                                                                                  |                                                                                                                                                                                                                                     | 97,5 I,249      | 7,75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I,I |
|    | 5             | 8,7        |                                                                                                            | 성의 사람은 가슴을 가슴다.<br>이상 사람은 것을 들었다.                                                                                                                                                                                                   | 12              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| 5  | 127           | 125        | 0,77                                                                                                       | 13                                                                                                                                                                                                                                  | I38 I,290       | II,O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,5 |
|    | Ι,4           | 15         |                                                                                                            |                                                                                                                                                                                                                                     | 17,5            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| 29 | 128           | 122        |                                                                                                            | I,7                                                                                                                                                                                                                                 | 120,3 1,295     | 9,61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,7 |
|    | 0             | 8          |                                                                                                            | e de la composition d<br>La composition de la c | 9,3             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| 5  | 133           | 135        | e e de engels d                                                                                            | 23                                                                                                                                                                                                                                  | 157             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0   |
|    | 0,75          | 15         |                                                                                                            |                                                                                                                                                                                                                                     | <b>19</b>       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| 29 | 135           | 126        |                                                                                                            | A                                                                                                                                                                                                                                   | 125,1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
|    |               | 4          |                                                                                                            |                                                                                                                                                                                                                                     | 4 (T. 336       | 9,95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | то  |
| 6  | 135           | 121        | angular                                                                                                    | · •                                                                                                                                                                                                                                 | IE3             | - , - ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ~~  |
|    | 3             | 19 .       |                                                                                                            |                                                                                                                                                                                                                                     | I9 J            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| 4  | I36           | 152        | •                                                                                                          |                                                                                                                                                                                                                                     | 152 I,342       | 12,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,6 |
|    | 0,43          | <b>I</b> 6 |                                                                                                            |                                                                                                                                                                                                                                     | <b>I</b> 6      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |

• **8** • • • • • • •

| 9 |  |
|---|--|

|    | 2                  | 3            | 4   | 5       | 6            | 7            | 8              | 9                                                                                                               | IO            |
|----|--------------------|--------------|-----|---------|--------------|--------------|----------------|-----------------------------------------------------------------------------------------------------------------|---------------|
| 38 | I40<br>0 <b>,6</b> | 133<br>8     |     | 2       |              | 135<br>8     | I,364          | 10,75                                                                                                           | 2,4           |
| 29 | I42                | 150<br>8     |     |         |              |              |                |                                                                                                                 |               |
| 58 | I43<br>2           | I40,5        | 4,4 |         |              | I40,5        | ▶ 1,380        | IO,54                                                                                                           | 5             |
| 38 | 144<br>0,7         | 151<br>4     | I,5 | 2       |              | 153<br>4,3   | I,386          | 12,18                                                                                                           | 8,7           |
| 25 | 145<br>3           | 165<br>23    |     | angula  | r            | 165<br>23    |                |                                                                                                                 | 0             |
| 36 | 146<br>3           | 150<br>7     | 5,8 |         |              | 150<br>9,1   | I,397          | II,94                                                                                                           | I,9           |
| 39 | 150<br>2           | 164,5<br>4,6 | 3,8 | I,I     |              | 165,6<br>5.9 |                |                                                                                                                 |               |
| 39 | 150<br>2           | 166,6<br>5,0 | 3,8 | angula  | r            | I66,6<br>6,3 | ≻1,419         | 13,22                                                                                                           | 8             |
| 31 | 151<br>I,3         | 151<br>19    | 2,4 | angula  | c            | 161<br>19    | I,424          | 12,8                                                                                                            | 0,4           |
| 29 | 152<br>0           | 175<br>6     |     |         | -I           | 174<br>6     | I,43           | 13,85                                                                                                           | 4,3           |
| 29 | 156<br>0           | 170<br>5     | •   |         | <b>-</b> I,2 | 168,8<br>5   | I,45I          | 13,44                                                                                                           | 6,2           |
| 36 | 157<br>خ           | 162<br>7     | 5   |         |              | 162<br>8,6   | I,457          | 12,9                                                                                                            | 2,3           |
| 58 | 162<br>I           | 170,5<br>3,5 | I,4 |         |              | 170,5<br>3,8 | I,484          | 13,57                                                                                                           | II            |
| 38 | 164<br>0,8         | 169<br>5     | 1,2 | 0,93    |              | 170<br>5,I   | I,495          | 13,55                                                                                                           | 6,1           |
| 33 | 165<br>0           | 188,2<br>5,4 | •   | •       |              | 188,2<br>5,4 |                |                                                                                                                 | · · · · · · · |
| 33 | 165                | 199<br>II    |     | angular | •            | 196<br>11,5  | <b>≻I,</b> 500 | 15,08                                                                                                           | 6,6           |
| 29 | 166<br>0           | 194<br>12    |     | 0,6     |              | 194,6<br>12  |                |                                                                                                                 |               |
| 29 | 166                | 188<br>11    |     | 0,6     |              | 188,6<br>II  |                |                                                                                                                 |               |
|    |                    |              |     |         |              |              |                | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |               |

| Ι          | 2                  | 3                     | 4   | 5                | 6  | 7                  | 8            | 9                          | IO   |
|------------|--------------------|-----------------------|-----|------------------|----|--------------------|--------------|----------------------------|------|
| 29         | 166<br>0           | 187<br>7              |     |                  | -2 | 185<br>7           | 1,505        | I4,58                      | 12,5 |
| 23         | I66<br>3,3         | 182<br>6              | 2,I |                  |    | 182<br>6,4         |              |                            |      |
| 36         | 166<br><b>3,</b> 3 | 1 <b>7</b> 6<br>7     | 2,1 |                  | •  | 176<br>7,3         |              |                            |      |
| 58         | 170<br>2           | 198<br>3,5            | J.2 | •                | ·  | 198<br>3,7         |              |                            |      |
| 39         | 170<br>2           | 194,9<br>6,0          | I,2 | ·<br>· · · · · · |    | 194,9<br>6,1       | -1,526       | I5,67                      | 21   |
| 39         | 170<br>2           | 20 <b>1,</b> 6<br>6,0 | I,2 | angular          |    | 195<br>6,1         |              |                            |      |
| 29         | 171<br>0           | 210<br>12             |     |                  | 9  | 219<br>12          |              |                            |      |
| 29         | 171<br>0           | 196<br>6              |     |                  |    | 196<br>6           |              | an Araga<br>Araga<br>Araga |      |
| .29        | 171<br>0           | 205<br>6              |     | • • •            |    | 205                | >1,531       | 16,16                      | 13,8 |
| 36         | 17I<br>3,4         | 204<br>6              | 2,1 |                  |    | 204<br>6,4         |              |                            |      |
| 36         | 173<br>3,4         | 205<br>6              | 1,1 |                  |    | 205<br>6,I         | I,542        | 16,32                      | 4,2  |
| 58         | 173,5<br>2         | 193,5<br>3,5          |     |                  |    | 193,5<br>3,5       | I,544        | 15,41                      | 12   |
| 39         | 174<br>1           | 19 <b>3</b><br>õ      |     | 0,3              | ē  | 193,3<br>6         | 1,547        | 15,39                      | 4,3  |
| 45         | 176<br>2           | 199,4<br>4,9          |     | angular          |    | 197,7<br>7,3       | I,557        | 15,74                      | 3    |
| 58         | J77<br>2           | 198<br>5              |     | ·                | •  | 198<br>5.          | I,562        | 15,76                      | 6    |
| 36         | 181<br>3,6         | 187<br>7              |     |                  |    | 187<br>7           | I,583        | I4 <b>,</b> 89             | 3,1  |
| 29         | 182<br>0           | I66<br>20             |     |                  | 8  | 1 <b>7</b> 4<br>20 |              |                            |      |
| <b>5</b> 8 | 183,5<br>2         | 192<br>3,5            |     |                  |    | 192<br>3,5         |              |                            |      |
| <b>3</b> 8 | 184<br>0,9         | 196<br>6              |     | -0,28            | •  | 195,7<br>6         | <b>1</b> 597 | 15,35                      | 17   |

| I  | 2     | 3              | 4                                 | 5                                                  | 6          | 7                | 8                                       | 9                                            | <br>I0       |
|----|-------|----------------|-----------------------------------|----------------------------------------------------|------------|------------------|-----------------------------------------|----------------------------------------------|--------------|
| 29 | I85   |                | ر یہے چین (میں <del>ڈرن میں</del> | ینیم اینده هربی داشته کسم را دن بیش «بین است است ه | T          | T87              | т 603                                   | T 4 90                                       |              |
|    | 0     | 8              |                                   |                                                    | - <b>-</b> |                  | 1,900,9                                 | 14,09                                        | 2,2          |
| 17 | I88   | <b>1</b> 59    |                                   | angular                                            |            | T58              |                                         |                                              | 0            |
|    | I.    | 34             | ÷.,                               | e en tra                                           |            | 34               |                                         | •                                            | U ,          |
| 34 | I89   | 194 <b>,</b> I |                                   |                                                    |            | т94.т            |                                         |                                              |              |
|    | 0     | 5,2            |                                   |                                                    |            | 5.2              |                                         |                                              |              |
| 34 | I89   | I98,3          |                                   | angular                                            |            | T93.7            | T-623                                   | <b>Τ5 Τ</b> 9                                | тт.<br>ТТ    |
|    | 0     | 8,5            |                                   |                                                    |            | 8.3              | (1,01.)                                 | 1,010                                        | · • •        |
| 36 | 189   | <b>18</b> 2    |                                   |                                                    |            | 182              |                                         |                                              |              |
| •  | 3,3   | 7              |                                   |                                                    |            | - 7              | ]                                       |                                              |              |
| 38 | 194   | 200            |                                   | -0,86                                              |            | T96              | T.648                                   | T5 85                                        |              |
|    | I     | 6              | •. •                              |                                                    |            | 6                | <b>1)</b> 040                           | · 1/90/                                      | 4,4          |
| 58 | 195   | I74            |                                   |                                                    |            | T74              | T. 653                                  | T3 95                                        | то           |
|    | 2     | 4              | · .                               | м                                                  |            |                  |                                         | · 1),0)                                      | 10           |
| 29 | 196   | 202            |                                   |                                                    |            | 202              | T-658                                   | тбт                                          | 0.0          |
|    |       | 14             |                                   |                                                    |            | <br>T4           | 1,000                                   | 10,1                                         | 0,0          |
| 45 | 200   | 177 <b>,</b> 9 | 2,5                               | angular                                            |            | 183              | T. 678                                  | TA 55                                        | 1 2          |
|    | 2     | 3,7            |                                   |                                                    |            | . 6              | 1,070                                   | 14977                                        | 4, )         |
| 58 | 205   | 178            | 2,8                               |                                                    |            | 178              | T. 702                                  | Тат7                                         | 6 6          |
|    | 2     | 4              |                                   |                                                    |            | 4.9              | 1,702                                   | 14 <b>9</b> 1/                               | 0,0.         |
| 38 | 209   | I79            | Ι,4                               | -I,64                                              |            | 177.4            | T. 722                                  | T / T 2                                      | 1 0          |
|    | I     | 6              |                                   |                                                    |            | 6.2              | <b></b>                                 | 14916                                        | 492          |
| 36 | 210   | I48            | 9                                 |                                                    |            | T48              |                                         |                                              | 0            |
|    | 6     | 20             |                                   |                                                    |            | 22               |                                         |                                              | U            |
| 36 | 214   | 141            | 6,3                               |                                                    |            | 141              | T. 746                                  | <b>T</b> T 23                                | то           |
|    | 4,3   | 7              |                                   | 1 <b>-</b> 1                                       |            | 9.4              | 1,740                                   | , <b>,</b> , , , , , , , , , , , , , , , , , | 1,0          |
| 40 | 216,5 | I5I,O          |                                   | angular                                            |            | I65              | T.758                                   | 13.1                                         | 0 1          |
| ·  | 5     | 18,2           | · •                               |                                                    | •          | 19               | -,,,,,                                  | ○ <b>┸</b> ╱ <b>尊</b> ┸                      | 0 <b>9</b> 4 |
| 38 | 219   | 156            | Ι,6                               | -I,9                                               |            | 154.I            | T.770                                   | T2-27                                        | Зт           |
|    | I,I   | 7              |                                   |                                                    |            | 7,2              | -,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1-9-7                                        | _,⊥          |
| 49 | 220   | I40,9          | 3                                 | angular                                            | r          | 140 <sup>°</sup> |                                         |                                              |              |
|    | 2     | 4,2            |                                   | •                                                  |            | 5.2              |                                         |                                              |              |
| 36 | 222   | 148            | 6,7                               |                                                    |            | 148              | 1,775                                   | II,29                                        | 7,5          |
|    | 4,4.  | 7              |                                   |                                                    |            | 9,7              |                                         | • *                                          |              |
| 13 | 225   | 150            |                                   | angular                                            | •          | 142              | I.798                                   | TT.3                                         | ۵. ۴         |
|    |       | <b>1</b> 8     |                                   |                                                    |            | 18               | -,,,,0                                  | ~- , ~                                       | 0,7          |
|    |       |                |                                   |                                                    |            |                  | · · · · · ·                             |                                              |              |

•

| I   | 2                                     | 3                 | 4                                       | 5                         | 6                                        | 7                                       | 8             | 9                                             | 10      |
|-----|---------------------------------------|-------------------|-----------------------------------------|---------------------------|------------------------------------------|-----------------------------------------|---------------|-----------------------------------------------|---------|
|     | · · · · · · · · · · · · · · · · · · · |                   |                                         | ير الله الله الله و و و و | <b>*</b>                                 | <del>س میں ہیں ہیں سو میں پریم پر</del> |               | <b>البوجيري الارارين فلين وي الارار والبر</b> |         |
| 38  | 229                                   | I32               | I,7                                     | <u>_2</u>                 |                                          | 130                                     | I,817         | 10,34                                         | 3       |
|     | I                                     | 7                 |                                         | •                         |                                          | 7,2                                     |               |                                               |         |
| 45  | 240                                   | I25,6             | I,3                                     | -2,2                      |                                          | 123,1                                   |               | an a      |         |
|     | 0,8                                   | 2,5               |                                         |                           | · · ·                                    | 2,8                                     | 1,868         | 9,89                                          | 30      |
| 45  | 240                                   | 127,2             | •                                       |                           | angular                                  | 125,4                                   |               |                                               |         |
| • * | 0,8                                   | 3,6               |                                         |                           | • •                                      | 3,8                                     |               |                                               |         |
| 36  | 262                                   | III               | 5,I                                     |                           |                                          | III                                     | ·I,968        | 8,84                                          | 2,I     |
|     | 5,2                                   | 7                 |                                         |                           |                                          | 8,7                                     |               |                                               | •       |
| 36  | 263                                   | I07               | 5,3                                     |                           |                                          | 107                                     | I,972         | 8,52                                          | . 2,0   |
|     | 5,3                                   | 7                 |                                         |                           |                                          | 8,8                                     |               |                                               |         |
| 45  | 270                                   | 85,2              | 0,75                                    | -2,2                      |                                          | 83 `                                    |               |                                               |         |
|     | 0,9                                   | 3,0               |                                         |                           |                                          | 3,1                                     | 2,003         | 6,46                                          | 32      |
| 45  | 270                                   | 81,3              | 0,75                                    |                           | angular                                  | 79,5                                    |               |                                               |         |
|     | 0,9                                   | 3,1               | а.<br>А. — А.                           |                           | · · ·                                    | 3,1                                     | ).            |                                               |         |
| 36  | 280<br>9                              | `88<br>11         |                                         |                           | a an | 88<br>11                                | 2,047         | 7,0                                           | 1,      |
| 36  | 298<br>6                              | 75<br>5           | 3,8                                     |                           |                                          | 75<br>6 <b>,</b> 2                      | 2,124         | 5,97                                          | 4       |
| 45  | 307<br>1                              | 65,7<br>2,2       |                                         | -1,9                      |                                          | 63,8<br>2,2                             | 2,162         | 5,2                                           | 5.      |
| 45  | 307<br>1                              | 6 <b>9</b><br>2,6 |                                         | e•                        | angular                                  | 67,7<br>2,5                             | f i i i i i i |                                               | •       |
| 36  | 335<br>6 <b>,</b> 7                   | 53<br>• 5         | 3,1                                     |                           | ٩                                        | 53<br>5,9                               | 2,278         | 4,22                                          | 4,6     |
| 12  | 340<br>10                             | 48<br>9           | ч.,<br>,                                |                           |                                          | 48<br>9                                 | 2,298         | 3,82                                          | 2       |
| 73  | 376<br>4                              | 40,78<br>1,62     | 3 · · · · · · · · · · · · · · · · · · · |                           |                                          | 40,78                                   | 3 2,440       | 3,245                                         | 60      |
| 36  | 450<br>14                             | 27,5<br>6         | 52                                      |                           |                                          | 27,5<br>6,3                             |               |                                               |         |
| 47  | 450<br>19                             | 24,8<br>2,4       | 2,7                                     |                           |                                          | 24,8<br>3,6                             | (2,118        | 2,0.                                          | )<br>16 |

| 13 |
|----|
|----|

|       |           |               |       | · · · · ·                                         |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                |       |     |
|-------|-----------|---------------|-------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|-----|
| - Ann |           |               |       |                                                   | •                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                   |                |       |     |
|       |           |               | •     | • • • • •                                         | 13                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                   |                |       |     |
| _1    | <u> </u>  | 3             | 4     | 5                                                 | 6                                                                                                                                                                                                                                   | n en se sen de la constant en constant en sen e<br>La constant en sen e | 8<br>          | 9     | 10  |
| 73    | 469<br>5  | 23,67<br>1,08 | •     | e i d'anna an<br>Anna anna anna<br>Anna anna anna | e de la composición d<br>La composición de la c | 23,67<br>1,08                                                                                                                                                                                                                     | 2,786          | 1,884 | 135 |
| 64    | 500<br>5  | 17,0<br>3,4   |       |                                                   |                                                                                                                                                                                                                                     | 17,0<br>3,4                                                                                                                                                                                                                       | 2,894          | 1,35  | 14  |
| 47    | 550<br>23 | 16,1<br>2,5   | 0,6   |                                                   |                                                                                                                                                                                                                                     | 16,1                                                                                                                                                                                                                              | 2,064          | 1,28  | 24  |
| 73    | 567<br>6  | 17,37<br>0,82 |       |                                                   |                                                                                                                                                                                                                                     | 17,37                                                                                                                                                                                                                             | 3,120          | 1,382 | 235 |
| 73    | 626<br>6  | 15,16<br>0,72 |       |                                                   |                                                                                                                                                                                                                                     | 15,16<br>0,72                                                                                                                                                                                                                     | 3,309          | 1,206 | 300 |
| 61    | 628<br>6  | 13,7<br>1,3   |       | <b>6</b> 3                                        |                                                                                                                                                                                                                                     | 13,7<br>1,3                                                                                                                                                                                                                       | 3,326          | 1,09  | 100 |
| 73    | 664<br>7  | 14,77<br>0,67 |       |                                                   |                                                                                                                                                                                                                                     | 14,77<br>0,67                                                                                                                                                                                                                     | 3,426          | 1,175 | 350 |
| 47    | 670<br>27 | 14,5<br>2,0   |       |                                                   |                                                                                                                                                                                                                                     | 14,5<br>2.0                                                                                                                                                                                                                       | 3,445          | 1,15  | 39  |
| 61    | 685<br>7  | 14,4<br>1,3   |       |                                                   |                                                                                                                                                                                                                                     | 14,4                                                                                                                                                                                                                              | 3,497          | 1,15  | 100 |
| 36    | 700<br>21 | 17<br>3       | · · · |                                                   |                                                                                                                                                                                                                                     | 17                                                                                                                                                                                                                                | 3,536          | 1,35  | 17  |
| 61    | 734<br>7  | 17,1<br>1,3   |       |                                                   | •                                                                                                                                                                                                                                   | 17,1<br>1,3                                                                                                                                                                                                                       | 3,643          | 1,36  | 100 |
| 73    | 770<br>8  | 19,44<br>0,80 |       |                                                   |                                                                                                                                                                                                                                     | 19,44<br>0,80                                                                                                                                                                                                                     | 3,741          | 1,547 | 250 |
| 61    | 788<br>8  | 18,3<br>1,3   |       |                                                   | • 2                                                                                                                                                                                                                                 | 18,3<br>1,3                                                                                                                                                                                                                       | 3 <b>,</b> 791 | 1,46  | 100 |
| 47    | 790<br>32 | 19,5<br>2,0   |       |                                                   | •                                                                                                                                                                                                                                   | 19,5<br>2,0                                                                                                                                                                                                                       | 3,798          | 1,55  | 39  |
| 61    | 798<br>8  | 16,5<br>1,3   |       |                                                   |                                                                                                                                                                                                                                     | 16,5<br>1,3                                                                                                                                                                                                                       | 3,822          | 1,31  | 100 |
| 74    | 816<br>8  | 23,39<br>0,61 |       |                                                   |                                                                                                                                                                                                                                     | 23,39<br>0,61                                                                                                                                                                                                                     | 3,871          | 1,861 | 425 |
| 73    | 818<br>8  | 21,36<br>0,81 |       |                                                   |                                                                                                                                                                                                                                     | 21,36<br>0,81                                                                                                                                                                                                                     | 3,876          | 1,700 | 240 |
| 73    | 838<br>8  | 22,42<br>0,83 |       |                                                   |                                                                                                                                                                                                                                     | 22,42<br>0,83                                                                                                                                                                                                                     | 3,932          | 1,784 | 230 |
| 73    | 863<br>9  | 21,85<br>0,86 |       | 1.<br>1.<br>1.<br>1.                              |                                                                                                                                                                                                                                     | 21,85<br>0,86                                                                                                                                                                                                                     | 4,000          | 1,739 | 210 |
| 74    | 866<br>9  | 23,34<br>0,68 |       |                                                   |                                                                                                                                                                                                                                     | 23,34<br>0,68                                                                                                                                                                                                                     | 4,008          | 1,857 | 340 |

|            | 2              | <b>3 4 4 4 4 4 4 5 4</b> | 6 7             | 8              | 9              | 10         |
|------------|----------------|--------------------------|-----------------|----------------|----------------|------------|
| 74         | 915<br>9       | 23,13<br>0,74            | 23,13<br>0,74   | 4,140          | 1,841          | 290        |
| 61         | 947<br>10      | 21,3<br>1,3              | 21,3<br>1,3     | 4,219          | 1,70           | 100        |
| 74         | 965<br>10      | 23,80<br>0,78            | 23,80<br>0,78   | 4,270          | l <b>,</b> 894 | 260        |
| 47         | 1,00Be<br>0,02 | ev23,5 0,6<br>1,4        | 23,5<br>1,55    | 4,360          | 1,87           | 6 <b>5</b> |
| 74         | 1,014<br>0,01  | 25,80<br>0,84            | 25,80<br>0,84   | 4 <b>,3</b> 95 | 2,053          | 225        |
| 74         | 1,064<br>0,011 | 26,78<br>0,94            | 26,78<br>0,94   | 4,519          | 2,131          | 180        |
| 47         | 1,07<br>0,021  | 27,3 0,6<br>3,7          | 27,3<br>3,7     | 4,534          | 2,17           | 11         |
| 61         | 1,093<br>0,02  | 27,4<br>1,3              | 27,4<br>1,3     | 4,586          | 2,18           | 100        |
| 72         | 1,10<br>0,033  | 30,0<br>1,2              | 30,0<br>1,2     | 4,608          | 2,387          | 110        |
| 74         | 1,114<br>0,011 | 27,51<br>1,07            | 27,51<br>1,07   | 4 <b>,</b> 642 | 2,189          | 140        |
| <b>7</b> 2 | 1,14<br>0,034  | 32,9<br>1,2              | 32,9<br>1,2     | 4 <b>,7</b> 04 | 2 <b>,</b> 618 | 110        |
| 47         | 1,15<br>0,023  | 31,3 0,7<br>1,7          | 31,3<br>1,85    | 4,728          | 2,49           | 46         |
| 74         | 1,164<br>0,012 | 30,73<br>1,19            | ∞ 30,73<br>1,19 | 4 <b>,7</b> 61 | 2,445          | 110        |
| 72         | 1,19<br>0,036  | 34,6<br>1,2              | 34,6<br>1,2     | 4,822          | 2,753          | 110        |
| 74         | 1,213<br>0,012 | 35,32<br>1,37            | 35,32<br>1,37   | 4,875          | 2,811          | 84         |
| 72         | 1,23<br>0,037  | 37,2<br>1,2              | 37,2<br>1,2     | 4,915          | 2,960          | 110        |
| 47         | 1,25<br>0,025  | 38,8<br>2,5              | 38,8<br>2,5     | 4,961          | 3,09           | 25         |
| 74         | 1,263<br>0,013 | 36,51<br>1,56            | 36,51<br>1,56   | 4,990          | 2,905          | 6 <b>5</b> |

| - 15 |  |
|------|--|
|------|--|

|                                                                                                                                                                                                                                              |                |                        | ••<br>• • • | ан<br>1910 <b>н К.</b><br>2010 - Дайба |                      |                |                |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------|-------------|----------------------------------------|----------------------|----------------|----------------|-----|
| е стр.<br>1971 г. – Стр. С. – Стр. –<br>1971 г. – Стр. |                |                        |             | 1                                      | 5                    |                |                |     |
| 1                                                                                                                                                                                                                                            | 2              | 3                      | 4           | 5 6                                    | 7                    | 8              | 9              | 10  |
| 74                                                                                                                                                                                                                                           | 1,288<br>0,013 | 37,40<br>1,45          | n in an     |                                        | 37,40<br>1,45        | 5,046          | 2,976          | 75  |
| 71                                                                                                                                                                                                                                           | 1,30<br>0,039  | 39,4<br>0,6            | ~           |                                        | 39,4<br>0,6          | 5,073          | 3,136          | 440 |
| 74                                                                                                                                                                                                                                           | 1,313<br>0,013 | 38,09<br>1,47          |             |                                        | 38,09<br>1,47        | 5 <b>,</b> 102 | 3,031          | 73  |
| 72                                                                                                                                                                                                                                           | 1,33<br>0,04   | 38,4<br>1,2            |             |                                        | 38,4<br>1,2          | 5,140          | 3 <b>,</b> 056 | 110 |
| <b>71</b>                                                                                                                                                                                                                                    | 1,33<br>0,04   | 39,1<br>0,8            |             |                                        | 39,1<br>0.8          | 5 <b>,</b> 140 | 3,111          | 245 |
| <b>74</b>                                                                                                                                                                                                                                    | 1,338<br>0,013 | 37,66<br>1,54          |             | ø                                      | 37,66                | 5,157          | 2,997          | 66  |
| 68                                                                                                                                                                                                                                           | 1,36<br>0,03   | 40,6<br>0,45           |             |                                        | 40,6                 | 5,217          | 3,23           | 780 |
| 74                                                                                                                                                                                                                                           | 1,363<br>0,014 | 36,13<br>1,56          |             |                                        | 36,13                | 5,212          | 2,875          | 65  |
| 47                                                                                                                                                                                                                                           | 1,38<br>0,028  | 41,4                   |             |                                        | 41,4                 | 5,249          | 3,30           | 17  |
| 74                                                                                                                                                                                                                                           | 1,412<br>0,014 | 36,49<br>1,60          |             |                                        | 36,49                | 5 <b>,</b> 319 | 2,904          | 62  |
| 72                                                                                                                                                                                                                                           | 1,43<br>0,043  | 38,2                   |             |                                        | 38,2                 | 5,357          | 3,040          | 110 |
| 74                                                                                                                                                                                                                                           | 1,462<br>0,014 | 3 <b>4,1</b> 0<br>1,59 |             |                                        | 1,2<br>34,10<br>1,59 | 5,425          | 2,714          | 62  |
| 71                                                                                                                                                                                                                                           | 1,47<br>0,044  | 35,8<br>0,9            |             |                                        | 35,8<br>0,9          | 5,442          | 2,849          | 195 |
| 47                                                                                                                                                                                                                                           | 1,50<br>0,03   | 35,3<br>2,5            |             |                                        | 35,3                 | 5,505          | 2,81           | 25  |
| 72                                                                                                                                                                                                                                           | 1,50<br>0,045  | 35,9<br>1,2            |             |                                        | 35,9<br>1,2          | 5,505          | 2,857          | 110 |
| 68                                                                                                                                                                                                                                           | 1,51<br>0,03   | 36,3<br>0,5            |             |                                        | 36,3                 | 5,537          | 2,89           | 630 |
| 71                                                                                                                                                                                                                                           | 1,60<br>0,048  | 30,1<br>0,5            |             |                                        | 30,1                 | 5,710          | 2,395          | 630 |
| 68                                                                                                                                                                                                                                           | 1,665<br>0,03  | 31,2<br>0,7            |             |                                        | 31,2<br>0.7          | 5,840          | 2,48           | 320 |
| 47                                                                                                                                                                                                                                           | 1,67<br>0,033  | 32,6<br>1,8            |             |                                        | 32,6                 | 5,849          | 2,60           | 49  |

| 1  | 2             | 3 4 5 6      | 7            | 8              | 9     | 10   |
|----|---------------|--------------|--------------|----------------|-------|------|
| 71 | 1,76<br>0,053 | 28,4<br>0,6  | 28,4<br>0,6  | 6,024          | 2,260 | 440  |
| 47 | 1,77<br>0,035 | 31,7<br>2,4  | 31,7<br>2,4  | 6,043          | 2,52  | 28   |
| 68 | 1,81<br>0,04  | 29,4<br>0,5  | 29,4<br>0,5  | 6,128          | 2,34  | 630  |
| 71 | 1,91<br>0,057 | 27,8<br>0,6  | 27,8<br>0,6  | 6,307          | 2.212 | 440  |
| 68 | 1,96<br>0,04  | 28,3<br>0,4  | 28,3<br>0,4  | 6,404          | 2,25  | 990  |
| 71 | 2,33<br>0,07  | 29,0<br>0,6  | 29,0<br>0,6  | 7,043          | 2,308 | 440  |
| 68 | 2,46<br>0,05  | 28,2<br>0,35 | 28,2<br>0,35 | 7,258          | 2,247 | 1290 |
| 69 | 2,76<br>0,06  | 28<br>4      | 28<br>4      | 7,74           | 2,22  | 10   |
| 71 | 2,83<br>0,085 | 29,2<br>0,5  | 29,2<br>0,5  | 7,837          | 2,324 | 630  |
| 68 | 3,11<br>0,06  | 29,1<br>0,48 | 29,1<br>0,48 | 8,260          | 2,316 | 690  |
| 71 | 3,44<br>0,10  | 29,2<br>0,4  | 29,2<br>0,4  | 8 <b>,</b> 706 | 2,324 | 980  |
| 71 | 3,86<br>0,12  | 29,3<br>0,4  | 29,3<br>0,4  | 9,251          | 2,332 | 980  |



Fig. 1. Total cross sections for positive pion scattering on protons (in Figs. 1,2,3,4 the figures at the points denote the number of the reference; the vertical arrows indicate the thresholds for the production reactions).



Fig. 2. Total cross sections for positive pion scattering on protons.

| 00 |
|----|
| 20 |

| I               | *** 2                                    | 3 4          | 5 6          | 5 7          | 8                                     | 9                                                                                                                                                                                                                                  | IO  |
|-----------------|------------------------------------------|--------------|--------------|--------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 5               | 127                                      | 45           | -0,73        | 44           | I,290                                 | 3,52                                                                                                                                                                                                                               | 0   |
|                 |                                          | 01           |              | 10           |                                       |                                                                                                                                                                                                                                    |     |
| 65              | I30                                      | 42,6         |              | 42,6         |                                       | and an early and a star of the second se<br>The second sec |     |
|                 |                                          | I,0          |              | I <b>,</b> 0 | Y 1,307                               | 3,40                                                                                                                                                                                                                               | 230 |
| 65              | I30                                      | 42,7         |              | 42,7         |                                       |                                                                                                                                                                                                                                    |     |
|                 |                                          | 1,5          |              | I,5 -        | /                                     |                                                                                                                                                                                                                                    |     |
| 22              | I33                                      | 46,9         | <b>-I,</b> 3 | 45,6         | I,324                                 | 3,63                                                                                                                                                                                                                               | 28  |
|                 |                                          | 2,4          |              | 2,4          |                                       |                                                                                                                                                                                                                                    | i.  |
| 3               | 135                                      | 52           |              | -1 51        | 1,336                                 | 4,05                                                                                                                                                                                                                               | 4,4 |
|                 |                                          | 6            |              | 6            | •                                     |                                                                                                                                                                                                                                    |     |
| 6               | I35                                      | 56,8         |              | 56,8         | I <b>,</b> 336                        | 4,52                                                                                                                                                                                                                               | Ű   |
|                 |                                          | 3,2          |              | 3,2          |                                       |                                                                                                                                                                                                                                    |     |
| 35              | I40                                      | 44,3         | -I,7         | 42,6         | I,364                                 | 3,39                                                                                                                                                                                                                               | 22  |
|                 |                                          | 2,7          |              | 2,7          |                                       |                                                                                                                                                                                                                                    |     |
| 9               | I44                                      | 48,I         | angular      | 46,4         | I,386                                 | 3,69                                                                                                                                                                                                                               | 8   |
| •               | at the second                            | 4,5          |              | 4,5          | •                                     |                                                                                                                                                                                                                                    |     |
| 39              | 150                                      | 53,2         | angular      | 54,2         | 1,419                                 | 4,32                                                                                                                                                                                                                               | 23  |
| •               |                                          | 2,6          |              | 2,6          |                                       |                                                                                                                                                                                                                                    |     |
| 29              | 152                                      | 60,7         | -I,I         | 59,6         | <b>\</b>                              |                                                                                                                                                                                                                                    |     |
|                 |                                          | 3,0          |              | 3,0          |                                       |                                                                                                                                                                                                                                    |     |
| 55              | 152                                      | 60,0         |              | 60,0         | > I,430                               | 4,755                                                                                                                                                                                                                              | 110 |
|                 |                                          | 2,3          |              | 2,3          |                                       |                                                                                                                                                                                                                                    |     |
| 55              | I52                                      | 59,6         |              | 59,6         | 1                                     |                                                                                                                                                                                                                                    |     |
|                 |                                          | I <b>,</b> 6 |              | I,6 /        |                                       |                                                                                                                                                                                                                                    |     |
| 22              | 157                                      | 62,9         | <b>I</b>     | ~6I,9        | I,457                                 | 4,92                                                                                                                                                                                                                               | 27  |
|                 | an a | 2,4          |              | 2,4          |                                       |                                                                                                                                                                                                                                    |     |
| 56              | 158,2                                    | 26,4         |              | 56,4         | I,463                                 | 4,488                                                                                                                                                                                                                              | 40  |
| · · ·           |                                          | 2,0          |              | 2,0          |                                       |                                                                                                                                                                                                                                    |     |
| 33              | I65                                      | 69,8         | angular      | 67,7         |                                       |                                                                                                                                                                                                                                    | •   |
| х. <sup>1</sup> | 2<br>                                    | 3,8          |              | 3,8          | Y T 499                               | 5.37                                                                                                                                                                                                                               | 80  |
| 33              | Iob                                      | 67,5         | · · ·        | 67,5         |                                       | -3-1                                                                                                                                                                                                                               | U V |
|                 | and the second                           | I,5          |              | I,5          | Jan                                   | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1                                                                                                                                                                                           |     |
| <b>IO</b> .     | 169                                      | 63           | angular      | 61           | 1,521                                 | 4,85                                                                                                                                                                                                                               | 10  |
|                 |                                          | · 4          |              | 4            |                                       |                                                                                                                                                                                                                                    |     |
| 39              | 170                                      | 62,7         | angular      | 62,4         | I,526                                 | 4,96                                                                                                                                                                                                                               | 80  |
|                 |                                          | Ι.4          |              | I.4          | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                    |     |

| I<br>66<br>3<br>56<br>22<br>95<br>6<br>7<br>7<br>7 | 2 3<br>171,7<br>176<br>178,4<br>179<br>184<br>185,2<br>187<br>187 | 4<br>67,2<br>1,1<br>66<br>67,2<br>1,1<br>65,9<br>2,5<br>65,7<br>2,4<br>67,7<br>1,0<br>64,0<br>2,0 | 5<br>-0,43<br>-0,46<br>©<br>angular | 6<br>2<br>0,36 | 7<br>67,2<br>I,I<br>64<br>6<br>67,2<br>I,I<br>65,5<br>2,5<br>65,6<br>2,4<br>67,7<br>I,0 | 8<br>I,535<br>I,557<br>I,570<br>I,573<br>I,598<br>I,604 | 9<br>5,348<br>5,10<br>5,348<br>5,21<br>5,22<br>5,387 | 10<br>130<br>4,4<br>130<br>25<br>27<br>160 |
|----------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------|----------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|--------------------------------------------|
| I<br>66<br>3<br>56<br>22<br>95<br>6<br>7<br>7<br>7 | 2 3<br>171,7<br>176<br>178,4<br>179<br>184<br>185,2<br>187<br>187 | 4<br>67,2<br>1,1<br>66<br>67,2<br>1,1<br>65,9<br>2,5<br>65,7<br>2,4<br>67,7<br>1,0<br>64,0<br>2,0 | 5<br>-0,43<br>-0,46<br>©<br>angular | -2<br>0,36     | 7<br>67,2<br>I,I<br>64<br>6<br>67,2<br>I,I<br>65,5<br>2,5<br>65,6<br>2,4<br>67,7<br>I,0 | 8<br>I,535<br>I,557<br>I,570<br>I,573<br>I,598<br>I,604 | 9<br>5,348<br>5,10<br>5,348<br>5,21<br>5,22<br>5,387 | 10<br>136<br>4,4<br>130<br>25<br>27<br>160 |
| 66<br>3<br>56<br>22<br>55<br>6<br>7<br>7           | 171,7<br>176<br>178,4<br>179<br>184<br>185,2<br>187<br>187        | 67,2<br>1,1<br>66<br>67,2<br>I,I<br>65,9<br>2,5<br>65,7<br>.2,4<br>67,7<br>I,0<br>64,0<br>2,0     | -0,43<br>-0,46<br>©<br>angular      | -2<br>0,36     | 67,2<br>I,I<br>64<br>6<br>67,2<br>I,I<br>65,5<br>2,5<br>65,6<br>2,4<br>67,7<br>I,0      | I,535<br>I,557<br>I,570<br>I,573<br>I,598<br>I,604      | 5,348<br>5,10<br>5,348<br>5,21<br>5,22<br>5,387      | 130<br>4,4<br>130<br>25<br>27<br>160       |
| 3<br>56<br>22<br>95<br>6<br>7<br>7                 | 176<br>178,4<br>179<br>184<br>185,2<br>187                        | 1,1<br>66<br>67,2<br>1,1<br>65,9<br>2,5<br>65,7<br>.2,4<br>67,7<br>1,0<br>64,0<br>2,0             | -0,43<br>-0,46<br>©<br>angular      | _2<br>0,36     | I,I<br>64<br>67,2<br>I,I<br>65,5<br>2,5<br>65,6<br>2,4<br>67,7<br>I,0                   | I,557<br>I,570<br>I,573<br>I,598<br>I,604               | 5,10<br>5,348<br>5,21<br>5,22<br>5,387               | 4,4<br>130<br>25<br>27<br>160              |
| 3<br>56<br>22<br>35<br>6<br>7<br>7                 | 176<br>178,4<br>179<br>184<br>185,2<br>187<br>187                 | 66<br>67,2<br>I,I<br>65,9<br>2,5<br>65,7<br>.2,4<br>67,7<br>I,0<br>64,0<br>2,0                    | -0,43<br>-0,46<br>©<br>angular      | -2<br>0,36     | 64<br>67,2<br>I,I<br>65,5<br>2,5<br>65,6<br>2,4<br>67,7<br>I,0                          | I,557<br>I,570<br>I,573<br>I,598<br>I,604               | 5,10<br>5,348<br>5,21<br>5,22<br>5,387               | 4,4<br>130<br>25<br>27<br>160              |
| 56<br>22<br>35<br>6<br>7<br>7                      | 178,4<br>179<br>184<br>185,2<br>187                               | 6<br>67,2<br>I,I<br>65,9<br>2,5<br>65,7<br>.2,4<br>67,7<br>I,0<br>64,0<br>2,0                     | -0,43<br>-0,46<br>©<br>angular      | 0,36           | 6<br>67,2<br>I,I<br>65,5<br>2,5<br>65,6<br>2,4<br>67,7<br>I,0                           | I,570<br>I,573<br>I,598<br>I,604                        | 5,348<br>5,21<br>5,22<br>5,387                       | 130<br>25<br>27<br>160                     |
| 22<br>35<br>6<br>7<br>7                            | 178,4<br>179<br>184<br>185,2<br>187<br>187                        | 67,2<br>I,I<br>65,9<br>2,5<br>65,7<br>.2,4<br>67,7<br>I,0<br>64,0<br><b>2</b> ,0                  | -0,43<br>-0,46<br>©<br>angular      | 0,36           | 67,2<br>I,I<br>65,5<br>2,5<br>65,6<br>2,4<br>67,7<br>I,0                                | I,570<br>I,573<br>I,598<br>I,604                        | 5,348<br>5,21<br>5,22<br>5,387                       | 130<br>25<br>27<br>160                     |
| 22<br>35<br>6<br>7<br>7                            | 179<br>184<br>185,2<br>187<br>187                                 | 65,9<br>2,5<br>65,7<br>.2,4<br>67,7<br>I,0<br>64,0<br>2,0                                         | -0,43<br>-0,46<br>©<br>angular      | 0,36           | I,I<br>65,5<br>2,5<br>65,6<br>2,4<br>67,7<br>I,0                                        | I,573<br>I,598<br>I,604                                 | 5,2I<br>5,22<br>5,387                                | 25<br>27<br>160                            |
| 35<br>66<br>7<br>7                                 | 184<br>185,2<br>187<br>187                                        | 2,5<br>65,7<br>.2,4<br>67,7<br>I,0<br>64,0<br>2,0                                                 | -0,46<br>~<br>angular               | 0,36           | 65,5<br>2,5<br>65,6<br>2,4<br>67,7<br>I,0                                               | I,573<br>I,598<br>I,604                                 | 5,2I<br>5,22<br>5,387                                | 25<br>27<br>160                            |
| 35<br>66<br>7<br>7                                 | 184<br>185,2<br>187<br>187                                        | 2,9<br>65,7<br>.2,4<br>67,7<br>I,0<br>64,0<br>2,0                                                 | -0,46<br>°<br>angular               | 0,36           | 2,5<br>65,6<br>2,4<br>67,7<br>I,0                                                       | I,598<br>I,604                                          | 5,22<br>5,387                                        | 27<br>160                                  |
| 96<br>7<br>7                                       | 185,2<br>187<br>187                                               | .2,4<br>67,7<br>I,0<br>64,0<br>£,0                                                                | angular                             |                | 2,4<br>67,7<br>I,0                                                                      | 1,298<br>I,604                                          | 2,22<br>5,387                                        | 27<br>160                                  |
| 66<br>7<br>7                                       | 185,2<br>187<br>187                                               | 67,7<br>I,0<br>64,0<br>2,0                                                                        | ©<br>angular                        |                | 67,7<br>I,0                                                                             | I <b>,</b> 604                                          | 5,387                                                | 160                                        |
| 7                                                  | 187<br>187                                                        | I,o<br>64,0<br>2,0                                                                                | angular                             |                | · I,0                                                                                   | 19004                                                   | 7,001                                                | <b>Τρ</b> Ω                                |
| 7                                                  | 187<br>187                                                        | 64,0<br>2,0                                                                                       | angular                             |                | . <b>∸</b> , • ∨ .                                                                      |                                                         |                                                      |                                            |
| 7                                                  | 187                                                               | 2,0                                                                                               |                                     | - 4            | 64.0                                                                                    | ٦                                                       |                                                      |                                            |
| 7                                                  | 187                                                               |                                                                                                   |                                     |                | 2.0                                                                                     |                                                         |                                                      |                                            |
|                                                    |                                                                   | 63,5                                                                                              |                                     |                | 63,5                                                                                    | <b>1,613</b>                                            | 5,07                                                 | 100                                        |
|                                                    |                                                                   | I,6                                                                                               |                                     |                | I,6                                                                                     |                                                         |                                                      |                                            |
| 6                                                  | 189,9                                                             | 67,8                                                                                              |                                     |                | 67,8                                                                                    | I,628                                                   | 5,395                                                | 250                                        |
|                                                    |                                                                   | 0,8                                                                                               |                                     |                | 0,8                                                                                     |                                                         |                                                      |                                            |
| 2                                                  | 194                                                               | 64,6                                                                                              | -0,15                               |                | 64,45                                                                                   | I,648                                                   | 5,13                                                 | · 25                                       |
|                                                    |                                                                   | 2,5                                                                                               |                                     |                | 2,5                                                                                     |                                                         |                                                      |                                            |
| 0                                                  | 194                                                               | 74                                                                                                | angular                             |                | 72                                                                                      | I,648                                                   | 5,72                                                 | 6                                          |
| •                                                  |                                                                   | 5                                                                                                 |                                     |                | 5                                                                                       | <b>U</b> NS S                                           |                                                      |                                            |
| 2                                                  | 195                                                               | 63,I                                                                                              | -I,3                                | · ·            | 6 <b>I,</b> 8                                                                           | I,653                                                   | 4,92                                                 | 25                                         |
| 6                                                  | TOCO                                                              | 2,5                                                                                               |                                     | *              | 2,5                                                                                     |                                                         |                                                      | 2<br>2 X                                   |
| U,                                                 | 130 <sup>9</sup> 5                                                | 04 <b>,</b> υ<br>Τ.Τ                                                                              |                                     |                | 64,0                                                                                    | 1,659                                                   | 5,093                                                | <b>1</b> 36                                |
| 5                                                  | T97                                                               | エ <b>ッ</b> エ<br>7 <b>て</b> 、2                                                                     | 0 73                                | 0.42           | 1,1                                                                                     |                                                         | ·                                                    |                                            |
| F                                                  |                                                                   | 2.5                                                                                               |                                     | <b>ر 4 و</b> 0 | 7⊥ <b>,</b> ⊃ =                                                                         | 1,663                                                   | <b>う,</b> 69                                         | 0                                          |
| 6                                                  | 201.0                                                             | 63.8                                                                                              |                                     |                | <b>ر 2</b>                                                                              | T 400                                                   | 5 000                                                |                                            |
|                                                    |                                                                   | I,0                                                                                               | •                                   |                | о <b>,</b> со<br>т.о                                                                    | <b>ر 80 و</b> ۲                                         | 2,077                                                | 100                                        |
| 6                                                  | 205,8                                                             | 59,3                                                                                              | ه.<br>۲۰۰۰                          |                | 1,U<br>59.3                                                                             | T 706                                                   | 4 770                                                | TEO                                        |
|                                                    |                                                                   | I,0                                                                                               |                                     |                | τ <u>,</u> 0                                                                            | <b>1</b> 9700                                           | 4,/19                                                | του                                        |
| 3                                                  | 209                                                               | 5 <b>7,</b> 2                                                                                     |                                     |                | 57.2                                                                                    | I.722                                                   | 4.55                                                 | тο                                         |
| •                                                  |                                                                   | 2,9                                                                                               |                                     | ·              | 2.9                                                                                     |                                                         | <b>TJ//</b>                                          | τJ                                         |
| <b>)</b>                                           | 210 6                                                             | 54                                                                                                | angular                             |                | 62                                                                                      | I.727                                                   | 4,93                                                 | 6                                          |
|                                                    |                                                                   | 5                                                                                                 |                                     |                | 5                                                                                       | · · · · · ·                                             | .,                                                   |                                            |
| 6                                                  | 210,6                                                             | 58 <b>,</b> 7                                                                                     |                                     |                | 58,7                                                                                    | I,730                                                   | 4,671                                                | I30                                        |
|                                                    |                                                                   | I,I                                                                                               |                                     |                | I,I                                                                                     |                                                         |                                                      | _ <i>-</i> • •                             |
|                                                    |                                                                   |                                                                                                   |                                     |                |                                                                                         |                                                         |                                                      |                                            |

| I    | 2           | 3             | 4.           | 5                                     | 6            | 7             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9         | 10         |
|------|-------------|---------------|--------------|---------------------------------------|--------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|
| 22   | 215         | 55,5          |              | 0,19                                  |              | 55 <b>,7</b>  | I <b>,7</b> 5I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4,435     | 33         |
|      | •<br>•      | 2,2           |              |                                       | •            | 2,2           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |            |
| 66   | 215,4       | 55,6          |              |                                       | е на на<br>1 | 55,6          | I,753                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4,425     | 160        |
|      |             | Ι,0           |              |                                       |              | I,0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |            |
| 35   | 216         | 57,3          |              | 0,23                                  | 0,37         | 57,9          | I,756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4,6I      | 25         |
|      |             | 2,5           |              |                                       | · · · · ·    | 2,5           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |            |
| 3    | 217         | 60            |              |                                       | -2           | 58            | I <b>,</b> 76I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4,6       | .4,4       |
|      |             | 6             | .*           |                                       |              | 6             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |            |
| 23   | 217         | 54,5          |              | angular                               |              | 57 <b>,</b> 7 | I <b>,</b> 76I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4,51      | 4,4        |
|      | · .         | 6             |              |                                       |              | 6             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |            |
| 23   | 220         | 52 <b>,</b> I | •            |                                       | · · · · ·    | 52,I \        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |            |
| · -  | , ,         | 2,3           |              |                                       |              | 2,3           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |            |
| 49   | 220         | 53,7          |              |                                       |              | 53,7          | 7 I,775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4,24      | 120        |
|      | · .         | I,5           | •            |                                       |              | I,5           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |            |
| 49   | 220         | 53,4          |              |                                       |              | 53,4          | l de la companya de | <br>      |            |
|      |             | 2,8           |              |                                       |              | 2,8           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | -          |
| 66   | 220,2       | 52,2          |              |                                       | •            | 52,2          | 1,776                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4,124     | 100        |
|      |             | <b>I,</b> 0   |              |                                       |              | I,0           | -<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.005     | 000        |
| 66   | 225,0       | 50,2          |              |                                       |              | 50,2          | 1,798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3,992     | 2,00       |
|      |             | 0,9           |              |                                       | <b>.</b>     | 0,9           | T 003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 30      | 20         |
| 35   | 226         | 53,3          | <i>t</i>     | 0,38                                  | 0,32         | 24            | 1,805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4,50      | . 99       |
|      |             | 2,0           | •            |                                       | <b>.</b>     | 40.0          | тоти                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 026     | 9.00       |
| 66   | 228,3       | 48,2          |              |                                       |              | 48,2          | 1,014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | الرهور    | 200        |
|      |             | 0,9           | 1 <b>.</b> . | and<br>Ann an Anna Anna               | • • •        | 0,9           | TODO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3 000     | 200        |
| 66   | 231,6       | 49,0          | ÷            |                                       | <b>a</b>     | 49,0          | 1,029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,099     | 200        |
|      | 0.24 0      | 0,9           |              |                                       |              | 44.0          | T 845                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 541     | 200        |
| 66   | 234,9       | 44,2          |              | · · · · · · · · · · · · · · · · · · · |              | 44 <b>,</b> 9 | 1,047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | J97+1     | 200        |
| 0.0  | 0.26        | 0,9<br>46 T   |              | 0.4                                   |              | 16 5          | T.850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.70      | 27         |
| 22   | 0(2)        | 40 g L        |              | 0,4                                   |              | 40 <b>,</b> ) | 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,10      | - 1        |
|      | 0.00 0      | 44.0          |              |                                       |              | 4.4.9         | т.860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3,573     | 200        |
| 00 1 | 2,0,2       | 4497          |              |                                       |              | 0,9           | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - , - , - | -00        |
| 50   | 240         | 18.3          |              | angular                               |              | 48.5          | I.868                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3,86      | <b>I</b> 4 |
| 73   | <u>4</u> 40 | 40,J          |              | CHENTON                               |              | 3.3           | _,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - ,       |            |
| 22   | 240         | 43.5          |              | 0.4                                   |              | 43.9          | I.868                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3,495     | 31         |
| 66   | 64V         | יייד<br>2 ר כ |              | <b>~</b> J <sup>+</sup>               |              | 2.3           | - <b>, ,</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |            |

| 2 | 0   |  |
|---|-----|--|
| 4 | • ) |  |

|                       | 4               |                  |                   | · •     | • •    |                                       |                                       |                  |       |
|-----------------------|-----------------|------------------|-------------------|---------|--------|---------------------------------------|---------------------------------------|------------------|-------|
|                       |                 |                  | •                 | 23      |        | ан<br>1 - Ала                         | •                                     | •                |       |
|                       | 2               | 3                |                   |         |        | 7                                     | ـــــــــــــــــــــــــــــــــــــ | <br>0            |       |
|                       |                 |                  |                   |         |        |                                       |                                       |                  |       |
| 66                    | 241,5           | 42,7             |                   |         |        | 42,7                                  | I,875                                 | 3,398            | 200   |
| <i>cc</i> ·           |                 | 0,9              |                   |         |        | 0,9                                   |                                       |                  |       |
| 00                    | 244,8           | 4 <b>3</b> ,1    |                   |         |        | 43,I                                  | I,890                                 | 3,430            | 200   |
| 56                    | 50A0 T          | 0,9              |                   |         | •<br>• | 0,9                                   |                                       | • • • •          |       |
| 20                    | 240 <b>,</b> 1  | 41,0             |                   |         |        | 41,0                                  | 1,905                                 | 3,263            | 200   |
| 56                    | 25T A           | <b>70</b> 7      | a file<br>a state |         |        | 0,9                                   |                                       | <b>• •</b> • • • |       |
|                       | 27 <b>1 9</b> 4 | <b>, , , , ,</b> |                   |         |        | 2,99,5                                | 1,920                                 | 3,127            | 200   |
| 56                    | 251 7           | ະເບ<br>ຊີດ ໑     |                   |         | . •    | <b>ور</b> ن<br>20.0                   | T 335                                 | 0                |       |
|                       | -2491           | 0.8              |                   |         |        | ש <b>,</b> צנ                         | CCE ET                                | 107ور            | 250   |
| 35                    | 256             | 37.5             | ÷.                | 0.58    | 0 42   | 0,8<br>30 5                           | TOAT                                  | 2 064            |       |
|                       | 270             | T.9              |                   | 0,00 👳  | 0,42   | , , , , , , , , , , , , , , , , , , , | 1,541                                 | 5,004            | ሳሩ    |
| 29                    | 258             | 38.2             |                   | 0.5     |        | 387                                   |                                       | •                |       |
|                       | -,-,            | 3.4              |                   | 0,0     |        | 3 1                                   | 1 050                                 | 3 007            | 260   |
| 6                     | 258.0           | 38.8             |                   |         |        | 38.8                                  | ( 1,500                               | 5,007            | 200   |
|                       |                 | 0.8              |                   |         | -      | 0.8                                   | ).                                    |                  | · ·   |
| 6                     | 261,4           | 36.8             |                   |         |        | 36.8                                  | T.965                                 | <b>9</b> .928    | 250   |
|                       | - <b>.</b> .    | 0,8              |                   |         |        | 0.8                                   | 1,505                                 | 2,520            | 270   |
| 6                     | 265             | 44               |                   |         |        | 44                                    | T.98T                                 | 3.5              | 0     |
|                       | · · ·           | 6                |                   |         |        | 6                                     | _,,,,,,                               | 232              | •••   |
| 6                     | 266,5           | 35,6             |                   |         |        | 35.6                                  | I.988                                 | 2.833            | 250   |
|                       |                 | 0,8              |                   |         |        | 0,8                                   |                                       |                  | •     |
| 9                     | 270             | 36,5             |                   | angular |        | 36,I                                  | 2,00                                  | 2.79             | 27    |
|                       |                 | 2,4              |                   | -       |        | 2,4                                   |                                       | -,               | _     |
| 6                     | 271,6           | 33,4             | •                 |         |        | 33.4                                  | 2,010                                 | 2,658            | 250   |
|                       |                 | 0,8              |                   |         |        | 0,8                                   |                                       |                  |       |
| 6                     | 276,7           | 3I,I             | · ·               |         |        | 3I,I                                  | 2,032                                 | 2,475            | 250   |
|                       |                 | 0,8              |                   |         |        | 0,8                                   |                                       |                  |       |
| 6                     | 281,8           | 32,4             |                   |         |        | 32,4                                  | 2,055                                 | 2,578            | 250   |
|                       | •               | . 0,8            |                   |         |        | 0,8                                   |                                       | •                |       |
| 6                     | 286,9           | 3I <b>,</b> 6    |                   |         |        | 31,6                                  | 2,077                                 | 2,515            | 250   |
| $\{x_{i}\}_{i=1}^{n}$ | •               | 0,8              |                   |         |        | 0,8                                   | as A                                  | * · .            |       |
| 5                     | 290             | 33,9             |                   | 0,68    | 0,22   | 34,8                                  | 2,090                                 | 2,770            | 109   |
|                       |                 | I,I              |                   | 0,6     |        | · 1,2                                 | an an Arra.<br>An                     |                  | •     |
| 6                     | 292,0           | 30,5             |                   |         |        | 30,5                                  | 2,099                                 | 2,427            | 250   |
|                       |                 | 0,8              |                   |         |        | 0,8                                   |                                       |                  | · .   |
| 6                     | 297,2           | 29,3             |                   |         |        | 29,3                                  | 2,J2I                                 | 2,332            | 250   |
|                       |                 | 0,8              |                   | •       |        | 0,8                                   |                                       |                  |       |
|                       |                 |                  |                   |         |        |                                       |                                       |                  |       |
|                       |                 |                  |                   |         | , li y | ·                                     |                                       |                  | · · . |
|                       |                 |                  |                   |         |        |                                       |                                       |                  |       |

| 24         | Ľ |
|------------|---|
| <b>6</b> 7 |   |

|       |                |               |             |                                                                                                                     |                                          |                 |                |       | ·          |
|-------|----------------|---------------|-------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------|----------------|-------|------------|
|       | 2              | <b></b>       | 4           | 5                                                                                                                   | 6                                        | 7               | 8              | 9     | IO         |
| 66    | 302,5          | 28,9          |             |                                                                                                                     | • •••• • • • • • • •<br>·                | 28 <b>,</b> 9   | 2 <b>,</b> I44 | 2,300 | 250        |
|       |                | 0,8           |             |                                                                                                                     |                                          | 0,8             |                |       |            |
| 66    | 307,7          | 28 <b>,</b> I | 1           |                                                                                                                     |                                          | 28,I            | 2,165          | 2,236 | 250        |
|       |                | 0,8           |             |                                                                                                                     |                                          | 0,8             |                |       |            |
| 66    | 313,0          | 28,7          | - 2         |                                                                                                                     |                                          | 28,7            | 2,187          | 2,284 | 322        |
|       |                | 0,7           |             |                                                                                                                     | *.                                       | 0,7             |                |       |            |
| 66    | 318,2          | 27,0          |             |                                                                                                                     |                                          | 27,0            | 2,209          | 2,149 | 440        |
|       |                | 0,6           |             | •<br>•                                                                                                              |                                          | 0,6             |                |       |            |
| 66    | 323,5          | 26,2          |             |                                                                                                                     |                                          | 26,2            | 2,231          | 2,085 | 440        |
|       |                | 0,6           |             |                                                                                                                     | an a | 0,6             |                |       |            |
| 66    | 328,2          | 26,4          |             |                                                                                                                     |                                          | 26,4            | 2,250          | 2,101 | 440        |
|       |                | 0,6           |             |                                                                                                                     |                                          | 0,6             |                |       |            |
| 41    | 330            | 24            |             | angular                                                                                                             | •                                        | 24              |                |       | 0          |
|       |                | 5             |             |                                                                                                                     |                                          | 5               |                |       |            |
| 56    | 333            | 28,8          |             |                                                                                                                     | •                                        | 28,8            |                |       | <i>:</i> • |
|       |                | I,8           |             |                                                                                                                     |                                          | I,8             |                |       | 0          |
| 66    | 334,2          | 26,0          | - 1. e 1    |                                                                                                                     |                                          | 26,0            | 2,275          | 2,069 | 440        |
|       |                | 0,6           |             |                                                                                                                     | · •                                      | 0,6             |                |       |            |
| 35    | 335            | 25,7          |             | 0,67                                                                                                                | 0,23                                     | 26,6            | 2,278          | 2,II7 | IIo        |
|       |                | I,0           |             | -                                                                                                                   |                                          | I,Q             |                |       |            |
| 36    | 340            | 23            |             |                                                                                                                     |                                          | 23              |                |       | 0          |
| ·     | 1              | ·II           |             |                                                                                                                     |                                          | II              |                |       | . • •      |
| 66    | 345,0          | 24,0          | · · · · ·   |                                                                                                                     |                                          | 24,9            | 2,318          | I,98  | 160        |
|       |                | I,0           | · · ·       |                                                                                                                     |                                          | Ι,Ο             | •              |       |            |
| 66    | 361,0          | 25,2          |             |                                                                                                                     | •                                        | a 25 <b>,</b> 2 | 2,382          | 2,01  | <b>160</b> |
|       |                | I,0           |             |                                                                                                                     |                                          | Ι,Ο             |                |       |            |
| 35    | 363            | 26,5          | - · · · · · | an a                                                                            | 0,2                                      | 26,7            | 2,390          | 2,13  | 59         |
|       | н<br>11 г. – С | I,6           |             | •                                                                                                                   | •                                        | Ι,6             |                |       |            |
| 73    | 373            | 28,9          |             |                                                                                                                     |                                          | 28,9            | 2,429          | 2,30  | 81         |
| 1. J. |                | Ι,4           |             | er en ser<br>Le ser en s |                                          | Ι,4             |                |       |            |
| 35    | 393            | 25,9          |             |                                                                                                                     | 0,3                                      | 26,2            | 2,506          | 2,08  | 22         |
|       | a<br>An an t   | 2,7           |             |                                                                                                                     |                                          | 2,7             |                |       |            |
| 73    | 426            | 29,5          |             |                                                                                                                     |                                          | 29,5            | 2,630          | 2,35  | 81         |
|       |                | I,4           |             |                                                                                                                     |                                          | Ι,4             |                |       |            |
| 12    | 450            | 25            |             |                                                                                                                     |                                          | 25              | 2,718          | 1,99  | 18         |
|       |                | 3             |             |                                                                                                                     |                                          | 3               |                |       |            |
| 47    | 450            | 28.8          |             |                                                                                                                     |                                          | 28,8            |                |       | 0          |
|       | •• •           | 2,7           |             |                                                                                                                     |                                          | 2,7             |                |       |            |

| _ <u>I</u> | 2   | 3             | 4 | 5     | 66                                                                                                                             | 77            | 8                                                                                                                                                                                                                                   | 9    | 10               |
|------------|-----|---------------|---|-------|--------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------|
| 73         | 468 | 30,0          |   |       |                                                                                                                                | 30,0          | 2,782                                                                                                                                                                                                                               | 2,39 | IIO              |
|            | 5   | I,2           |   |       |                                                                                                                                | I,2           |                                                                                                                                                                                                                                     |      |                  |
| <b>I4</b>  | 470 | 27            |   |       |                                                                                                                                | 27            | 2,792                                                                                                                                                                                                                               | 2,25 | 6                |
|            |     | 5             |   |       |                                                                                                                                | 5             |                                                                                                                                                                                                                                     |      |                  |
| 47         | 500 | 31,3          |   |       |                                                                                                                                | 31,3          | 2,894                                                                                                                                                                                                                               | 2,49 | 0                |
|            |     | 4,8           |   |       |                                                                                                                                | 4,8           |                                                                                                                                                                                                                                     |      |                  |
| 36         | 510 | 20            |   |       |                                                                                                                                | 20            |                                                                                                                                                                                                                                     |      |                  |
|            |     | 7             |   |       | a star e                                                                                                                       | 7             |                                                                                                                                                                                                                                     |      |                  |
| 73         | 518 | 34,9          |   |       |                                                                                                                                | 34,9          | 2,956                                                                                                                                                                                                                               | 2,78 | 93               |
|            | - 5 | <b>I</b> ,3   | , | •     |                                                                                                                                | I,3           |                                                                                                                                                                                                                                     |      |                  |
| 47         | 550 | 37,4          |   |       | •                                                                                                                              | 37,4          | 3,064                                                                                                                                                                                                                               | 2,98 | 0                |
|            |     | 3,0           |   |       |                                                                                                                                | 3,0           |                                                                                                                                                                                                                                     |      | n                |
| 73         | 567 | 44,6          |   |       | · ·                                                                                                                            | 44,6          | 3,120                                                                                                                                                                                                                               | 3,55 | 44               |
|            | 6   | I <b>,</b> 9  |   |       |                                                                                                                                | I,9           |                                                                                                                                                                                                                                     | •    |                  |
| 73         | 59I | 45,8          |   |       |                                                                                                                                | 45,8          | 3,198                                                                                                                                                                                                                               | 3,64 | 55               |
|            | 6   | I,7           |   |       | 1997 - 1997<br>1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - | I <b>,</b> 7. |                                                                                                                                                                                                                                     |      | 3 I <sup>°</sup> |
| 36         | 600 | 23            |   | 4     |                                                                                                                                | 23            |                                                                                                                                                                                                                                     |      | . 0              |
|            |     | II            |   |       | en gee                                                                                                                         | · II ·        | *                                                                                                                                                                                                                                   |      | 10 C             |
| 73         | 604 | 45,5          |   |       |                                                                                                                                | 45,5          | 3,240                                                                                                                                                                                                                               | 3,62 | 49               |
|            | 6   | I,8           |   |       |                                                                                                                                | I,8           |                                                                                                                                                                                                                                     |      | •                |
| 47         | 610 | 37,0          |   | •     |                                                                                                                                | 37,0          | 3,259                                                                                                                                                                                                                               | 2,94 | 0                |
|            |     | 2 <b>,</b> I  |   |       |                                                                                                                                | 2,1           |                                                                                                                                                                                                                                     |      |                  |
| 73         | 616 | 45 <b>,</b> I | 4 |       |                                                                                                                                | 45,I          | 3,278                                                                                                                                                                                                                               | 3,59 | 55               |
|            | 6   | · I,7         |   |       |                                                                                                                                | .I,7          |                                                                                                                                                                                                                                     |      | <sup>1</sup>     |
| 73         | 643 | 44,4          |   |       |                                                                                                                                | 44,4          | 3,362                                                                                                                                                                                                                               | 3,53 | 33               |
|            | 6   | 2,2           |   |       |                                                                                                                                | 2,2           |                                                                                                                                                                                                                                     |      |                  |
| 73         | 665 | 39,2          |   | •     |                                                                                                                                | 39,2          | 3,430                                                                                                                                                                                                                               | 3,12 | 8I               |
|            | 7   | I <b>,</b> 4  | , |       |                                                                                                                                | I <b>,</b> 4  | •                                                                                                                                                                                                                                   |      | · · · · ·        |
| 47         | 670 | 39,5          |   |       |                                                                                                                                | 39,5          | 3,445                                                                                                                                                                                                                               | 3,14 | · · ·            |
| . •        |     | 3,0           |   |       |                                                                                                                                | 3,0           | an dia amin'ny faritr'o dia mandritry any faritr'i dia amin'ny faritr'i dia amin'ny faritr'i dia amin'ny faritr<br>Ny faritr'o dia amin'ny fari |      |                  |
| 36         | 700 | 42            |   | <     |                                                                                                                                | 42            |                                                                                                                                                                                                                                     |      | 0                |
|            |     | IO            |   | •     |                                                                                                                                | IO            |                                                                                                                                                                                                                                     |      |                  |
| 73         | 719 | 35,I          |   |       |                                                                                                                                | 35,I          | 3,592                                                                                                                                                                                                                               | 2,79 | 70               |
|            | 7   | I,5           |   |       |                                                                                                                                | I,5           |                                                                                                                                                                                                                                     |      | ÷.,              |
| 73         | 749 | 37,6          |   |       |                                                                                                                                | 37,6          | 3,680                                                                                                                                                                                                                               | 2,99 | 62               |
|            | 7   | I,6           |   |       | -                                                                                                                              | I,6           | an tanan<br>Aristo                                                                                                                                                                                                                  |      |                  |
| 73         | 769 | 37,4          |   |       |                                                                                                                                | 37,4          | 3,738                                                                                                                                                                                                                               | 2,98 | 40               |
|            | 7   | 2,0           |   | . • • |                                                                                                                                | 2,0           | ·                                                                                                                                                                                                                                   |      |                  |

|            | 2    | 3             | 4                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                                                                                                                                                                                                                                 | 7              | 8              | 9           | 10                |
|------------|------|---------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|-------------|-------------------|
| 47         | 790  | 46 <b>,</b> I |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                   | 46,I           |                |             | 0                 |
|            |      | 3,4           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                   | 3,4            |                |             |                   |
| 74         | 797  | 40,00         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                   | 40,00          | 3,818          | 3,183       | 105               |
|            | 8    | I,22          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                   | I,22           |                |             |                   |
| 74         | 816  | 46,20         | 1.<br>1.           | :<br>:<br>:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                   | 46,20          | 3,871          | 3,676       | 70                |
|            | . 8. | I,50          | •                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                   | I,50           |                |             |                   |
| 73         | 819  | 47,9          | • • • • •          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                   | 47;9           | 3,879          | 3,8I        | 44                |
|            | 8    | I,9           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · · ·                                                                                                                                                                                                                             | I,9            |                | *           |                   |
| 74         | 836  | 48,00         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                   | 48,00          | 3,926          | 3,820       | 70                |
|            | 8    | I,50          |                    | ter start and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                   | I,50           |                |             |                   |
| 73         | 840  | 54,6          | 1<br>1             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                   | 54,6           | 3,937          | 4,34        | 36                |
| •          | 8    | 2,I           |                    | je i sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                   | 2 <b>,</b> I   |                |             |                   |
| <b>14</b>  | 840  | 47            | λ,                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                   | 47             | 3,937          | 3,74        | 6                 |
|            |      | 5             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                   | 5              |                |             |                   |
| 74         | 856  | 53,22         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                   | 53,22          | 3,981          | 4,235       | 53                |
|            | 9    | I, <b>7</b> 2 |                    | ••<br>• * • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                   | I,72           | н.<br>1. т. т. |             |                   |
| 47         | 860  | 47,7          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                   | 47,7           | 3,992          | 2,80        | 0                 |
| •          |      | 2,7           | •                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                   | 2,7            | *a<br>•        |             |                   |
| 74         | 866  | 54,0I         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                                                                                 | 54,0I          | 4,008          | 4,298       | 49                |
|            | 9    | I,84          | n an an<br>Taonach | 1. S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                   | I,84           |                |             |                   |
| 73         | 868  | 58,6          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                   | 58,6           | 4,014          | 4,66        | 27                |
|            | 9    | 2,4           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44 C                                                                                                                                                                                                                              | 2,4            |                |             |                   |
| 74         | 886  | 56,64         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                   | 56,64          | 4,062          | 4,507       | 46                |
|            | 9    | I,84          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                   | I,84           |                |             |                   |
| 73         | 890  | 57,8          | 1.7                | la serie de la companya de la company |                                                                                                                                                                                                                                   | 57,8           | 4,073          | 4,60        | 33                |
|            | 9    | 2,2           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>a</b>                                                                                                                                                                                                                          | 2,2            |                |             |                   |
| 47         | 900  | 44,4          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ×                                                                                                                                                                                                                                 | 44,4           | 4,100          |             | 0                 |
|            |      | 2,3           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                   | 2,3            |                | •           | 144, <sup>1</sup> |
| 74         | 915  | 55,0 <b>7</b> |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                   | 55 <b>,</b> 07 | 4,140          | 4,382       | 40                |
|            | 9    | I <b>,</b> 79 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                   | I,79           |                | •           |                   |
| 7 <b>3</b> | 918  | 54,5          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                   | 54,5           | 4,148          | 4,34        | 27                |
|            | 9    | 2,4           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                   | 2,4            |                |             |                   |
| 73         | 943  | 50,4          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                   | 50,4           | 4,214          | 4,01        | 23                |
|            | 9    | 2,6           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                   | 2,6            |                | •<br>•<br>• | · . · .           |
| 74         | 945  | 48,7          | · * *              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                                                                                 | 48,7           | 4,219          | 3,875       | 59                |
|            | 9    | I,63          | · ·                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a di segunda di seconda di second<br>Seconda di seconda di s | I,63           |                |             | •                 |
| 48         | 950  | 38            |                    | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                   | 38             |                |             | 0                 |
|            | 50   | 3             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                   | 3              |                | ·           |                   |

| <u> </u> | 2     | 3 4   | 5                                                | 6            | 7            | 8            | 9        | IO  |
|----------|-------|-------|--------------------------------------------------|--------------|--------------|--------------|----------|-----|
| 74       | 965   | 45,58 | er en ser en |              | 45,58        | 4,270        | 3.627    | 60  |
|          | 10    | I,62  |                                                  |              | I,62         | ,            | - , ,    | 00  |
| 47       | 970   | 45,I  | a da sera.<br>A sera                             |              | 45,I         | 4,283        | 3.58     |     |
|          |       | 2,7   |                                                  |              | 2,7          |              | - ,      |     |
| 73       | 972   | 44,7  |                                                  |              | 44,7         | 4,288        | 3.56     | 33  |
|          | 10    | 2,2   |                                                  |              | 2,2          | stan in stan | · · · ·  |     |
| 74       | 985   | 41,37 |                                                  |              | 41,37        | 4,322        | 3.292    | 67  |
| ,        | 10    | I,53  | • • •                                            |              | I,53         |              |          | - 1 |
| 21       | I,00  | 48    |                                                  | •            | 48           | 4,360        | 3.82     | 0   |
|          |       | 4     |                                                  |              | 4            |              | · · ·    | Ũ   |
| 47       | I,00  | 46,0  |                                                  |              | 46,0         | 4,360        | 3,66     | 0   |
|          |       | 3,0   |                                                  | С <b>Р</b> . | 3,0          |              |          |     |
| 73       | I,0I4 | 39,6  |                                                  |              | 39,6         | 4.395        | 3.15     | 40  |
|          | 0,010 | 2,0   |                                                  |              | 2,0          | •            | - ) - /  |     |
| 74       | I,064 | 36,62 |                                                  |              | 36,62        | 4,519        | 2.974    | 93  |
| -        | 0,010 | I,30  |                                                  |              | I,30         |              | ,        |     |
| 73       | I,076 | 35,9  |                                                  |              | 35,9         | 4.549        | 2.36     | 40  |
|          | 0,011 | 2,0   |                                                  |              | 2,0          | •            |          |     |
| 47       | I,08  | 36,3  |                                                  |              | 36,3         | 4,559        | 2.89     | 0   |
|          |       | 2,6   |                                                  |              | 2,6          |              |          | Ũ   |
| 63       | I,08  | 47,2  |                                                  |              | 47,2         |              | 3.76     | 0   |
|          | 0,03  | 3,I   |                                                  |              | 3,I          |              |          |     |
| 73       | I,150 | 35,5  |                                                  |              | 35,5         | 4,728        | 2,82     | 40  |
|          | 0,012 | 2,0   | •                                                |              | 2,0          |              | •        |     |
| 74       | I,164 | 34,27 |                                                  |              | 34,27        | 4,76I        | 2,727    | 90  |
|          | 0,012 | I,32  |                                                  |              | I,32         |              |          |     |
| 47       | I,25  | 29,2  |                                                  |              | 29,2         | 4,931        | 2,32     | 0   |
|          |       | 3,7   |                                                  | •            | 3,7          | • .          | •<br>• • |     |
| 74       | I,263 | 35,28 |                                                  |              | 35,28        | 4,990        | 2,807    | 86  |
|          | 0,013 | 1,35  | ·                                                |              | <b>1,</b> 35 |              | •        |     |
| 7        | I,35  | 30,I  |                                                  |              | 30,I         | 5,184        | 2,39     | Ö   |
|          |       | 2,8   |                                                  |              | 2,8          | · ·          |          | •   |
| 14       | I,363 | 32,99 |                                                  |              | 32,99        | 5,212        | 2,625    | 79  |
|          | 0,014 | I,4I  |                                                  |              | I,4I         |              |          | •-  |

|                 |                   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                       | المراجب ويرجب بمراجب                                |       |                                                                                                                                                                                                                                        |       |
|-----------------|-------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1               | 2                 | 3     | 4 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                       | 7                                                   | 8     | 9                                                                                                                                                                                                                                      | IO    |
|                 |                   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • «الله الله الله عنه الله عنه الله عنه الله الله الله الله الله الله الله ال                                                                                                                                                                                                                                                                           | <del>ال</del> م اللہ جور <b>اللہ جین کے جب</b> و ہی |       | ک ہے جار کی دے جے بنے ہیں                                                                                                                                                                                                              |       |
| 32              | I,37              | 34,6  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •<br>•                                                                                                                                                                                                                                                                                                                                                  | 34,6                                                | 5,228 | 2,75                                                                                                                                                                                                                                   | 23    |
|                 |                   | 2,7   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                         | 2,7                                                 |       |                                                                                                                                                                                                                                        |       |
| 47              | I,38              | 30,8  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                         | 30,8                                                | 5,249 | 2,45                                                                                                                                                                                                                                   | 0     |
| *.              |                   | 2,8   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · ·                                                                                                                                                                                                                                                                                                                                                     | 2,8                                                 |       |                                                                                                                                                                                                                                        |       |
| 74              | I,462             | 31,40 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                         | 31,40                                               | 5,425 | 2,499                                                                                                                                                                                                                                  | 70    |
|                 | 0,015             | I,50  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                         | I,50                                                |       |                                                                                                                                                                                                                                        |       |
| 47              | I,47              | 31,4  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                         | 31,4                                                | 5,442 | 2,50                                                                                                                                                                                                                                   | 0,    |
|                 |                   | I,8   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                         | I,8                                                 |       | · · · ·                                                                                                                                                                                                                                | ,     |
| 19 <sup>.</sup> | I,50              | 34    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                         | 34                                                  | 5,505 | 2,71                                                                                                                                                                                                                                   | 18    |
|                 | -                 | 3     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                       | 3                                                   |       |                                                                                                                                                                                                                                        |       |
| 47              | I,50              | 30,0  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                         | 30,0                                                |       | ن<br>                                                                                                                                                                                                                                  | 0     |
|                 |                   | 2,0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,                                                                                                                                                                                                                                                                                                                                                       | 2,0                                                 |       |                                                                                                                                                                                                                                        |       |
| 47              | I,67              | 31,4  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                         | 31,4                                                | 5,849 | 2,50                                                                                                                                                                                                                                   | 0     |
|                 |                   | 3,9   | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                         | 3,9                                                 |       |                                                                                                                                                                                                                                        |       |
| 47              | I,90              | 31,3  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                         | 31,3                                                | 6,289 | 2,49                                                                                                                                                                                                                                   | 0     |
|                 |                   | I,6   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                         | <b>I,</b> 6                                         |       |                                                                                                                                                                                                                                        | · · · |
| 51              | 4,16              | 28,7  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | an de la composition de la composition<br>Na composition de la co<br>Na composition de la c | 2,87                                                | 9,65  | 2,28                                                                                                                                                                                                                                   | 23    |
| <sup>-</sup>    |                   | 2,6   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                         | 2,6                                                 |       |                                                                                                                                                                                                                                        |       |
| 44              | 4,5               | 20,4  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                         | 20,4                                                |       |                                                                                                                                                                                                                                        | 0     |
| •               |                   | 3,5   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                         | 3,5                                                 |       |                                                                                                                                                                                                                                        |       |
| 55              | 5                 | 22,5  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                         | 22,5                                                |       |                                                                                                                                                                                                                                        | 0     |
| 7-5             | · · · · · · · · · | 2,4   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                         | 2,4                                                 |       |                                                                                                                                                                                                                                        |       |
| 70              | 6,66              | 30    | and the second sec |                                                                                                                                                                                                                                                                                                                                                         | 30                                                  | 12,4  | 2,38                                                                                                                                                                                                                                   | 6,4   |
|                 | •                 | 5     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                         | 5                                                   |       | ана стана<br>Стана стана стана<br>Стана стана стан | . *   |



Fig. 3. Total cross sections for negative pion scattering on protons.





#### 2. CHOICE OF THE INTERPOLATION FORMULA

A choice of a definite interpolation formula is not an auxiliary or a purely formal procedure. The interpolation formula is a physical hypothesis which is suggested on the basis of the facts already known and verified by a comparison with experimental data. In our case we are in need of a formula-hypothesis describing the behaviour of the scattering cross sections  $6^+$  and  $6^-$  in the energy range from 0 up to  $\infty$ . For many reasons both of technical and principal nature, this formula must contain not many, at the most, 10-15 unknown parameters, by varying of which an agreement should be obtained with more than two hundred experimental points.

First of all, let us make a usual assumption gbout the behaviour of the cross sections  $G^+$  and  $G^-$  at low energies (E < 50 MeV):

$$G(E) \approx G(0) + \ll E^{2}$$
(2.1)

Further we assume that both cross sections  $6^+$  and  $6^-$  are tending to the same constant at infinitely high energies, and namely, that

$$6^{\pm}(E) \approx 6^{\circ}(\infty)$$
 (2.2)

### at E > 3 BeV.

Besides , we accept the hypothesis asserting that the total interaction cross section may be presented as a sum of the two terms

$$\vec{\mathbf{6}} = \vec{\mathbf{6}}_{e\ell} + \vec{\mathbf{6}}.$$

The first component  $\mathbf{5}_{e}$  possesses all the properties of elastic scattering in the absence of inelastic one. The second term  $\mathbf{\overline{5}}$  is increasing monotonously with energy everywhere, with the only possible exception of small regions near the thresholds<sup>/79</sup>, 80/

At the energies lower than the threshold for the production of one additional pion  $\mathbf{\delta} = 0$ , whereas at higher energies this component plays the main role for it includes both the inelastic and the diffraction scattering.

Further we assume the hypothesis about the resonant character of elastic scattering. This means that each term in the expansion in partial waves

$$\mathcal{G}_{ee} = \sum_{\ell=0}^{\infty} (2j+1) \mathcal{S}_{\ell, j=\ell+\frac{1}{2}} + \sum_{\ell=1}^{\infty} (2j+1) \mathcal{S}_{\ell, j=\ell-\frac{1}{2}} (2.4)$$

is limited by the inequality

$$0 \leq S'(E) \leq 2\pi \lambda^2 \qquad (2.5)$$

and is described by the resonance formula  $\mathcal{B}(\mathcal{E})$  of the Breit-Wigner type. The only exception is made for the S scattering which was treated as a nonresonant one.

A list of resonance formulae derived on the basis of nonrelativistic models and the discussion of their structure may be found in the paper  $^{81/}$ . Relativistic resonance formulae with one and many le-vels which were obtained on the basis of concepts of the analytical properties of the S matrix are given in the paper by Ning Hu<sup>82/</sup>. The same paper treats in detail the hypothesis about the resonant character of the scattering as a consequence of the analicity and unitarity of the S matrix.

For the angular momentum  $\ell \ge 1$  we gave up the resonance formulae of paper<sup>(82)</sup> and preferred the formulae of paper<sup>(81)</sup>, in which the momentum and the energy are replaced by relativistic ones because of two considerations.

First, the resonance formulae of paper  $^{/81/}$  behave at low energies as

$$B_{\ell}(E) \sim E^{2\ell} \quad at \quad E \to 0 \tag{2.6}$$

what is an inevitable result of the short-acting character of nuclear forces. At the same time the simplest formulae of paper/82/ give the finite limiting value of the cross section at  $E \rightarrow 0$  for  $\ell > 0$ , what contradicts the isotropy of the scattering at low energies.

Second, a parameter giving the asymmetry of the resonance curves which is necessary to be introduced to reach an agreement with the experiment in the range 9 - 300 MeV enters the formulae of paper  $^{/81/}$ .

Finally, the cross section is written as

$$\mathcal{F}(E) = \mathcal{L}(E) + \sum_{j,\ell} \mathcal{B}_{j,\ell}(E) + \mathcal{A}(E) \qquad (2.7)$$

)

where L(E) is a decreasing function describing, for the most part, the S scattering;  $\Sigma B(E)$  is the sum of the resonances. The number of these resonances in the energy range 0 - 1.5 BeV, the corresponding values of  $\ell$  and j, the widths and the resonance energies should be determined from experimental, data. The function A(E) approximates the cross section  $\overline{C}$ .

It is natural that the form of (2.7) is assigned to the scattering cross sections to states with a definite isotopic spin;  $\sigma^{3/2}$  and  $\sigma^{1/2}$ , whereas  $\sigma^+$  and  $\sigma^-$  are associated with  $\sigma^{3/2}$  and  $\sigma^{1/2}$  in a usual way:

$$6^{+} = 6^{-\frac{3}{2}}, \qquad 6^{-} = \frac{1}{3} 6^{-\frac{3}{2}} + \frac{2}{3} 6^{-\frac{1}{2}}.$$
 (2.8)

In further formulae we shall make use of the natural system of units in which

$$C = m_{\pi^2} = 1.$$
 (2.9)

It is more convenient to use instead of  $E_{lab}$ , the momentum in the c.m.s.  $\eta$  which is connected with the kinetic energy of the  $\eta p$  system, entering B, by the equality

$$E_{\kappa} = \sqrt{1 + \gamma^2} + \sqrt{M^2 + \gamma^2} - 1 - M, \qquad (2.10)$$

where M = 6.719 is the proton mass. The magnitude of  $2\pi \lambda^2$  in millibarns is

$$2\pi \lambda^2 = \frac{12.5.4}{\gamma^2} mb$$
 (2.11)

The parameters being varied are denoted by  $\alpha$  , those not varied, by c

The function  ${\ensuremath{L}}$  the role of which was to approximate the cross sections near zero was chosen in the form

For  $\mathbf{6}$  (0) the values of  $\frac{75}{\text{were used}}$ 

$$5^{3/2}(0) = 2.76 \pm 0.53 \,\mathrm{mb}$$
;  $5^{1/2}(0) = 7.05 \pm 1.01 \,\mathrm{mb}$ . (2.13)

The resonance functions (coinciding up to notations with the function used in the paper  $^{/83/}$ )had the form

$$B = (2j+1) \cdot 2\pi \bar{\lambda}^2 \frac{\left(\frac{\Gamma}{2}\right)^2}{\left(E_{\kappa} - a_{j}\right)^2 + \left(\frac{\Gamma}{2}\right)^2}, \qquad (2.14)$$

where

$$\left(\frac{\Gamma}{2}\right)^2 = \alpha_2 \left(\frac{\eta}{c}\right)^6 \left(\frac{1+\alpha_3 c^2}{1+\alpha_3 \gamma^2}\right)^2.$$
(2.15)

The constant **C** is introduced into (2.15) in order to ensure that the parameter  $a_3$  giving the asymmetry would not affect the width of the resonance curve as well.

Strictly speaking, the resonance formulae must have a different dependence of  $\varGamma$  on  $\gamma^2$  for different values of  $\ell$ .

One and the same formula corresponding to  $\ell = 1$  was used since, on the one hand, the contribution from far resonances (1399 MeV for  $6^{3/2}$  and 900 MeV for  $6^{1/2}$ ) is very small at low energies, where appears the difference between these formulae, and, on the other hand, the values of  $\ell$  for these resonances are not still determined finally.

The choice of the function A(E) was somewhat more complicated since there is rather poor information about this function. A number of variants of this function were tried. It became clear that the curve  $\mathcal{S}(E)$  obtained and the goodness of the approximation are weakly dependent upon the variant used. Finally the simplest formula was adopted:

$$A = \begin{cases} G(\infty) \frac{2}{\pi} \operatorname{are} tg \{(\eta - \eta_o)^2 |\alpha|\}, & \eta > \eta_o = 1.497 \\ 0, & \eta < \eta_o \end{cases}$$
(2.16)

As  $6^{3/2}(\infty) = 6^{1/2}(\infty)$  the value was used

$$5(\infty) = 29.2 \text{ mb}$$
 (2.17)

which was found by averaging of the last three points for  $6^+$  (paper<sup>71/</sup>) and the two points for  $6^-$  (papers <sup>51/,70/</sup>). At E < 3 BeV the curve  $6^-$  (E) turned out to be insensitive to a 10% change of  $6^-$  ( $\infty$ ). An attempt has been made to include  $6^-$  ( $\infty$ ) into the number of the alternating parameters, but it was found that it cannot be reliably determined by the available data (there is a tendency of an infinite increase of this limiting value). For a reliable determination of  $6^-$  ( $\infty$ ) good experimental data are necessary up to the energies of 10-12 BeV, where the number of inelastic channels of the reaction becomes great.

### 3. IDENTIFICATION OF RESONANT STATES

The work on the approximation of the cross sections by means of the formula (2.7) was started at the end of 1958, when the second maximum in the cross section  $6^+$  was hardly felt experimentally; and the cross section  $6^-$  in the region **0.5-2BeV** was represented for the most part, by the measure - ments of Cool, Piccioni and Clark<sup>47/</sup>. These measurements, however, were found to be incorrect and distorted entirely the situation in this region.

We tried many versions of the curves with different number of resonances and with different  $\ell$  and j. Each time a complete statistical analysis described in §4 was made. In particular, all the resonances were checked for asymmetry, which was found to be significant only for the main resonance  $\mathcal{P}_{3/2}$ , T= 3/2, and equal to zero for all the other ones.

At first it was necessary to get the curve  $\mathcal{G}^{+}(\mathcal{E})$ . It became clear from the first variants of the calculation that, for the second resonance in the cross section of  $\mathcal{G}^{++}$  situated in the region of  $\mathbf{1300} \text{ MeV}$ , the experiment does not contradict either the angular momentum  $\mathbf{j} = 5/2$ , or the angular momentum  $\mathbf{j} = 3/2$  as the curves  $\sigma^{+}(\mathbf{E})$  approximating the cross section are not very different in these two cases.

It should be noted that if the variant j = 3/2 is correct, the second resonance may belong only to the D-wave,  $\ell = 2$ , since otherwise, when  $\ell = 1$ , due to the restriction (2.5), the second and the third resonances would begin to interfere, and the cross section would become much less than the experimental one.

To give up the variant j = 5/2 it became possible only after the results of the measurements made at Sacle  $\frac{73}{74}$  and at Berkeley  $\frac{71}{16}$  had been published. These results determined strictly the width of the second resonance. If this width is attributed to the Breit curve with j = 5/2, then we would get a considerably more sharp and high maximum than is consistent with the experimental data. At the same time the resonance  $D_{3/2}$  is in good agreement with experiment.

After the first successful approximation of the cross section  $6^+$ , the "experimental" points for  $6^{1/2}$  were calculated

$$G_{exp}^{1/2} = \frac{3}{2} G_{exp}^{-} - \frac{1}{2} G_{appr}^{+}$$

It was found impossible to draw either a curve of type (2.7) with one resonance, or without resonances at all through the points among which the points from paper  $^{/47/}$  played an important part.

(3.1)

Hundreds of times more probable, although contradicting the experimental data qualitatively, was found the curve with two resonances for the angular momenta j = 3/2 and j = 5/2, respectively. It is interesting to note that both the resonance energies and the widths of these resonances were determined rather correctly and in accordance with the contemporary values from the incorrect data of Cool, Piccioni and Clark 47. This indicates that the cross sections found by these authors are, as a matter of fact, cross sections averaged over very large energy intervals.

Just a week later, Phys.Rev.Letters 2, n.3 arrived at the Joint Institute for Nuclear Research were the measurements  $^{61/}$  were reported. The points from this paper lay on a two-humped curve which looked like that we just had obtained. The more unexpected turned out the result that these points were in sharp disagreement with formula (2.7). This contradiction could not be overcome even if we assume a strong interference of  $\sigma$  and  $\sigma$  nonel.

One can easily become sure of this if one sees the figure presented to the Kiev Conference (see  $^{84/}$ ). In this figure the dashed line is obtained by approximating the data  $^{61/}$  by the resonance formulae with j = 3/2 and j = 5/2.

At the Kiev Conference of 1959 were presented the precise data of Pontecorvo<sup>/66/</sup>, as well as preliminary results of the groups working at Saclé and at Berkeley. Besides, it became clear that in some experiments on the cross sections **G**<sup>-</sup> in the range**0.50 MeV** an incorrect value of Panofsky ratio was

made use of. Therefore, only the latest measurements should be taken into account. An increased accuracy of the values of the cross section  $\mathfrak{G}^-$  made an individual approximation of the cross sections  $\mathfrak{G}^+$ and  $\mathfrak{G}^-$  disadvantageous, since the procedure (3.1) began to lead to an appreciable loss of information. Therefore, a program has been made up for an electronic computer. This program consisted in a simulta neous determination of all the parameters of the curves  $\mathfrak{G}^+$  and  $\mathfrak{G}^-$  which then were looked for only jointly.

The preliminary data of the group working at Saclé which Professor A.Berthelot sent us allowed to investigate the region of 0.5 - 1.5 **BeV** more seriously. Later on Professor Falk-Variant kindly sent us twice precise and supplemented data prior to publication, a fact which accelerated our work and made it considerably easier. We take the opportunity of thanking him personally and all the experimentators of this group.

The French data supported the hypothesis made before that the resonance in the cross section  $6''^2$  in the range of **900 MeV** corresponds to the angular momentum j = 5/2. Alongside with American measurements of  $6^+$  at higher energies  $^{71/}$ , the French data  $^{73/,74/}$  allowed to establish finally the situation in the cross section  $6^+$  in the region of 0.7 - 4 BeV.

Much more complicated than it was assumed earlier on the basis of more rough measurements, was found the region of **500-800 MeV** in which we failed to approximate well either the cross section **6**, or  $\sigma^{\frac{1}{2}}$ .

In this region in the cross section  $\mathbf{6}^+$  there is a deep minimum. At the same time the experimental points do not lie on a smooth curve, but have a distinct break, possibly, an incorrect one, and, perhaps, of a threshold origin (see Fig. 9). In the latter case formula (2.7) should, in principle, be made more complicated by adding threshold terms

$$\mathcal{F}(\mathbf{E}) = L + \sum_{\ell,j} B_{\ell,j} + A + \sum_{\ell} \prod_{\ell} (\mathbf{E})$$
(3.2)

Fortunately, it is not necessary to vary simultaneously all the parameters of formula (3.2) as the parameters of the threshold terms which have a local nature must not be correlated with the parameters of the functions L, B, A (see also § 4). Therefore the function  $\mathbf{5}$  (E) can be looked for in two stages : at first, to find L,B,A by putting  $\Sigma \Pi = 0$ , and then to find  $\Pi_i$  (E) by assuming L,B,A to be fixed functions, what the authors hope to do further.

where the threshold terms  $\Pi_{j}$  are different from zero only in small vicintities of the threshold energies  $E_{i}$ .

\* We mean the thresholds for the reactions  $\pi^+ p \rightarrow \kappa^+ \Sigma^+$ ,  $\pi^- p \rightarrow \Lambda^{\circ} \kappa^{\circ}$ ,  $\pi^- p \rightarrow \Sigma^{\circ} \kappa^{\circ}$ ,  $\pi^- p \rightarrow \Sigma^- \kappa^+$  lying at the energies 891.2; 767.5; 899.1 and 903.6 MeV, respectively.

The first maximum in the cross section  $6^{1/2}$  lies in the same energy range. It may be due only to the resonance in the state  $\mathcal{P}_{1/2}$  for the angular momenta j = 3/2 and higher are in sharp contradiction with experiment. However, the curve approximating  $6^{-1}$  lies at 600 MeV by 4-5 mb below the experimental points. Since the nature of this divergence is still obscure, for obtaining the curve which would agree with experiment and valid for the calculation of the dispersion integrals, a systematic divergence in this region was eliminated artificially by a formal substitution of the factor 2.8 for the factor 2.1 methods.

In identifying the resonance states only the data on the total cross sections were made use of, and no addition al information was involved, such as the information contained in the angular distributions and in the data on pion photoproduction. Additional information may help to overcome the ambiguity, if any, in the determination of  $\ell = j \pm \frac{1}{2}$ .

In spite of the fact that a good agreement between the interpolating curve and the experimental data is not yet obtained everywhere, it is worthwhile to note a complete success of identifying the resonant part of the cross sections  $G^+(E)$  and  $G^-(E)$  and an expediency of further research in this direction. In particular, one may hope to get information on inelastic processes in  $T_{i-P}$  scattering if the form of the function A(E) is more specified by applying resonance formulae for the description of the generation of pions and of other particles. Especially interesting results may be found in the regions where a full description of the energy dependence of the cross sections  $G^+$  and  $G^-$  is not yet available.

### 4. METHOD OF ANALYSIS

The best values of the parameters  $\alpha$  and their errors were found by the method of least squares adapted to the solution of problems with many non-linear parameters.

The auadratic form minimized was as follows

$$M = \sum_{i=1}^{n} \left[ \mathbf{6}_{i}^{\dagger} - \mathbf{y}^{\dagger} (\eta_{i}, \alpha) \right]^{2} w_{i} + \mathbf{0}$$

$$+ \sum_{i=n^{+}+1}^{n^{+}+n^{-}} \left[ \mathbf{6}_{i}^{-} - \mathbf{y}^{-} (\eta_{i}, \alpha) \cdot N_{i} \right]^{2} w_{i} + (N_{o} - N)^{2} w_{N_{o}}$$
(4.1)

where  $6^+_i$ ,  $6^-_i$  are the experimental values of the cross sections (see Table 1, 2).  $y^+ = y^{3/2}$  $y^- = \frac{1}{3}y^{3/2} + \frac{2}{3}y^{1/2}$  are approximating curves, and  $w_i$  are the weights equal to the inverse variances of the measurements (see Table 1,2). The normalization factors  $N_1$ ,  $N_1$ ,  $N_0$  are introduced into formula (4.1) to take into account the fact that the data of paper<sup>66/</sup> (39 points) have a general normalizing factor (a systematic error)  $N_0 = 1 \pm 0.016$ , which should be taken into consideration separately from the relatively small independent errors of these points. Therefore, in (4.1)  $N_1 = N$  for the points of paper<sup>66/</sup>,  $N_1 = 1$  for all the rest points,  $W_{N_0} = \frac{1}{(0.016)^2}$  is the weight of the measurement  $N_0$ . In other experiments the series of measurements are not so large, the relative accuracy is less, and, therefore, their normalization was not introduced. In calculating the last version  $n^+ + h^- = 138 + 126 = 264$ experimental values of the total cross sections were used. The expressions for  $\gamma$  and  $\gamma$  had the form

$$y^{1/2} = L^{+}(\alpha) + B^{+}_{j=3/2}(\alpha, \alpha_{2}, \alpha_{3}) + B^{+}_{j=3/2}(\alpha, \alpha_{2}) + A^{+}(\alpha), \quad (4.2)$$

$$y^{1/2} = L^{-}(\alpha) + B^{-}_{j=1/2}(\alpha, \alpha_{2}) + B^{-}_{j=5/2}(\alpha, \alpha_{3}) + A^{-}(\alpha). \quad (4.3)$$

Thus, along with the normalization factor m = 14 simultaneously variable parameters entered the formula for M.

The calculations were made by means of an electronic computer. To minimize the form M, the linearization method  $^{85/}$  was applied. The idea of this method consists in the following. The exact equations of the minimum of the form  $M=\Sigma M^*$ 

$$\frac{\partial M}{\partial \alpha_{\kappa}} = \sum_{i} \frac{\partial M_{i}}{\partial y_{i}} \frac{\partial y_{i}}{\partial \alpha_{\kappa}} = 0 \qquad (4.4)$$

are replaced by a linear system of equations

$$\lambda \sum_{i} \frac{\Im M_{i}}{\Im y_{i}} \frac{\partial y_{i}}{\partial \alpha_{k}} + \sum_{i} \left| \frac{\Im^{2} M_{i}}{\Im y_{i}^{2}} \right| \frac{\partial y_{i}}{\partial \alpha_{k}} \sum_{\ell=i}^{m} \Delta \alpha_{\ell} \frac{\partial y_{i}}{\partial \alpha_{\ell}} = 0 \qquad (4.5)$$

by solving of which one can find the step  $\Delta \alpha_{
m s}$ 

\* The summation over involves further all the terms in expression (4.1), including the last one  $(N - N)^2 V_{N}$ .

In the equation (4.5) the number  $\lambda$  is the normalization of the step. It was chosen by the electronic computer so that the step in either direction would not exceed some prescribed values. For sufficiently small  $\lambda$  the iteration process  $a_{\kappa}^{(*+1)} = a_{\kappa}^{(*)} + \Delta a_{\kappa}$  always converges to the minimum of M<sup>/85/</sup> (in practice, only 5-10 iterations are needed).

When solving the equations (4.5), one calculates the matrix  $\mathbf{Z}_{kl}^{-1}$  inverse to the matrix  $\mathbf{Z}_{kl}^{-1}$  the latter one is equal to

$$Z_{\kappa \ell} = \sum_{i} W_{i} \frac{\partial y_{i}}{\partial \alpha_{\kappa}} \frac{\partial y_{i}}{\partial \alpha_{\ell}} \qquad (4.6)$$

The matrix  $Z^{-1}$  is an estimate of the error matrix of the parameters **a**. It contributes to the calculation of the estimates of the error corridors of the curves **y** 

$$S_{j}^{2}(\eta) = \sum_{\kappa=1}^{m} \sum_{\ell=1}^{m} \frac{\partial y(\eta)}{\partial \alpha_{\kappa}} \frac{\partial y(\eta)}{\partial \alpha_{\ell}} Z_{\kappa\ell}^{-\prime}$$
(4.7)

and of the estimate of the error corridor of the dispersion integrals  $\chi$ 

$$S_{\gamma}^{2}(\omega) = \sum_{k=1}^{m} \sum_{\ell=1}^{m} \frac{\partial Y(\omega)}{\partial \alpha_{k}} \frac{\partial Y(\omega)}{\partial \alpha_{\ell}} Z_{k\ell}^{-1}$$
(4.8)

The estimates of the coefficients of correlation  $\tau_{\kappa\ell}$  of the parameters

$$\chi_{\kappa\ell} = \frac{Z_{\kappa\ell}}{\sqrt{Z_{\kappa\kappa}^{-1} Z_{\ell\ell}^{-1}}} \{\frac{4.9}{4.9}\}$$

can be found trivially from the non-diagonal terms of the error matrices  $Z^{-1}$ . These coefficients reflect the pair coupling of these parameters. Besides, the correlation factors  $R^{/85/}$  which reflect the connection between the given parameter  $a_k$  with all the other ones were calculated. By definition, the correlation factor is equal to the ratio of the variance  $D_k$  of the parameter  $a_k$  to its variance  $\overline{D}_k$  in case if all the remaining parameters would be fixed (be known exactly)

$$R_{\kappa} = \frac{\mathcal{D}_{\kappa}}{\overline{\mathcal{D}}_{\kappa}} = Z_{\kappa\kappa}^{-\prime} Z_{\kappa\kappa} . \qquad (4.10)$$

Evidently,

$$R_{\kappa} \gg 1$$
.

(4.11)

Besides, for large correlations  $\chi_{\mu\ell}$  we have

 $R_{l} \rightarrow \infty$  for  $|r_{kl}| \rightarrow 1$ . (4.12)

Large correlations may arise only in the case if the regions in which the derivatives of the approxi mating function by these parameters are different from zero, are strongly overlapped. On the other hand, if for some pair of parameters the intersection of these regions is small compared with the largest of them, these parameters will be weakly coupled. Therefore, the parameters of the threshold additions,  $\Pi_{\kappa}$ , due to their local character, must be so weakly connected with the remaining parameters that one can neglect this coupling and look for them separately.

Large correlations of the parameters are extremely undesiarable from all points of view. In some cases one succeeds in reducing them artificially without changing essentially the interpolation formula, but changing only the way of the introduction the parameters. So, for instance, in the formula for  $\left(\frac{r}{2}\right)^2$  (2.15) the constant **c** was introduced which was chosen so that the parameter **a**<sub>3</sub> would not affect appreciably the width of the resonance curve. This procedure diminished hundreds times the respective correlation fac tors  $R_{a_1}$  and  $R_{a_3}$ .

The quality of the approximation was checked both by a direct comparison of the curves  $\mathcal{G}_{\ell}$  with the experimental values  $\mathfrak{G}_{\ell}$  and by a calculation of the magnitude

$$V^{2} = \frac{M_{min}}{h - m} = \frac{M_{min}}{n^{+} + h^{-} + 1 - 14} = \frac{M_{min}}{251}$$
(4.13)

(unity takes into account the normalization experiment of paper  $^{66/}$ ), which must be close to unity, if the spread of points with respect to the curves has the same nature as the errors of the points themselves. Due to the presence of the region 690-900 MEV where the proper discription of the data on  $\sigma^+$ ,  $\sigma^-$  was not yet found, the value of  $v^2$  was found impossible to make smaller than 2.4.

### 5. RESULTS

The cross sections  $6^+(E)$  and  $6^-(E)$  which are in best agreement with experiment are shown in Figs. 5-8. The solid curve refers to the last variant, its width corresponding to the error corridor S(E). The error corridor has the same meaning as the standard errors of measurements usually indicated : for each fixed energy E the true cross section lies inside the corridor of errors with a probability of 68%. It is natural that the corridor of errors has this well-defined meaning only for those regions of energies where the curves  $6^+(E)$  and  $6^-(E)$  agree with experiment. The dashed lines show the curves obtained for other values of  $\frac{1}{100}$  for one of the resonances.

Since the curves  $G^+(E)$ ,  $\overline{G}^-(E)$  for the most part may be used for the normalization of relative measurements, for which the accuracy of Figs. 5-8 is insufficient, the most probable values of the total cross sections are presented also in Table 3. In the first Column of this Table the laboratory kinetic energy of a pion E in **MeV** is written down, in the second one, the cross sections G(E)with the corridor of errors S(E). In those regions where the agreement with experiment is not reached, as well as energies greater than 3 **BeV** to which the cross section was extrapolated the corridor of errors is not given, and the values of the cross sections are taken in brackets.

Table 4 presents the data on the parameters of the interpolating function G(E). The first Column of this Table shows the value for the projection of the isotopic spin **T**. The second Column indicates the form of the function, the indices 'and' denote the belonging to the states T=3/2 and T=½ respectively. The values of the constants entering the formula are shown in Column 3;  $E_{max}$  and  $E_{res.}$  indicated for the resonant curves are, respectively, the laboratory kinetic energies of pions for which the resonant curves reach the maximum value  $5_{max}$  and the value  $2\pi \lambda^2 (2j+1)$ . Column 4 contains the values of the parameters and their standard deviations. The correlation factors R are listed in Column 5; throughout numeration introduced in the sixth Column corresponds to the numeration of the parameters in the error matrix.

In the last presented version A the value 0.9 having no physical meaning was attributed to the angular momentum j of the first resonance in  $\mathbf{6}^{\frac{1}{2}}$ . If the correct value  $j = \frac{1}{2}$  is left for this angular momentum (version B), then the agreement with experiment becomes worse, but the corresponding  $\boldsymbol{a}$ , and  $\boldsymbol{a}_2$  gain a certain physical interest. The remaining parameters of the version B are close to those of the A and, thus, are not presented.

Table 5 contains the error matrix and the correlations. Along the diagonal and above it one can see the elements of the error matrix  $Z_{\kappa\ell}^{-\prime}$ . Below the diagonal, instead of the elements  $Z_{\ell\kappa}^{-\prime} = Z_{\kappa\ell}^{-\prime}$  are written down the coefficients of correlation  $Z_{\kappa\ell}$ . Correlations less than 10% are omitted as they are of no practical importance.

# Table 3.

Interpolated values of the cross sections

| E<br>MeV                                                                                                                                                                                                                   | С+<br>mb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ± S <sub>6</sub> +<br>mb                                                                                                                                                                           | E<br>BeV                                                                                                                                                                                                                                                                                                                                | G <sup>†</sup><br>mb                                                                                                                                                                                                                                                                                                                                        | ± S <sub>6</sub> +<br>mb                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0<br>20<br>30<br>40<br>50<br>60<br>70<br>850<br>100<br>135<br>150<br>157<br>165<br>170<br>174<br>179<br>185<br>189<br>195<br>209<br>220<br>240<br>255<br>270<br>290<br>320<br>320<br>320<br>320<br>320<br>320<br>320<br>32 | 2.76<br>4.65<br>6.93<br>10.16<br>14.41<br>19.87<br>26.79<br>40.58<br>59.29<br>75.5<br>94.5<br>127.5<br>161.02<br>174.56<br>186.47<br>191.31<br>193.71<br>194.74<br>193.71<br>194.74<br>193.87<br>193.71<br>194.75<br>166.56<br>149.39<br>101.11<br>86.06<br>70.23<br>61.01<br>53.66<br>47.57<br>45.84<br>39.84<br>35.18<br>31.49<br>25.26<br>23.59<br>21.66<br>19.58<br>18.62<br>(17.88)<br>17.88<br>18.62<br>(17.88)<br>17.88<br>18.62<br>(17.88)<br>19.17<br>19.88<br>(17.88)<br>19.17<br>19.88<br>(17.88)<br>19.17<br>19.88<br>(17.88)<br>19.17<br>19.88<br>(17.88)<br>19.17<br>19.88<br>(17.88)<br>19.17<br>19.88<br>(17.88)<br>19.17<br>19.88<br>(17.88)<br>19.17<br>19.88<br>(17.88)<br>19.58<br>11.02<br>11.01<br>19.58<br>11.02<br>11.01<br>15.26<br>23.59<br>21.66<br>19.58<br>18.62<br>(18.02)<br>19.58<br>18.62<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.88<br>(19.17)<br>19.18<br>(19.17)<br>19.18<br>(19.17)<br>19.18<br>(19.17)<br>19.18<br>(19.17)<br>19.18<br>(19.17)<br>19.18<br>(19.18)<br>19.18<br>(19.18)<br>19.18<br>(19.18)<br>19.18<br>(19.18)<br>19.18<br>(19.18)<br>19.18<br>(19.18)<br>19.18<br>(19.18)<br>19.18<br>(19.18)<br>19.18<br>(19.1 | 0.73<br>0.84<br>0.97<br>1.08<br>1.1<br>1.2,<br>1.2<br>1.04<br>0.92<br>0.81<br>0.76<br>0.74<br>0.74<br>0.74<br>0.75<br>0.75<br>0.74<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75 | I<br>I.05<br>I.10<br>I.15<br>I.19<br>I.25<br>I.275<br>I.30<br>I.33<br>I.338<br>I.36<br>I.38<br>I.42<br>I.46<br>I.55<br>I.60<br>I.55<br>I.70<br>I.65<br>I.70<br>I.65<br>I.70<br>I.65<br>I.70<br>I.81<br>I.91<br>I.96<br>2.00<br>2.15<br>2.33<br>2.46<br>2.00<br>2.15<br>2.33<br>2.46<br>5.00<br>3.44<br>3.86<br>5.00<br>6.66<br>I0<br>50 | 23.24<br>25.50<br>28.58<br>(32.49<br>(35.93<br>(40.07<br>40.90<br>41.13<br>40.68<br>40.47<br>39.51<br>38.91<br>37.19<br>35.54<br>34.15<br>32.76<br>31.69<br>30.89<br>30.29<br>29.76<br>29.41<br>29.23<br>29.00<br>28.85<br>28.77<br>28.57<br>28.57<br>28.57<br>28.57<br>28.57<br>28.51<br>28.52<br>28.60<br>28.62<br>(29.42<br>(29.62<br>(29.48)<br>(29.48) | 0.18<br>0.24<br>0.33<br>0.28<br>0.26<br>0.26<br>0.27<br>0.27<br>0.29<br>0.30<br>0.30<br>0.30<br>0.29<br>0.27<br>0.25<br>0.23<br>0.21<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.10<br>0.10 |
| 202                                                                                                                                                                                                                        | ~~• ~ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.010                                                                                                                                                                                              | i '                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                      |

| E                                                                                                                                                                                                                                                                                                                                                                      | ອີ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>+</u> ა <sub>6</sub> -                                                                                                   | E                                                                                                                                                                                                                                                                                                       | 6 <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                     | ± Sg-                                                                                                                                                                                                                                |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| MeV                                                                                                                                                                                                                                                                                                                                                                    | mb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mb                                                                                                                          | Mev                                                                                                                                                                                                                                                                                                     | mb                                                                                                                                                                                                                                                                                                                                                                                 | mb                                                                                                                                                                                                                                   |  |
| 0<br>10<br>20<br>30<br>40<br>50<br>70<br>85<br>100<br>120<br>130<br>140<br>157<br>165<br>170<br>175<br>179<br>185<br>190<br>200<br>240<br>250<br>240<br>250<br>240<br>250<br>240<br>250<br>240<br>250<br>240<br>250<br>240<br>250<br>240<br>250<br>240<br>250<br>265<br>290<br>315<br>340<br>350<br>250<br>550<br>570<br>590<br>605<br>610<br>620<br>640<br>665<br>680 | (5.62)<br>(5.62)<br>(5.8)<br>(6.4)<br>(7.3)<br>(8.5)<br>12.37<br>16.76<br>22.82<br>28.12<br>34.32<br>41.36<br>48.95<br>56.23<br>60.69<br>64.52<br>65.92<br>65.92<br>65.92<br>65.92<br>65.92<br>65.92<br>65.92<br>53.17<br>48.48<br>40.48<br>33.55<br>30.75<br>29.32<br>27.67<br>26.61<br>25.20<br>25.16<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.20<br>25.42<br>25.50<br>27.67<br>26.85<br>27.89<br>29.80<br>31.61<br>36.56<br>42.23<br>45.79<br>46.87<br>(46.42)<br>(41.67)<br>(38.85)<br>(37.59) | 0.29<br>0.32<br>0.34<br>0.36<br>0.38<br>0.40<br>0.41<br>0.40<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.3 | 700<br>750<br>770<br>790<br>815<br>835<br>850<br>865<br>873<br>880<br>890<br>900<br>915<br>940<br>965<br>985<br>BeV<br>1.00<br>1.04<br>1.08<br>1.10<br>1.25<br>1.29<br>1.32<br>1.37<br>1.38<br>1.43<br>1.43<br>1.46<br>1.50<br>1.60<br>1.90<br>2.00<br>2.50<br>3.00<br>4.00<br>5.00<br>6.66<br>10<br>50 | (36.46)<br>36.25<br>37.38<br>39.46<br>43.87<br>49.09<br>53.49<br>57.14<br>58.77<br>59.47<br>59.49<br>58.44<br>55.51<br>49.63<br>44.82<br>41.94<br>40.35<br>37.64<br>36.38<br>36.05<br>36.16<br>36.76<br>37.29<br>37.31<br>37.10<br>36.57<br>36.21<br>35.10<br>34.59<br>34.01<br>32.95<br>32.32<br>31.67<br>31.21<br>(31.17)<br>(31.18)<br>(31.18)<br>(31.15)<br>(30.98)<br>(29.84) | 0.44<br>0.40<br>0.45<br>0.61<br>0.69<br>0.65<br>0.52<br>0.46<br>0.43<br>0.42<br>0.46<br>0.55<br>0.67<br>0.65<br>0.59<br>0.59<br>0.59<br>0.26<br>0.23<br>0.19<br>0.18<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17 |  |

| Table | 4 |
|-------|---|
|-------|---|

Version A

| T | <u>I</u>                  | 2 |                                         | 3                     |                        | t |                                        | 5   | 67              |
|---|---------------------------|---|-----------------------------------------|-----------------------|------------------------|---|----------------------------------------|-----|-----------------|
|   | T                         | F | Addition                                | al Infor              | nation                 |   | parameters                             | R   | N۵              |
|   |                           | L | 6 <sup>+</sup> (0)=2.                   | 76 <u>+</u> 0,5       | 3 mb                   |   | a =0.17 <u>+</u> 0.20                  | 29  | I               |
|   | n i sini<br>Manazari<br>T |   | j=3/2                                   | Emax                  | =179 MeV               |   | a <sub>1</sub> =1.1342 <u>+</u> 0.0024 | 2   | 2               |
|   |                           | В | 1=I                                     | Eres                  | =195.4 MeV             |   | a <sub>2</sub> =0.0706 <u>+</u> 0.0018 | 6   | 4               |
|   | •                         | 4 | c=1.249                                 | 6 <sub>max</sub>      | =192.7 mb              |   | a <sub>3</sub> =0.947 <u>+</u> 0.070   | 7   | 3               |
|   | 2                         |   | j=3/2                                   | Emax                  | =1.29 BeV              |   | a <sub>1</sub> =5.901 <u>+</u> 0.018   | I.I | 5               |
|   |                           | В | 1=2                                     | Eres                  | =I.3I BeV              |   | a <sub>2</sub> =0.229 <u>+</u> 0.019   | 3   | 6               |
|   | 1                         | 2 | o=4.36                                  | 6<br>max              | =19.5 mb               |   | <sup>ຍ</sup> ງ=0                       |     |                 |
|   |                           | A | 6 <sup>+</sup> (∞)=29                   | •2 mb                 | 2 o <sup>≖I</sup> •497 |   | a =0.1255 <u>+</u> 0.0090              | 20  | 7               |
| _ |                           | L | 5 <sup>2</sup> (0)=7.                   | 0 <b>5<u>+</u>1.0</b> | mb                     |   | a = 0.42 + 0.13                        | 8   | 8               |
|   |                           |   | <b>;=0.9</b>                            | E <sub>max</sub>      | =587 MeV               |   | a <sub>I</sub> =3.082 <u>+</u> 0.021   | I.2 | 9               |
|   |                           | в | (l=I)                                   | Eres                  | =593 MeV               | I | a <sub>2</sub> =0.152 <u>+</u> 0.022   | 3   | IO              |
|   | -                         |   | o=3.23                                  | 6 <sub>max</sub>      | =34.4 mb               |   | a <sub>3</sub> =0                      |     | +               |
|   | 호                         |   | <b>j=</b> 5/2                           | E <sub>max</sub>      | =886 MeV               |   | a <sub>1</sub> =4.3279+0.0084          | I.I | II              |
|   |                           | В | 1=2(3)                                  | Eres                  | =889 MeV               |   | a <sub>2</sub> =0.0573 <u>+</u> 0.0057 | 2.6 | 12              |
| ÷ |                           |   | c=3.8                                   | ර <sub>max</sub>      | =45.5 mb               |   | a <sub>3</sub> =0                      |     | <b>•</b> •••••• |
|   |                           | A | ຣ <sup>%</sup> (∞)=29                   | •2 mb                 | h <sub>o</sub> =I.497  |   | a =1.320 <u>+</u> 0.093                | 5.5 | 13              |
|   |                           |   | وہ بہت پند اگر دی ہیں ہیں ہیں ہیں جب جن |                       |                        |   | N =0.9988 <u>+</u> 0.0064              | 4   | 14              |

Version B

|          |   | j=1/2      | E <sub>max</sub> =585 MeV | a <sub>I</sub> ≈3.112 <u>+</u> C.043 I.9 |
|----------|---|------------|---------------------------|------------------------------------------|
| Ŧ        | В | <b>l=I</b> | E <sub>res</sub> =600 MeV | a <sub>2</sub> =0,325 <u>+</u> 0.071 5   |
| <b>۲</b> |   | c=3.23     | 6 max=24.4 mb             | a <sub>3</sub> =0                        |

|    |                  |                  |                   |                  |                   | . 1               | <b>Table</b> 5            | e e vener de la company | en de la colora.<br>Na     |                  | _                  | <u>_</u>          |                   |                   |
|----|------------------|------------------|-------------------|------------------|-------------------|-------------------|---------------------------|-------------------------|----------------------------|------------------|--------------------|-------------------|-------------------|-------------------|
|    |                  |                  |                   |                  |                   |                   |                           |                         | n an an<br>Talaiste an tal | ( 42             | <sup>-1</sup> ≃0.4 | $2 \cdot 10^{-1}$ | ;)                |                   |
|    | <b>I</b>         | 2                | 3                 | 4                | 5                 | 66                | 7                         | 8                       | 9                          |                  | II                 | 12                | _13               | <b>I</b> 4        |
| I  | 42 <sup>-1</sup> | 78 <sup>-4</sup> | -66 <sup>-2</sup> | 20 <sup>-3</sup> | 29 <b>-</b> 3     | -46 <sup>-3</sup> | 16 <sup>-2</sup>          | -53 <sup>-2</sup>       | -II <sup>-3</sup>          | 46-3             | -14-4              | -97-4             | -54 <sup>-2</sup> | 28 <sup>-3</sup>  |
| 2  | 16%              | 58 <b>-</b> 5    | 29-4              | 26 <sup>-5</sup> | 83 <sup>-6</sup>  | 10-5              | 24 <sup>—5</sup>          | 15-4                    | -20 <sup>6</sup>           | 75 <sup>→5</sup> | 12 <b>-6</b>       | -50 <sup>-6</sup> | -67-4             | -88 <sup>-6</sup> |
| 3  | -46%             | I8%              | 50-2              | 18-4             | -I2 <sup>-3</sup> | -24-3             | <b>-</b> 98 <sup>-4</sup> | 26 <b></b> 2            | 92 <sup>-5</sup>           | -94-4            | 39 <sup>-5</sup>   | 13-4              | 34 <sup>-2</sup>  | 23 <sup>-4</sup>  |
| 4  | 52%              | 58%              | I4%               | 33-5             | 15 <sup>-5</sup>  | -13 <sup>-5</sup> | 74 <sup>-5</sup>          | 69 <sup>-4</sup>        | 27-7                       | 80 <sup>-5</sup> | 16 <sup>-6</sup>   | -40 <sup>-6</sup> | -28-4             | 34 <sup>-5</sup>  |
| 5  |                  |                  |                   |                  | 33-3              | -66-4             | 60 <sup>-5</sup>          | -32-4                   | -18 <sup>-5</sup>          | 56 <sup>-5</sup> | 34 <sup>-5</sup>   | 26-5              | -10 <sup>-3</sup> | 12 <sup>-5</sup>  |
| 6  | <b>-</b> I2%     |                  | -18%              |                  | -19%              | 38 <b>-</b> 3     | -83-4                     | 11-3                    | 30 <sup>-4</sup>           | 33-4             | -96-5              | -19 <sup>-5</sup> | -23 <sup>-3</sup> | -62 <sup>-5</sup> |
| 7  |                  | 11%              | -15%              | 45%              |                   | -48%              | 80-4                      | -21-3                   | -74 <sup>-5</sup>          | 44 <sup>-5</sup> | 12 <sup>-7</sup>   | -38 <sup>-5</sup> | -66-4             | 12-4              |
| 8  | -20%             |                  | 28%               | 29%              | 1                 |                   | -18%                      | 17 <sup>-1</sup>        | 12 <b>-</b> 3              | 49-3             | 34-4               | 52-4              | -55 <sup>-2</sup> | 55 <sup>-3</sup>  |
| 9  |                  |                  | 2                 |                  |                   |                   |                           |                         | 46-3                       | 12-3             | 18-4               | -46-4             | 59 <b>-</b> 4     | 16 <sup>-5</sup>  |
| 10 | I0%              | I4%              |                   | 20%              |                   |                   |                           | 17%                     | 25%                        | 49-3             | 19-4               | -87-4             | -63 <sup>-3</sup> | 32-4              |
| II |                  |                  |                   |                  |                   |                   |                           |                         | 10%                        | 10%              | 70-4               | 4I <sup>-5</sup>  | -57 <sup>-5</sup> | 12-5              |
| 12 |                  |                  |                   | 0                | •<br>•<br>•       |                   |                           |                         | -38%                       | -64%             |                    | 32-4              | 89 <sup>—4</sup>  | -18 <sup>-7</sup> |
| 13 | 29%              | -30%             | <b>52%</b>        | -16%             |                   | -13%              |                           | -46%                    |                            | -30%             |                    | 17%               | 87-2              | 50-4              |
| I4 | 21%              |                  |                   | 29%              |                   |                   | 21%                       | 66%                     |                            | 23%              |                    |                   |                   | 41-4              |



Fig. 5. Interpolated total cross section for positive pion scattering on protons. The thickness of the curve corresponds to the corridor of errors.



. .



Fig. 7. Interpolated total cross section for negative pion scattering on protons. The thickness of the curve corresponds to the corridor of errors.



Fig. 8. Interpolated total cross section for negative pion scattering on protons. The thickness of the curve corresponds to the corridor of errors.



Fig. 9.The break in the total cross section for positive pion scattering on protons in the range of 600-900 MeV. The dashed lines show the corridor of errors of the interpolating curve.

## 6. DISPERSION INTEGRALS

The analytic expressions for  $5^+(\varepsilon)$  obtained above may be used for checking the dispersion relations for the forward  $\pi - \beta$  scattering.

Let us write them down as

$$D_{\pm}^{\beta}(\omega) = \pi_{\pm}(\omega) + F_{1}^{\pm}(\omega) + F_{2}^{\pm}(\omega)$$
(7.1)

where

$$\pi_{\pm}(\omega) = \frac{i}{2} \left(\frac{\kappa}{\kappa_{g}}\right)_{\omega=1} \cdot \frac{\kappa_{g}}{\kappa} \left\{ (\omega+i) D_{\pm}^{g}(i) + (\omega-i) \left[ -D_{\pm}^{g}(i) \right] \right\} + \frac{\kappa_{ke}}{\omega \neq \frac{1}{2m}} \frac{f^{2}}{f^{2}}, \qquad (7.2)$$

$$F_{1}^{\pm}(\omega) = \frac{KK_{6}}{4\pi^{2}} \int \frac{6^{\pm}(\omega')}{\omega' - \omega} \frac{d\omega'}{\kappa'} \quad ; \quad F_{2}^{\pm}(\omega) = \frac{KK_{6}}{4\pi^{2}} \int \frac{6^{\pm}(\omega')}{\omega' + \omega} \frac{d\omega'}{\kappa'} \quad (7.3)$$

Here K stands for the momentum of a pion in the laboratory system,  $\omega = \sqrt{\kappa^2 + 1}$ , M is the mass of the nucleon in the units of  $m_{\tau}$ , the index "b" denotes that the value is considered in the centre-of-mass system.

The function  $\pi_{\pm}(\omega)$  depends upon the couplifig constant  $f^2$  and the subtraction parameters  $D_{\pm}^{\ell}(\tau)$  which are determined by the scattering lengths

$$D_{+}^{\beta}(t) = a_{3}, D_{-}^{\beta}(t) = \frac{2}{3}\alpha_{1} + \frac{1}{3}\alpha_{3}.$$
 (7.4)

Formula (7.8) contains the principal value of the integral  $F_{i}(\omega)$  and the regular integral  $F_{i}(\omega)$ . The calculation of them was made numerically by the same method which can be elucidated on the computation of  $F_{i}(\omega)$ . The integrand for  $F_{i}(\omega)$  contains the alternating function 1 with a pole at the point  $\omega'=\omega$ . The integrals over the intervals (0,  $\omega$ ) and  $(\omega, \omega)$  entering  $F_{i}(\omega)$  have large magnitude and opposite signs. Therefore the magnitude  $F_{i}(\omega)$  is determined by the difference of large numbers. To avoid the loss of accuracy during the computation,  $F_{i}(\omega)$  is presented as

$$\frac{4\pi^2}{\kappa\kappa_g} F_i^{\pm}(\omega) = \int_{\omega'-\omega}^{\infty} \frac{f(\omega')}{\omega'-\omega} d\omega' + \int_{\omega'-\omega}^{\omega'-\omega'} \frac{f(\omega') - f(2\omega - \omega')}{\omega'-\omega} d\omega', \quad (7.5)$$

where

$$f(\omega') = \frac{6^{\pm}(\omega')}{\kappa'}.$$

The first of these integrals is regular, the second one has an uncertainty of the type  $\frac{\sigma}{\sigma}$  at the point  $\omega = \omega'$ . In its computation the integration was performed up to the point  $\omega = \varepsilon$ , and the quantity  $f(\omega + \varepsilon) - f(\omega - \varepsilon)$  dependent upon the derivative of the function  $f(\omega)$  at the point  $\omega$  was added. It can be seen here that the principal value integral is sensitive to the form of the curve  $\frac{86}{2}$ .

Since the error matrix is known for the parameters entering formula (7.1) the calculation of the rootmean-square error of the functions  $f_1(\omega)$  and  $f_2(\omega)$  is not difficult and may be carried out by formulae (4.8). The derivatives entering (4.8) were calculated by analogy to  $F(\omega)$  themselves.

The values of the functions  $F_{2}^{\pm}(\omega)$ ,  $F_{2}^{\pm}(\omega)$ , D ( $\omega$ ) are given in Tables 6,7<sup>\*</sup>. The functions  $F_{2}^{\pm}$  are changing monotonously with energy and weakly depend upon the details of the behaviour of  $\sigma^{\pm}(\omega)$ . The function  $F_{1}^{\pm}(\omega)$  in contrast to  $F_{2}^{\pm}(\omega)$ , undergoes sharp changes in the region of the maxima of the total cross sections what is most clearly seen on the example of  $F_{1}^{\pm}(\omega)$  in the region of the resonance  $P_{1}$ ,  $T = \frac{2}{2}$ . The sharp decrease of  $F_{1}^{\pm}(\omega)$  completely determines the behaviour of  $D_{2}^{b}(\omega)$  in the region  $2 \leq \omega \leq 2.5$ .

In earlier investigations similar results were obtained for  $F(\omega)$ . However, the steepness in the region of the resonance changed considerably. This is due to the fact that the cross section **6** was

\* The latter four Columns of Table 7 exhibit the integrals of  $6^{\prime\prime}$  and their errors (see (2.8).

known insufficiently accurately, and therefore, the form of the maximum at  $\sim 200 \text{ MeV}$  was chosen in a different way. This arbitrariness strongly affected the final expression. The investigations performed by B.Pontecorvd's group filled up the gap in our knowledge about  $6''^2$ .

Within the framework of the accepted hypothesis about the analytical form of  $\sigma^{-}(\omega)$  the best curve has been found, i.e. the arbitrariness in the choice of the form of  $\mathbf{6}^{-}(\omega)$  has been removed.

The use of new experimental data, as well as an accurate calculation of  $F_{1,2}^{\pm}(\omega)$  leads, as is seen from Figs. 10, 11, to an agreement between the calculated values of  $D^b(\omega)$  and the experimental ones. The difference between the experimental points for  $D(\omega)$  and the curve is of the same order as the corrections to the dispersion relations (for mesoatoms etc.) which should be accurately introduced before discussing the problem whether or not causality is kept to. A better agreement can be hardly expected at the given stage of comparison. The assumption about the constancy and the magnitude of the cross sections at infinity affects slightly the behaviour of.  $D(\omega)$  at low energies what was established by direct calculation.

The discussion of all the consequences which can be derived from the results set forth in this paper will be given in another paper.

The authors take the opportunity of thanking I.M.Silin for participating in developing the method and the program of the analysis and for the calculations, as well as Professor J.A.Smorodinski and the Corresponding Member of the USSR Academy of Sciences B.M.Pontecorvo for constant interest in this research.

> Received by Publishing Department on August 12, 1960

| ി | Га | bl | ė | 6 |
|---|----|----|---|---|
|   |    |    |   |   |

|      |                         | و جاسب کردن ایرون جانب کردن جری کردن کردن کردن کردن کردن کردن کردن کردن |                                         | وروار المراجعة والمراجعة المراجعة المراجعة |                               |
|------|-------------------------|-------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------|-------------------------------|
| ω    | $D_{+}^{\beta}(\omega)$ | D_ <sup>6</sup> (ω)                                                     | ω                                       | $D^{\beta}_{+}(\omega)$                    | $D^{\ell}_{-}(\omega)$        |
| 1    | -0.105                  | 0.07500                                                                 | 2.25                                    | 0.1373                                     | 0.1064                        |
| 1.05 | -0.09155                |                                                                         | 2.30                                    | -0.0092                                    | 0.06983                       |
| 1.10 | -0.05211                | 0.07656                                                                 | 2.35                                    |                                            |                               |
| 1.15 | -0.02357                | 0.07943                                                                 | 2.40                                    | -0.2411                                    | +0.00097                      |
| 1.20 | 0.006420                | 0.08358                                                                 | 2.45                                    | -0.3411                                    | -0.02779                      |
| 1.25 | 0.03790                 | 0.08893                                                                 | 2.50                                    | 0.4257                                     | -0.05158                      |
| 1.30 | 0.07093                 | 0.09548                                                                 | 2.55                                    | 0.4975                                     | -0.07032                      |
| 1.35 | 0.1056                  | 0.1031                                                                  | 2.60                                    | 0.5542                                     | -0.08430                      |
| 1.40 | 0.1418                  | 0.1119                                                                  | 2.65                                    | 0.5984                                     | -0.09383                      |
| 1.45 | 0.1796                  | 0.1216                                                                  | 2.70                                    | 0.6318                                     | -0.09980                      |
| 1.50 | 0.2189                  | 0.1324                                                                  | 2.75                                    | 0.6550                                     | -0.1025                       |
| 1.55 | 0.2596                  | 0.1440                                                                  | 2.80                                    | 0.6728                                     | -0.01023                      |
| 1.60 | 0.3012                  | 0.1563                                                                  | 2.85                                    | 0.6834                                     | -0.09957                      |
| 1.65 | 0.3429                  | 0.1691                                                                  | 2.90                                    | 0.6899                                     | -0.09807                      |
| 1.70 | 0.3840                  | 0.1821                                                                  | 2.95                                    | 0.6923                                     | -0.09373                      |
| 1.75 | 0.4231                  | 0.1948                                                                  | 3.00                                    | 0.6916                                     | -0.08856                      |
| 1.80 | 0.4581                  | 0.2064                                                                  | 3.20                                    | 0.6710                                     | -0.06231                      |
| 1.85 | 0.4866                  | 0.2162                                                                  | 3.40                                    | 0.6365                                     | -0.03286                      |
| 1.90 | 0.5051                  | 0.2230                                                                  | 3.60                                    | 0.5993                                     | -0.002780                     |
| 1.95 | 0.5099                  | 0.2256                                                                  | 3.80                                    | 0.5602                                     | +0.02797                      |
| 2.00 | 0.4972                  | 0.2226                                                                  | 4.00                                    | 0.5235                                     | +0.06036                      |
| 2.05 | 0.4633                  | 0.2130                                                                  | 4.20                                    | 0.4887                                     | +0.09571                      |
| 2.10 | 0.4061                  | 0.1959                                                                  |                                         |                                            | n ter di se <u>n</u> ti di se |
| 2.15 | 0.3259                  | 0.1716                                                                  |                                         |                                            |                               |
| 2.20 | 0.2259                  | 0.1412                                                                  | a a sa |                                            |                               |

| Table | 7 |
|-------|---|
|-------|---|

.,+

| <b>د</b> ع ا | $F_{z}^{+}$     | $\Delta F_{z}^{+}$ | F, *    | $\Delta F_1^{\dagger}$ | F.       | $\Delta F_{2}^{-}$ | F,       | ΔF, -    | $F_{q}^{i_{q}}$ | $\Delta F_2^{\prime \prime 2}$ | $F_{1}^{-1/2}$ | 1 F, 1/2 |
|--------------|-----------------|--------------------|---------|------------------------|----------|--------------------|----------|----------|-----------------|--------------------------------|----------------|----------|
| 1.05         |                 |                    | 0,00019 | 0,00020                | 0,002591 | 0,000014           | 0,004084 | 0,000094 | 0,001614        | 0,000026                       | -0,00012       | 0,00016  |
| 1.10         | 0,009128        | 0,000059           | 0,02721 | 0,00042                | 0,005213 | 0,000029           | 0,00900  | 0,00017  | 0,003256        | 0,000052                       | -0,00010       | 0,00028  |
| 1.15         | 0,01375         | 0,000089           | 0,04404 | 0,00063                | 0,007866 | 0,000043           | 0,01472  | 0,00024  | 0,004924        | 0,000078                       | +0,00006       | 0,00038  |
| 1.20         | 0,01841         | 0,00012            | 0,06293 | 0,00082                | 0,01055  | 0,000058           | 0,02123  | 0,00029  | 0,00662         | 0,00010                        | 0,00038        | 0,00045  |
| 1.25         | 0,02310         | 0,00015            | 0,08385 | 0,00098                | 0,01326  | 0,000073           | 0,02852  | 0,00032  | 0,00833         | 0,00013                        | 0,00086        | 0,00049  |
| 1.30         | 0,02783         | 0,00018            | 0,1068  | 0,0011                 | 0,01599  | 0,000087           | 0,03660  | 0,00035  | 0,01007         | 0,00016                        | 0,00149        | 0,00051  |
| 1.35         | 0,03258         | 0,00021            | 0,1318  | 0,0012                 | 0,01875  | 0,00010            | 0,04545  | 0,00037  | 0,01183         | 0,00016                        | 0,00228        | 0,00052  |
| 1.40         | 0,03735         | 0,00024            | 0,1587  | 0,0013                 | 0,02153  | 0,00012            | 0,05507  | 0,00040  | 0,01362         | 0,00021                        | 0,00323        | 0,00051  |
| 1.45         | 0,04214         | 0,00027            | 0,1876  | 0,0015                 | 0,02432  | 0,00013            | 0,06543  | 0,00044  | 0,01542         | 0,00023                        | 0,00435        | 0,00048  |
| 1.50         | 0,04695         | 0,00030            | 0,2182  | 0,0017                 | 0,02715  | 0,00015            | 0,07652  | 0,00049  | 0,01724         | 0,00026                        | 0,00563        | 0,00045  |
| 1.55         | 0,05178         | 0,00032            | 0,2505  | 0,0019                 | 0,02998  | 0,00016            | 0,08823  | 0,00057  | 0,01908         | 0,00028                        | 0,00709        | 0,00041  |
| 1.60         | 0,05662         | 0,00036            | 0,2839  | 0,0022                 | 0,03283  | 0,00018            | 0,1004   | 0,00066  | 0,02094         | 0,00031                        | 0,00873        | 0,00038  |
| 1.65         | 0,06148         | 0,00038            | 0,3177  | 0,0026                 | 0,03571  | 0,00019            | 0,1129   | 0,00080  | 0,02282         | 0,00034                        | 0,01055        | 0,00036  |
| 1.70         | 0,06635         | 0,00041            | 0,3511  | 0,0030                 | 0,03859  | 0,00021            | 0,1254   | 0,00093  | 0,02471         | 0,00036                        | 0,01255        | 0,00037  |
| 1.75         | 0,07123         | 0,00044            | 0,3826  | 0,0034                 | 0,04149  | 0,00022            | 0,1374   | 0,00106  | 0,02662         | 0,00039                        | 0,01476        | 0,00042  |
| 1.80         | 0,07612         | 0,00047            | 0,4103  | 0,0038                 | 0,04441  | 0,00023            | 0,1482   | 0,0012   | 0,02855         | 0,00042                        | 0,01717        | 0,00045  |
| 1.85         | 0,08103         | 0,00050            | 0,4315  | 0,0043                 | 0,04733  | 0,00025            | 0,1570   | 0,0013   | 0,03049         | 0,00044                        | 0,01980        | 0,00058  |
| 1.90         | 0,08593         | 0,00053            | 0,4429  | 0,0047                 | 0,05027  | 0,00026            | 0,1627   | 0,0015   | 0,03244         | 0,00047                        | 0,02266        | 0,00070  |
| 1.95         | 0,09085         | 0,00056            | 0,4408  | 0,0051                 | 0,05322  | 0,00028            | 0,1641   | 0,0016   | 0,03441 .       | 0,00050                        | 0,02577        | 0,00084  |
| 2.00         | 0,09577         | 0,00059            | 0,4212  | 0,0056                 | 0,05618  | 0,00029            | 0,1598   | 0,0018   | 0,03639         | 0,00053                        | 0,02915        | 0,00098  |
| 2.05         | 0,1007          | 0,00062            | 0,3805  | 0,0062                 | 0,05915  | 0,00031            | 0,1487   | 0,0020   | 0,03838         | 0,00055                        | 0,03279        | 0,00114  |
| 2.10         | 0,1056          | 0,00064            | 0,3167  | 0,0067                 | 0,06213  | 0,00032            | 0,1301   | 0,0021   | 0,04038         | 0 <b>,0</b> 0058               | 0,03639        | 0,00131  |
| 2.15         | .0,1106         | 0,00068            | 0,2300  | 0,0070                 | 0,06512  | 0,00034            | 0,1041   | 0,0023   | 0,04240         | 0,00061                        | 0,0412         | 0,0015   |
| 2.20         | 0,1155          | 0,00071            | 0,1234  | 0,0071                 | 0,06811  | 0,00035            | 0,0719   | 0,0023   | 0,04442         | 0,00063                        | 0,0462         | 0,0017   |
| 2.25         | 0,1204          | 0,00073            | 0,0286  | 0,0070                 | 0,07112  | 0,00037            | 0,0354   | 0,0023   | 0,04646         | 0,00066                        | 0,0517         | 0,0019   |
| 2.30         | 0,1253          | 0,00076            | -0,1242 | 0,0067                 | 0,07413  | 0,00038            | 0,0030   | 0,0022   | 0,04851         | 0,00068                        | 0,0575         | 0,0022   |
| 2.35         | 0,1303          | 0,00079            | -0,2501 | 0,0065                 |          |                    |          |          | 0,05057         | 0,00071                        | 0,0638         | 0,0024   |
| 2.40         | 0,1352          | 0,00082            | -0,3684 | 0,0063                 | 0,08016  | 0,00041            | -0,0759  | 0,0021   | 0,05264         | 0,00073                        | 0,0704         | 0,0027   |
| 2.45         | 0,1402          | 0,00084            | -0,4745 | 0,0063                 | 0,08319  | 0,00043            | -0,1068  | 0,0021   | 0,05472         | 0,00076                        | 0,0771         | 0,0030   |
| 2.50         | 0,1451          | 0,00088            | -0,5661 | 0,0064                 | 0,08623  | 0,00044            | -0,1327  | 0,0021   | 0,05680         | 0,00079                        | 0,0840         | 0,0032   |
| 2.55         | 0,1500          | 0,00090            | -0,6428 | 0,0065                 | 0,08927  | 0,00046            | -0,1536  | 0,0022   | 0,05890         | 0,00082                        | 0,0910         | 0,0035   |
| 2.60         | 0.1549          | 0,00093            | -0,7054 | 0,0065                 | 0,09231  | 0,00047            | -0,1698  | 0,0022   | 0,06100         | 0,00084                        | 0,0981         | 0,0037   |
| 2.65         | 0 <b>,</b> 1598 | 0,00096            | -0,7554 | 0,0063                 | 0,09535  | 0,00049            | -0,1816  | 0,0023   | 0,06311         | 0,00087                        | 0,1052         | 0,0039   |
| 2.70         | 0,1647          | 0,00099            | -0,7945 | 0,0062                 | 0,09840  | 0,00050            | -0,1899  | 0,0024   | 0,06522         | 0,00089                        | 0,1124         | 0,0041   |
| 2.75         | 0,1697          | 0,00101            | -0,8244 | 0,0059                 | 0,1014   | 0,00051            | -0,1951  | 0,0024   | 0,06735         | 0,00092                        | 0,1196         | 0,0043   |
|              |                 |                    |         |                        |          |                    |          |          |                 |                                |                |          |

| ω    | $F_2^+$ | $\Delta F_2^+$ | F, +    | Δ F, † | F2 AF       | z F <sub>1</sub>     | ΔF, -               | F2 1/2                    | 1 F2 1/2 | F, 1/2 0     | F-1/2 |
|------|---------|----------------|---------|--------|-------------|----------------------|---------------------|---------------------------|----------|--------------|-------|
| 2.80 | 0,1746  | 0,00104        | -0,8469 | 0,0057 | 0,1045 0,0  | 0053 -0,1979         | 0,0025              | 0,06948                   | 0,00095  | 0,1266 0,0   | 045   |
| 2.85 | 0,1795  | 0,00107        | -0,8634 | 0,0054 | 0,1076 .0,0 | 0054 -0,1988         | 0,0026              | 0,07162                   | 0,00097  | 0,1336 0,0   | 046   |
| 2.90 | 0,1844  | 0,0011         | -0,8752 | 0,0052 | 0,1106 0,0  | 0056 -0,1980         | <b>0,</b> 0027      | 0,07376                   | 0,00100  | 0,1405 0,0   | 047   |
| 2.95 | 0,1893  | 0,0011         | -0,8831 | 0,0050 | 0,1137 0,0  | 0057 -0,1962         | 0,0027              | 0 <b>,</b> 07591          | 0,00102  | 0,1471 0,0   | 048   |
| 3.00 | 0,1941  | 0;0011         | -0,8880 | 0,0048 | 0,1168 0,0  | 0059 -0,1935         | 0,0028              | 0 <b>,</b> 0 <b>7</b> 807 | 0,00105  | 0,1537 0,0   | 049   |
| 3.20 | 0,2136  | 0,0013         | -0,8889 | 0,0046 | 0,1290 0,0  | 0065 -0,1778         | 0,0030              | 0,0867                    | 0,0011   | 0,1778 0,0   | 050   |
| 3.40 | 0,2329  | 0,0014         | -0,8755 | 0,0048 | 0,1413 0,00 | 0070 -0,1592         | 0,0032              | 0,0955                    | 0,0012   | 0,1989 0,0   | 052   |
| 3.50 | 0,2427  | 0,0014         | -0,8669 | 0,0049 | 0,1475 0,0  | 0073 -0,1497         | 0,0033              | 0,0909                    | 0,0013   | 0,2088 0,0   | 055   |
| 3.60 | 0,2521  | 0,0015         | -0,8579 | 0,0051 | 0,1536 0,00 | 0076 -0,1403         | 0,0036              | 0,1043                    | 0,0014   | 0,2184 0,0   | 059   |
| 3.70 | 0,2617  | 0,0015         | -0,8488 | 0,0052 | 0,1597 0,0  | 0079 -0,1308         | 0,0039              | 0,1087                    | 0,0014   | 0,2282 0,0   | 065   |
| 3.80 | 0,2712  | 0,0016         | -0,8399 | 0,0054 | 0,1659 0,0  | 0081 -0,1210         | 0,0042              | 0,1132                    | 0,0014   | 0,2384 0,0   | 070   |
| 3.90 | 0,2807  | 0,0016         | -0,8313 | 0,0055 | 0,1720 0,0  | 0084 -0,1109         | 0,0046              | 0,1176                    | 0,0015   | 0,2494 0,0   | 077   |
| 4.00 | 0,2901  | 0,0017         | -0,8230 | 0,0057 | 0,1781 0,0  | 0087 -0,1002         | 0,0050              | 0,1221                    | 0,0015   | 0,2613 0,0   | 083   |
| 4.10 | 0,2996  | 0,0017         | -0,8151 | 0,0058 | 0,1842 0,00 | 0090 -0,0888         | 0,0055              | 0,1265                    | 0,0016   | 0,2744 0,0   | 090   |
| 4.20 | 0,3089  | 0,0018         | -0,8076 | 0,0060 | 0,1903 0,0  | 0092 -0,0766         | 0,0058 <sup>@</sup> | 0,1310                    | 0,0016   | 0,2889 0,0   | 095   |
| 4.30 | 0,3183  | 0,0018         | -0,8005 | 0,0061 | 0,1964 0,0  | 0095 -0,0638         | 0,0060              | 0,1355                    | 0,0017   | 0,3046 0,0   | 098   |
| 4.40 | 0,3275  | 0,0019         | -0,7938 | 0,0062 | 0,2025 0,0  | 0098 -0,0505         | 0,0060              | 0,1400                    | 0,0017   | 0,3212 0,0   | 098   |
| 4.50 | 0,3368  | 0,0019         | -0,7875 | 0,0063 | 0,2086 0,0  | 010 -0,0374          | 0,0056              | 0,1445                    | 0,0018   | 0,3377 0,0   | 093   |
| 4.60 | 0,3460  | 0,0020         | -0,7815 | 0,0064 | 0,2150 0,0  | 010 -0,0258          | 0,0046              | 0,1490                    | 0,0018   | 0,3521 0,0   | 080   |
| 4.70 | 0,3552  | 0,0020         | -0,7759 | 0,0065 | 0,2208 0,0  | 011 -0,0181          | 0,0036              | 0,1535                    | 0,0019   | 0,3607 0,0   | 062   |
| 4.80 | 0,3643  | 0,0021         | -0,7705 | 0,0066 | 0,2268 0,0  | 011 -0,0179          | 0,0038              | 0,1580                    | 0,0019   | 0,3584 0,0   | 063   |
| 4.90 | 0,3734  | 0,0021         | -0,7657 | 0,0067 | 0,2328 0,0  | 011 -0,0294          | 0,0068              | 0,1626                    | 0,0020   | 0,3389 0,0   | 10    |
| 5.00 | 0,3825  | 0,0021         | -0,7609 | 0,0068 | 0,2389 0,0  | 011 -0,055           | 0,011               | 0,1671                    | 0,0020   | 0,298 0,0    | 16    |
| 5.10 | 0,3915  | 0,0022         | -0,7563 | 0,0069 | 0,2449 0,0  | <b>012</b> -0,095    | 0,014               | 0 <b>,1</b> 716           | 0,0021   | 0,236 0,0    | 22    |
| 5.20 | 0,4006  | 0,0022         | -0,7519 | 0,0070 | 0,2509 0,00 | 012 -0,141           | 0,015               | 0,1761                    | 0,0021   | 0,165 0,0    | 24    |
| 5.30 | 0,4096  | 0,0023         | -0,7477 | 0,0071 | 0,2569 0,00 | 012 -0,185           | 0,015               | 0,1806                    | -0,0022  | 0,096 0,0    | 22    |
| 5.40 |         |                |         |        |             | And And Yes          |                     |                           |          |              |       |
| 5.50 | 0,4274  | 0,0024         | -0,7401 | 0,0072 | 0,2689 0,00 | 012 -0,245           | 0,010               | 0,1897                    | 0,0022   | 0,002 0,0    | 16    |
| 5.60 |         |                |         |        | 0,2749 0,00 | <b>-0,</b> 2598      | 0,0077              | 0,1942                    | 0,0023   | -0,021 0,0   | 12    |
| 5.70 | 0,4451  | 0,0025         | -0,7333 | 0,0073 | 0,2808 0,00 | <b>-0,</b> 2660      | 0,0057              | 0,1987                    | 0,0023   | -0,0324 0,0  | 10    |
| 5.80 | 0,4539  | 0,0025         | -0,7301 | 0,0073 | 0,2868 0,00 | 013 -0,2661          | 0,0049              | 0,2032                    | 0,0024   | -0,0342 0,0  | 084   |
| 5.90 | 0,4626  | 0,0026 *       | -0,7271 | 0,0073 | 0,2927 0,00 | 014 –0 <b>,</b> 2619 | 0,0051              | 0,2077                    | 0,0024   | -0,0292 0,0  | 086   |
| 6.00 | 0,4713  | 0,0026         | -0,7243 | 0,0074 | 0,2986 0,00 | <b>-0,</b> 2543      | 0,0059              | 0,2123                    | 0,0025   | -0,0193 0,00 | 097   |
| 6.10 | 0,4799  | 0,0026         | -0,7215 | 0,0074 | 0,3045 0,00 | 014 -0,2441          | 0,0068              | 0,2168                    | 0,0025   | +0,0054 0,0  | 11    |
| 6.20 | 0,4886  | 0,0027         | -0,7188 | 0,0074 | 0,3104 0,00 | -0,2318              | 0,0077              | 0,2213                    | 0,0026   | +0,012 0,0   | 12    |
| 6.30 | 0,4971  | 0,0027         | -0,7162 | 0,0074 | 0,3162 0,00 | -0,2176              | 0,0085              | 0,2256                    | 0,0026   | +0,032 0,0   | 1.3   |

Table T

|      |                 |                        |        |        | · ·    | 1 A A   |        |        |         |         |                |
|------|-----------------|------------------------|--------|--------|--------|---------|--------|--------|---------|---------|----------------|
| ω    | $F_2^{\dagger}$ | $\Delta F_2^+ = F_1^+$ | Δ F, * | F.     | △F2    | F, -    | ΔF.    | F2 1/2 | 4F2 1/2 | F. 12   | 1 F, "2        |
| 6.40 | 0,5057          | 0,0028 -0,7137         | 0,0074 | 0,3221 | 0,0015 | -0,2018 | 0,0091 | 0,2303 | 0,0026  | 0,054   | 0,014          |
| 6,50 | 0,5142          | 0,0028 -0,7112         | 0,0074 | 0,3279 | 0,0015 | -0,1846 | 0,0093 | 0,2348 | 0,0027  | 0,079   | 0,014          |
| 6.60 | 0,5227          | 0,0029 -0,7087         | 0,0074 | 0,3377 | 0,0015 | -0,1670 | 0,0091 | 0,2393 | 0,0027  | 0,104   | 0,014          |
| 6.70 | 0,5311          | 0,0029 -0,7063         | 0,0074 | 0,3396 | 0,0016 | -0,1502 | 0,0084 | 0,2438 | 0,0028  | 0,128   | 0,012          |
| 6.80 | 0,5395          | 0,0029 -0,7039         | 0,0074 | 0,3454 | 0,0016 | -0,1370 | 0,0068 | 0,2483 | 0,0028  | 0,146   | 0,011          |
| 6.90 | 0,5479          | 0,0030 -0,7014         | 0,0074 | 0,3512 | 0,0016 | -0,1323 | 0,0047 | 0,2528 | 0,0028  | 0,1523  | 0,0075         |
| 7.00 | 0,5563          | 0,0030 -0,6990         | 0,0074 | 0,3569 | 0,0016 | -0,1431 | 0,0040 | 0,2572 | 0,0029  | 0,1348  | 0,0065         |
| 7.10 | 0,5646          | 0,0031 -0,6964         | 0,0074 | 0,3627 | 0,0017 | -0,1781 | 0,0072 | 0,2617 | 0,0029  | 0,081   | 0,011          |
| 7.20 | 0,5729          | 0,0031 -0,6939         | 0,0074 | 0,3684 | 0,0017 | -0,242  | 0,011  | 0,2662 | 0,0030  | -0,016  | 0 <b>,01</b> 6 |
|      |                 |                        |        |        |        |         |        |        |         |         |                |
| 7.40 | 0,5893          | 0,0032 -0,6885         | 0,0075 | 0,3799 | 0,0017 | -0,424  | 0,016  | 0,2752 | 0,0031  | -0,292  | 0,022          |
| 7.60 |                 |                        |        |        |        |         |        |        |         |         |                |
| 7.80 |                 |                        |        |        |        |         |        |        |         |         |                |
| 8.00 | 0,6380          | 0,0037 -0,6703         | 8,0076 | 0,4139 | 0,0018 | -0,6312 | 0,0052 | 0,3019 | 0,0033  | -0,6116 | 0,0083         |
| 8.20 | 0,6540          | 0,0035 -0,6637         | 0,0076 | 0,4251 | 0,0019 | -0,6238 | 0,0046 | 0,3107 | 0,0034  | -0,6038 | 0,0072         |
| 8.40 | 0,6698          | 0,0035 -0,6574         | 0,0076 | 0,4363 | 0,0020 | -0,6123 | 0,0047 | 0,3196 | 0,0034  | -0,5897 | 0,0074         |
| 8.60 | 0,6855          | 0,0036 -0,6520         | 0,0074 | 0,4474 | 0,0020 | -0,6013 | 0,0048 | 0,3284 | 0,0035  | -0,5758 | 0,0077         |
| 8.80 | 0,7012          | 0,0037 -0,6494         | 0,0072 | 0,4585 | 0,0020 | -0,5924 | 0,0050 | 0,3372 | 0,0036  | -0,5640 | 0,0079         |
| 9.00 | 0,7167          | 0,0039 -0,6509         | 0,0069 | 0,4695 | 0,0021 | -0,5868 | 0,0050 | 0,3459 | 0,0037  | -0,5548 | 0,0080         |
| 9.20 | 0,7321          | 0,0039 -0,6595         | 0,0070 | 0,4805 | 0,0021 | -0,5851 | 0,0049 | 0,3547 | 0,0037  | -0,5479 | 0,0080         |
| 9.40 | 0,7474          | 0,0039 -0,6783         | 0,0077 | 0,4914 | 0,0022 | -0,5881 | 0,0050 | 0,3634 | 0,0038  | -0,5431 | 0,0081         |
| 9.60 | 0,7626          | 0,0040 -0,7100         | 0,0089 | 0,5023 | 0,0022 | -0,5967 | 0,0051 | 0,3721 | 0,0039  | -0,5401 | 0,0081         |
| 9.80 | 0,7777          | 0,0041 -0,7554         | 0,0100 | 0,5131 | 0,0023 | -0,6108 | 0,0054 | 0,3808 | 0,0040  | -0,5385 | 0,0081         |
| 10.0 | 0,7927          | 0,0041 -0,812          | 0,011  | 0,5238 | 0,0023 | -0,6295 | 0,0056 | 0,3894 | 0,0040  | -0,5381 | 0,0081         |
| 10.2 | 0,8076          | 0,0042 -0,875          | 0,011  | 0,5346 | 0,0023 | -0,6509 | 0,0057 | 0,3980 | 0,0041  | -0,5387 | 0,0081         |
| 10.4 | 0,8224          | 0,0043 -0,938          | 0,011  | 0,5452 | 0,0024 | -0,6727 | 0,0057 | 0,4066 | 0,0041  | -0,5403 | 0,0081         |
| 10.6 | 0,8371          | 0,0043 -0,994          | 0,011  | 0,5558 | 0,0024 | -0,6933 | 0,0057 | 0,4152 | ,0,0043 | -0,5426 | 0,0082         |
| 10.8 | 0,8517          | 0,0044 -1,043          | 0,010  | 0,5664 | 0,0025 | -0,7114 | 0,0056 | 0,4238 | 0,0043  | -0,5456 | 0,0082         |
| 11.0 | 0,8662          | 0,0045 -1,0825         | 0,0097 | 0,5769 | 0,0025 | -0,7269 | 0,0055 | 0,4323 | 0,0044  | -0,5496 | 0,0082         |



Fig. 10. The real part of the forward  $\pi^*p$  scattering amplitude .



Fig. 11. The real part of the forward  $\mathcal{J}_{1}^{-} \rho$  scattering amplitude. A comparison with experiment.

### References

|     | 그는 것 같은 것 같                                                |
|-----|------------------------------------------------------------------------------------------|
| 1.  | C.Chedester, P.Isaacs, A.Sacks, J.Steinberger. Phys.Rev.82,958 (1951).                   |
| 2.  | P.J.Isaacs, A.M.Sacks, J.Steinberger. Phys.Rev. <u>85</u> ,803 (1952).                   |
| з.  | H.L.Anderson, E.Fermi, E.A.Long, R.Martin, D.E.Nagle, Phys.Rev. 85,934 (1952).           |
| 4.  | H.L.Anderson, E.Fermi, E.A.Long, D.E.Nagle. Phys.Rev. <u>85</u> ,936 (1952).             |
| 5.  | H.L.Anderson, E.Fermi, D.A.Nagle, G.B.Yodh. Phys.Rev. <u>86</u> ,413 (1952).             |
| 6.  | H.L.Anderson, E.Fermi, D.E.Nagle, G.B.Yodh. Phys.Rev. <u>86</u> ,793 (1952).             |
| 7.  | E.C.Fowler, W.B.Fowler, R.P.Shutt, A.M.Thorndike, W.L.Whittemore. Phys.Rev.              |
|     | <u>86</u> ,1053 (1952).                                                                  |
| 8.  | G.Goldhaber. Phys.Rev. <u>89</u> , 1187 (1953).                                          |
| 9.  | H.L.Anderson, E.Fermi, R.Martin, D.E. Nagle. Phys. Rev. <u>91</u> , 155 (1953).          |
| 10. | E.Fermi, M.Glicksman, R.Martin, D.E.Nagle. Phys.Rev. <u>92</u> ,161 (1953).              |
| 11. | J.P.Perry, C.A.Angel. Phys.Rev. <u>91</u> ,1289 (1953).                                  |
| 12. | S.J.Lindenbaum, L.C.L.Yuan, Phys.Rev. <u>92</u> ,1578 (1953).                            |
| 13. | W.B.Fowler, R.M.Lea, W.D.Shephard, R.P.Shutt, A.M.Thorndike, W.L.Whittemore,             |
|     | Phys.Rev. <u>92</u> ,832 (1953); <u>95</u> ,1587 (1954).                                 |
| 14. | A.Shapiro, C.Leavitt, F.Chen. Phys.Rev. <u>92</u> ,1073 (1953).                          |
| 15. | C.E.Angell, J.P.Perry. Phys.Rev. <u>92</u> ,835 (1953).                                  |
| 16. | S.L.Leonard, D.H.Stork. Phys.Rev. <u>93</u> ,568 (1954).                                 |
| 17. | G.Homa, G.Goldhaber, L.M.Lederman. Phys.Rev. <u>93</u> , 554 (1954).                     |
| 18. | J.Orear, J.J.Lord, A.B.Weaver. Phys.Rev. <u>93</u> ,575 (1954).                          |
| 19. | R.L.Cool, L.Madansky, O.Piccioni. Phys.Rev. <u>93</u> ,249 (1954).                       |
| 20. | D.Bodansky, A.M.Sachs, J.Steinberger. Phys.Rev. <u>93</u> ,1367 (1954).                  |
| 21. | R.L.Cool, L.Madansky, O.Piccioni, Phys.Rev. <u>93</u> ,637 (1954).                       |
| 22. | J.Ashkin, J.P.Blaser, F.Feiner, J.Gorman, M.O.Stern. Phys.Rev. <u>93</u> ,1129 (1954).   |
| 23. | M.Glicksman. Phys.Rev. <u>94</u> ,1335 (1954).                                           |
| 24. | J.Tinlot, A.Roberts. Phys.Rev. <u>95</u> , 137 (1954).                                   |
| 25. | J.Orear, C.H.Tsao, J.J.Lord, A.B.Weaver. Phys.Rev. <u>95</u> ,624 (1954).                |
| 26. | W.J.Spry. Phys.Rev. <u>95</u> ,1295 (1954).                                              |
| 27. | M.Glicksman. Phys.Rev. <u>95</u> ,1045 (1954).                                           |
| 28. | J.Orear, W.Slater, J.J.Lord, S.L.Eilenberg, A.B.Waver. Phys.Rev. 96, 174 (1954).         |
| 29. | J.Ashkin, J.P.Blaser, F.Feiner, J.G.Gorman, M.O.Stern. Phys.Rev. <u>96</u> ,1104 (1954). |
| 30. | J.Orear. Phys.Rev.96,1417 (1954).                                                        |

- 31. R.A.Grandley, A.F.Clark. Phys.Rev. 97,791 (1955).
- 32. W.B.Fowler, R.M.Lea, W.D.Shephard, R.P.Shutt, A.M.Thorndike, W.L.Whittemore. Phys.Rev.<u>97</u>,797 (1955).
- 33. H.L.Anderson, M.Glicksman. Phys.Rev.100,268 (1955).
- 34. H.L.Anderson, W.C.Davidon, M.Glicksman, U.E.Kruse. Phys.Rev. 100, 279 (1955).
- 35. А.Е.Игнатенко, А.И.Мухин, Е.Б.Озеров, Б.М.Понтекорво, ДАН СССР, 103, 45/1955/.
- 36. S.J.Lindenbaum, C.L.Yuan. Phys.Rev. 100, 306 (1955).
- 37. M.C.Rinehart, R.C.Rogers, L.M.Lederman. Phys.Rev. 100,883 (1955).
- 38. А.Е.Игнатенко, А.И.Мухин, Е.Б.Озеров, Б.М.Понтекорво, МЭТФ, 30,7 /1956/.
- 39. J.Ashkin, J.P.Blaser, F.Feiner, M.O.Stern. Phys.Rev.101,1149 (1956).
- 40. H.D.Taft. Phys.Rev.<u>101</u>,1116 (1956).
- 41. М.Козодаев, Р.Суляев, А.Филиппов, К.Шербаков. ДАН СССР, 107, 236 /1956/.
- 42. A.M.Sachs, H.Winick, B.A.Wooten. Phys.Rev.100,1255 (1955).
- 43. S.L.Whetstone, Jr., D.H.Stork. Phys.Rev. 102, 251 (1956).
- 44. Fowler Proo. YI Rochester Conf., (1956).
- 45. А.И.Мухин, Е.Б.Озеров, Б.М.Понтекорво, ЖЭТФ, <u>31</u>, 371 /1956/.
- 46. M.H.Alston, M.Fidecaro, G.von Gierke, W.H.Evans, R.Newport, P.R.Williams. Proc. CERN Symposium, 2,236 (1956).
- 47. R.Cool, O.Piccioni, D.Clark. Phys.Rev.103,1082 (1956).
- 48. W.D.Walker, F.Hushfar, W.D.Shephard. Phys.Rev. 104,526 (1956).
- 49. J.Ashkin, J.P.Blaser, F.Feiner, M.O.Stern. Phys.Rev.105,724 (1957).
- 50. D.E.Nagle, R.H.Hildebrandt, R.J.Plano.Phys.Rev.105,718 (1957).
- 51. N.F.Wikner. cf. 55 p.851.
- 52. G.Ferrari, E.Manaresi, G.Quareni. Nuovo Cimento, 5,1651 (1957).
- 53. R.Cessaroli, G.Quareni, G.Dascola, S.Mora, G.Tedesoo. Nuovo Cimento, <u>5</u>, 1658 (1957).

54. L.Ferretti, G.Quareni, M.Della Corte, T.Fazzini. Nuovo Cimento, 5, 1660 (1957).

- 55. G.Maenchen, W.B.Fowler, W.M.Powell, R.W.Wright. Phys.Rev.<u>108</u>,850 (1957).
- 56. В.Г. Зинов, С.М. Коренченко, ЖЭТФ, <u>33</u>, I 307 / I957/.
- 57. A.M.Sachs, H.Winick, B.A.Wooten. Phys.Rev. 109,1750 (1958).
- 58. S.J.Lidenbaum, L.C.L.Yuan. Phys.Rev.<u>111</u>,1380 (1958).
- 59. В.Г. Зинов, С.М. Коренченко, ЖЭТФ, <u>36</u>, 618 /1959/.

- 60. S.Barnes, R.Rose, G.Giacomelli, J.King, K.Miyake cf. L.Bertocchi, L.Lendinard. Nuovo Cimento, 10, 734 (1958).
- H.C.Burrowes, D.O.Caldwell, D.H.Frisch, D.A.Hill, D.M.Ritson, R.A.Schluter, M.A.Wahling. Phys.Rev.Lett.2,119 (1959).
- 62. D.N.Edwards, S.G.F.Frank, J.R.Holt. Proc. Phys. Soc. 73,856 (1959).
- 63. I.Derado, G.LUtjens, N.Schmitz. Ann. Physik, 4, 103 (1959).
- 64. W.J.Willis. Phys.Rev.<u>116</u>,753 (1959).
- 65. U.E.Kruse, R.C.Arnold. Phys.Rev.<u>116</u>, 1008 (1959).
- 66. В.Г. Зинов, А.Д.Конин, С.М.Коренченко, Б.М.Понтекорво Б.М.Понтекорво. Report. Kiev, 1959. Cf. preprint ОИЯИ Д-455.
- 67. В.И.Векслер. Report. Kiev, 1959.
- 68. B.Mayer. Report . Kiev, 1959. Cf.67.
- 69. Лихачев et.al. Report. Kiev, 1959. Cf.67.
- <sup>70.</sup> Ван Ган-чан, Ван Цзу-цзен, Дин Да-цао, В.Г.Иванов, Ю.В.Катышев,
   Е.Н.Кладницкая, Л.А.Кулюкина, Нгуен Дин Ты, А.В.Никитин, С.З.Отвиновский,
   М.И.Соловьев, Р.Сосновский. М. Д. Шафранов. ЖЭТФ, <u>38</u>, 486 / 1960/.
- 71. M.J.Longo, J.A.Helland, W.H.Hess, B.J.Moyer, V.Perez-Mendez. Phys.Rev.Lett. <u>3</u>, 568 (1959).
- 72. Devlin, Perez-Mendez, Hess, Barioh, Solomon. cf.71.
- 73. J.C.Brisson, J.Detoeuf, P.Falk-Vairant, L.van Rossum, G.Valladas, L.C.L.Yuan. Phys.Rev.Lett.<u>3</u>, 561 (1959).
- 74. J.C.Brisson, J.Detoeuf, P.Falk-Vairant, L.van Rossum, Valladas, L.C.L.Yuan. Lettre privée de 31 Janvier, 1960.
- 75. J.Orear. Nucvo Cimento, 4,856 (1956).
- 76. Н.П.Клепиков, С.Н.Соколов. Анализ экспериментальных данных методом максимума правдоподобия. Препринт ОИЯИ, Р-235.1958 год.
- 77. F.T.Solmitz. Phys.Rev.<u>94</u>, 1799 (1954).
- 78. H.J.Schitzer, G.Salzmen. Phys.Rev.<u>113</u>,1153 (1959).
- 79. А.И.Базь. ЖЭТФ, 33,923 /1957/.
- 80. А.И.Базь. ЖЭТФ, 36, 1762 /1959/.
- 81. E.P.Wigner, L.Eisenbud. Phys.Rev. 72,29 (1947).
- 82. Ning Hu. Phys.Rev. 74, 131 (1948).

- 83. M.Gell-Mann, K.M.Watson. Ann.Rev.Nucl.Sci.4, Stanford, 1959.
- 84. Доклади 9-ой /Киевской/ конčеренции по физике частиц высоких энергий. In press.

Stand trade liggers.

- 85. С.H. Соколов. И.H. Силин / to be published/.
- 86. M.H.Zaidi, E.L.Lomon. Phys.Rev. 108,1352 (1958).
- 87. A.Agodi, M.Cini. Nuovo Cimento, 5, 1257 (1957); 6,686 (1957).
- 88. A.Agodi, M.Cini, B.Vitale. Phys.Rev.<u>107</u>, 630 (1957).
- 89. В.К.Федянин. ЖЭТФ, <u>33</u>, I 50I / I957/.
- 90. J.Chew, H.Noyes. Phys.Rev. 109,566 (1957).
- 91. В.А.Мещеряков. БЭТФ, 35,290 /1958/.