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Abstract

An exaot solution has been found for the equetion descridbing the photoproductigi

A requirement choosing a unique solution has gggn

of pions on pions at low energles.
the amplitude.

ution is determined by the high energy singularities of

It has & resonance oharacter if there is a resonance in pion—-pion soattering in the s

formulated. The sol
tate

with 7 =1I=1.



1l. Introduction

The photoproduction of pions on pions
d/+.7r—>,77+.7r )

should be considered in studying the photoproduction of plons on nucleons with the ald
of the Mandelstam repfesentation/l/ as well as it is necessary to consider the plon-~pion

scattering for studying the pion-nucleon scattering,

In treating the plon—pion scattering a new constant of plon—-pion -interaction is in-
troduced into the theory/z/. Must one more similar constant be taken 1nto~account in
consldering the photoproductionnaf plons on pilons? The perturbation theory answers this
question in the negative. Indeed, if the four—pion vertex with four internal nucleon lines
i1s divergent, what makes us introduce into the Lagrangian the corresponding term and the
plon-pion interaction constant (see, e.g./J/), then an analégous vertex with one photon
and three pion external lines 1s convergent, so that there 1s no need in new terms and
in a new constant. Moreover, such photon-three—pion terms cannot be simply introduced
due to the covariance and renofmalizability considerations. Thus, from the point of view
of the perturbation theory the amplitude for-the phqtoﬁroduction must be expressed 1in
terms of the "old" constants (say, the constants of electromagnetic, pion-pilon and plon-
nucleon interaction). Further, if after the eleotromagnetic interaction 1s taken into
account once in switching om the photon, one considers only strong interactions and does
not take into account plon—two- kaon (KK ) interaction (which cannot be stronger than
fge electromagnetic one/4/), then any graph of process (1) must contain the nucleon or
nucleon~hyperon loop (Fig.l). Thus, prooess (1) is essentially associated with baryons
in intermediate states and must disappear 1if baryon masses tend to infinity.

It will be shown below that these results of the perturbation theory also follow from
the theory of dispersion relations.

Process (1) has been treated in /5/ by means of double dispersion relations, where
a homogeneous equation has been obtained for it,and its solution has been found in the ap-
proximation of sharp pion resonance.This solution depends on the indefinite constant and
has a resonanoe character when the width of the pion resonance(with its finite height) is
zero. From the physical standpoin; it is clear that if the pion scattering amplitude 1is
everywhere zero except one point where it is finite, then process of scattering must dis-

play nowhere.



In the foregoing we shall start from the usual (one~dimensional) dispersion relation
in the observable region, assuming that it is valid without subtractions. In §3 a physi-
cal consideration is given from which it follows that while for scattering.the dispersion
relations with one subtraction are valid (like 1n(2)), for the bhotoproduotion, due to
gauge invarianoe, dispersion relations are valid witﬁout subtractions. In order to obtain
from the dispersion relation an inhomogeneous equation having a nongero solution it is
necessary to take into aocount fer singularities, first of «ll, the singularity corres-
ponding to the nucleon-antinucleon pair in the 1ntermed1§te state in the unitarity oon-
dition¥* .

Fbr‘the equation obtained from the dispersion relation & solution has been found in
§4 in the explicit form. )

This solution is unique if the pion phase-shift 1s vanishing at the infinity. If the
phase-shift tends to &~ , then the solution is not unique. However, one of the solutions
at.the infinity tends to an inhomogeneous term most quiockly. This solution has such a
property that all the contribution from the pion scattering disappears from it if the
width of the pion resonance (at the finite height)is tends to zero. It is this solution
which choose as a physioal one. .

The graphs of solutions have been constructed for two pion resonance models differeﬁt

by the behaviour of the phase-shift at the infinity. & -

2. Kinematios
Let & and &, be the momentum and polarization veotor of the photon,,,d and f,/, ;,]'
be the momenta and charge numbers of the initial and final pions respectively. The mat-
rix element of prooess (1) 1s of the torn’?/

anlstag> = an'aless s po) SeiS BB ., Fls52) @

where ¢ are completely antisymmetrioal tensors, whereas F is the oompletely symmet-—
rical function of the invariants
< T 2 z 2 )
S (at), S(3-%) , C=(p-8) i s+Ted = 3p

¥ Analogous for singularities (for 7K soattering with a oharge exohange) were taken
into account in the paper of Anselm and Shekhter which were reported at the Conference
on Dispersion Relations held at Dubna (May, 1960).



In the center-of-mass system

<TI|SIFY> = (.m)fé‘/u; —8#s) e_,/[z_] <ty 5 3,t) )

S=(k+a)" = 40;'
3=,«“-2mh ~2kgcosd (%)
£ = pt —.Zxa; +2xg sl

where AL 1s the pion mass, K =/K[, § = }3 , G =(k +,«‘)/", cos & = (A'z)/k}
F(3 c0s8) = Z forer () /wa) (6)
It follows from the unitarity condition that at low enerziles
b = lfele’® o

{
where ¢ 18 the pion-pion soattering phase-shift corresponding to the state with an angu-
lgr momentum ¢ and isotopic spin I. The differential cross seotion 1s equal to

do 3. F|*
ie =gyt gl ®

J. Dispersion Relation

Postalate now the behaviour of F at fixed T and o0, It follows from (8)

that at fixed © and J-> oo
AT | oust V7 |
10 coust |[V3 F| (9

If this equality had related toselastic prooess, then it would have followed from 1t

that at fixed ¢ and 3-v oo ?bahavas as the total cross seotion for this process,

There are theoretical considerations (Gribov), that the total oross section must decrease

as '//‘“l-5 at the infinity. Therefore, I F in (9) must have decreased in the same manner

for elastio process. We assume that this holds alsc for the prooess under consideration,
If we assume in general that the forward differential oross sections for the photo-

productiod-and pion scattering at the Anfinify have equal degree of 1norea.aing, then the



invariant ampliudes for the photoproduction processes must decrease quicker than for
scattering, since there must be an energy factor between the invariant amplitude and the
matrix element of the photoproduction which is absent 1n the case of scattering. At the
same time, if for scattering the dispersion relations are valid with one subtractlon,
then for photopi oductlon they are valid without any subtractlons. Thus, we assume that
one—dimensional dispersion relations strictly proved in /6/ for the process we are consi-

dering are valild without subtractions:

¢ 1 oo—iatjzziiél—— ’ S—v-gf 10
Fest) =g | i —ds +( ) . (10)
4/‘1. .

If in this relation we confine ourselves to the consideration of the nearest singula-
rities, 1.e., we take into account only the two~pion intermedilate state in the unltarity
condition, then for the photoproduction amplitude we obtaln a homogeneous equation which
must have a zero solution (the requirement of uniqueness 1s formulated below, 4). Thgs,

the process under consideration depends essentially upon the far singularilties.

The following singularities correspond to 4,6 etc plons in the intermedlate
states and their account introduces the photoproduction amplitudes of many plons into
(10) . At the present time we cannot write the system of equations for these amplitudes.,
However, 1t.1s clear that since all these amplitudes have no "polar" singularities, such

a system must be homogeneous, and 1ts solution must be a zero one.

The following singularity corresponds to the koan-antikoan pair (KR ). If non -
strong interactions arevnot taken into account, then the amplitude for the process JJ(‘-’KI_(.
has also no polar singularity. It 1s not difficult to write a dispersion relation for it
(without subtractions, like (10)), which has a gero solution, if the amplitude for pion
rhotoproduction is equal to zereo.

The nearest singularity which introduces inhomogenulty into (10) corresponds to the
nucleon-antinucleon pair in the intermediate state since the dispersion relations for the

amplitude of the process xﬂ-aJﬂi have an 1nhomogeneous polar term.

After the inhomogenuilty 1s introduced into the equatlons under consideration, the pho-
toproduction amplitudes for 4 etc plons may be neglected in the reglon of low energiles
we are considering.

Thus, in J'lg: in (10) we take into account two terms



Jm¢=(7~3‘)nﬁ +(7m?)dj (11)

where (JM f),m 18 expressed 1n terms of the amplitudes for the processes (71"—77.77' and
i > an (formyla 7), whereas (Jm ‘g:)..l.i" = in terms of the amplitudes for the
processes XJT%JJ and Ji’T—’.A/J/— .
(Jm ,’F)ﬁ in (10) contains the region of nonobservable angles at low energies. The
nonobservable region is absent at
2

= - L&
t‘ Z (12)

and relation (10) in this case has the form

Fl, cab-g /)= % J(Jw(‘..“*a‘?'/lf'))ﬂ IV
,,‘L

s~ 3
- , ) _ (13)
+ % J(Jn 9.-(:; c_‘:a=}/x’))""7 ds’ +(3~5= {/‘2_5 ),
4m* .
herre m is the nuoleon mass. Obviously, in the integrals with lower limit G

one may put c#$8=1 and neglest S , X 1in comparison with s’ .

4. Integral Equation and its Solution

At low energies in the observable region in expansion (6) it is sufficient to take
into account the lowest partial waves, by neglecting F wave and the waves having

. higher angular momenta

F(s, es8) = £,(5) =£(3)
L 3 2 2
where f is the amplitude of the P wave. - By denoting v = }/« , we obtain from (13)

4

P , ( ,
f(") = A + ‘#!J”f(o}(vl"v_ie + vied + 9/g ydo. (25)

Here



T (I F5 )i
e R

3’ (16)

26) = [#1e 5o st an

Equation (15) 1is crossing-symmetrical (in the substitution v —-» — v — -9/8 ) and an
exact solution may be written for it (see/7/'/8/).
iet for § > oo

&R) >0 (8G) = C?V™"" , a>0) (18)

Let us denote

Ydv

T i
A(R) = 3'",— é‘s\(") (.)-z -H—z +9/8 (19)

This crossing-symmetrical function is holomorph over all the Plane with the cut from —o@
up to —-9/8 and from O up to e ., Its limiting values on the cut from upper (+) and
lower (~) half-planes are equal to

Ato) = PO 2 0(3), (20)
where
£0) = #Pi&(&)(‘xf\, .x+J+9/s )dx . (21)
When X > oo
A(Z) > 0 . (22)
Consider the function
T 80, '
= A 1 23
T(z) - !e 3‘"’8(‘,)(4-1 M Ve2 +9/8 )d\? @

It has the same symmetry, the same region of anmalyticity and the same cuts as 4(2) ’

and its jump on the cut is equal to
+ - » + -
Y - Y =2ie’4’m.6‘ =(e4) "(cd} (24)

Therefore, the function Y(%) must coincide with €4® with an accuracy up to a polynomial.



Since at X+ ¥+»0 and €4~/ , then this polynomial 1s‘equal to -1 :

Yer) = e2® - 1 (25)

It follows from (23), (25) and (20) that

Q) + iR}
£l =~ A€ (26)
1s the solution of equation (15). This solution is unique, as the general solution of the
corresponding homogeneous equation has the form P ef“‘“ s Where P is a poly-
nomial (crossing symmetrical); at the infinity it must tend to 0, i.e. P=so .
2) Let now for V oo
&) » I (80) » F-€9" ", x>0) (27)
Denote
o
_ z + 9/l J &) [ _ { oV
AE) = T 29+ 96 (o—z o+2+5y3) (28)

This function has the same properties as function (19), dbut for z-»eo

A(R) > cast ~ 2bc(2 + Yte)

29
edlz!) > coccs t (29)
%+ e)*
(30)
Like in the previous case, it is eé.sy to show that
(«) / 2 pid (1)
g 0l=4 Z_(.HJ/,,,) e
where / oo
- Y+ /e &(x) ! —
_ £6) P P -,I, x+3f6 b x-v x+v+ 93 )dz (32)
_ 2 _9-“‘5‘
A - fo € Jg: oo (33)

i1s the solution’ of equation (15). However, this solution is not unique, since we can

add the general solution of a homogeneous equation which in this case 1s equal to

b
Cef* (38)

where C is an arbitrary constant ( C cannot be a polynomial of the first degree

according to the requirement of crossing - symmetry).
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Thus, all the solutions of equation (15) in the case under consideration are of the

form

! prid
v +
f )+ Cem . (35)
A1l of them tend to A as f/y? at the infinity, since for Vv —>oo

PO A1 B F) e )

e P+ do (1~ 9 ) 4 Lo oo &)
v 8v 7Y
And only the unigue solution for which
Cod, = — N ot ¢1))
is tending to N as 56’ at the infihity. We shall consider as physical that solution

of equation (15) whioh at the infinity 13 tending to an inhomogeneous term more quickly

than any solution of the corresponding homogeneous eguation 1s tending to zero.

From (31), (35)-(37) we obtain the expression for this solution

_ { 9 l_ f#v'd‘
FO) = A [0+ ) - A ] e )
where A is given by formula (33) and
;8
A, =[9"(;’— G+ ) e’ “i)],,=oo . (39)

At high energies the oontribution of the dispersion integral to this solution is vanishing

quickly. Therefore,among all solutions (35) it 1s least of all sensitive to the behaviour

of the phase-shift & at the infinity. Only this solution gives a rhysioal correot result

in the case of zero width of the pion resonance. Indeed, at

8\ - i 0 O‘LOk
x 3 >‘9& s (40)
(41)
() Ve +s) " Yo )™
o7 | e ) ’ ,e"’(,;= 40 0

(On~V) (Ve +V+ 93) (- ) W+ + Y2)

while in (38)
f) =N . (42)

We give the expression for the photoproduotion amplitude for two models of the pion reso-
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nance
1) o V<V —€ , V>V, +¢
& =] Ye(r+6-9) Vi€ <V< v,
Mg (Vatb-9) Vo <2+ € (43)

Expression (26) yields

701 = Ae'® )

v

2 -ve 1
_ (V-Ve) 22 [Va+t€-V /z_ _ 9 (44)

W+ E€-9¢ ) (e V+E6-vp
2)

0 vV < v, -¢€

={ E(9+€-9) V-€<v v, +€
;o V>vg+é€

Expression (38) yields
76) = ne'® gr)
(46)

v+E€-vg

‘f(“)=[("“'”("“+‘7 +33—)+ -g_‘] { € Vet -y 26 {O—PV—%}

l"g"’g‘\’( Jg —-€~\7

These phase-shifts and solutions are shown in Fig.2 and 3 for the values of the reso-
nance parameters taken from (9): V& =1,5; '4 =0,4, « In both cases
the photoproduction amplitude has a resonance character, and its resonance is somewhat
displaced with respect to the Plon resonance. In the first model (43) the photoproduction

resonance 1s considerably sharper. In the second model (45) the photoproduction amplitude
vanishes at the energy near the pion resonance.
.
The author 1s very grateful to G.Bialkowski, A.Urewicz, P.S.Isaev and M«.I.Shirokov

for useful discussions.
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