L.D. Solovyov

$$
p, 366 \text {. }
$$

L.D. Solovyov

$$
\text { D }-580
$$

PHOTOPRODUCTION OF PIONS ON PIONS

Abstract

An exaot solution has been found for the equation describing the photoproduction of pions on pions at low energies. A requirement choosing a unique solution has heen formulated. The solution is determined by the high energy singularities of the amplitude. It has a resonenoe oharacter if there is a resonance in pion-pion soattering in the state with $J=I=1$.

1. Introduction

The photoproduction of pions on pions

$$
\begin{equation*}
\gamma+\pi \rightarrow \pi+\pi \tag{1}
\end{equation*}
$$

should be considered in studying the photoproduction of pions on nucleons with the aid of the Mandelstam representation/l/as well as it is necessary to consider the pion-pion scattering for studying the pion-nucleon scattering.

In treating the pion-pion scattering a new constant of pion-pion interaction is introduced into the theory $/ 2 /$. Must one more similar constant be taken into account in considering the photoproduction of pions on pions? The perturbation theory answers this question in the negative. Indeed, if the four-pion vertex with four internal nucleon lines is divergent, what makes us introduce into the Lagrangian the corresponding term and the pion-pion interaction constant (see, e.g. $/ 3 /$), then an analogous vertex with one photon and three pion external lines is convergent, so that there is no need in new terms and In a new constant. Moreover, such photon-three-pion terms cannot be simply introduced due to the covariance and renormalizability considerations. Thus, from the point of view of the perturbetion theory the amplitude for the photoproduction must be expressed in terms of the "old" constants (say, the constants of electromagnetic, pion-pion and pionnucleon interaction). Further, if after the eleotromagnetic interaction is taken into acceant once in switching on the photon, one considers only strong interactions and does not take into account pion-two- kaon ($5 K K$) interaction (which cannot be stronger than the electromagnetic one $/ 4 /$), then any graph of process (1) must.contain the nucleon or nucleon-hyper on loop (Fig.1). Thus, prooess (1) is essentially associated Fith baryons in intermediate states and must disappear if baryon masses tend to infinity.

It will be shown below that these results of the perturbation theory also follow from the theory of dispersion relations.

Process (1) has been treated in /5/ by means of double dispersion relations, where a homogeneous equation has been obtained for it, and its solution has been found in the appreximation of sharp pion resonance.This solution depends on the indefinite constant and has a resonanoe character when the width of the pion resonance(with its finite height) is zero. From the physical standpoint it is clear that if the pion soattering amplitude is everywhere zero except one point where it is finite, then process of scattering must dism play nowhere.

In the foregoing we shall start from the usual (one-dimensional) dispersion relation in the observable region, assuming that it is valid without subtraotions. In §3 a physical consideration is given from which it follows that while for scattering.the dispersion relations with one subtraotion are valid (like in ${ }^{(2)}$), for the photoproduction, due to gauge invarianoe, dispersion relations are valid without subtractions. In arder to obtain from the dispersion relation an inhomogeneous equation having a noneero solution it is necessary to take into acoount for singularities, first of all, the singularity oorresponding to the nuoleon-antinuoleon pair in the intermediate state in the unitarity oondition* .

For'the equation obtained from the dispersion relation a solution has been found in §4 in the explicit form.

This solution is unique if the pion phase-shift is vanishing at the infinity. If the phase-shift tends to \mathcal{F}, then the solution is not unique. However, one of the solutions at the infinity tends to an inhomogensous term most quiokiy. This solution has suoh a property that all the contribution from the pion soattering disappars from it if the width of the pion resonance (at the finite heighti)is teads to eero. It is this solution which choose as a physioal one.

The graphs of solutions have been construoted for two pion resonano models different by the behariour of the phase-shift at the infinity.

2. Kinematios

Let k and e_{j} be the momentum and polarization veotor of the photon, $g \alpha$ and $\left.g \beta, g_{3}\right\}$ be the momenta and charge numbers of the initial and final pions respeotively. The matrix element of prooess (1) is of the fortis/
where C are completely antisymmetrioal tensors, whereas F is the oompletely symmetrical function of the invariants

$$
\begin{equation*}
s=\left(q_{2}+q_{3}\right)^{2}, \quad \overline{3}=\left(q_{1}-q_{3}\right)^{2}, \quad t=\left(q_{1}-q_{2}\right)^{2} ; \quad s+\bar{j}+q^{t}=3 \mu^{2} \tag{3}
\end{equation*}
$$

[^0]In the center-of-mass system

$$
\begin{align*}
\langle\pi \pi| \mathcal{S}|\pi \gamma\rangle & =(2 \pi)^{4} \delta\left(k+g_{1}-q_{l}-g_{3}\right) \frac{\overrightarrow{e_{j}}[\vec{q} \vec{k}]}{2 \sqrt{\omega_{k} k}} \varepsilon_{\alpha \beta \gamma} F(J, \vec{s}, t) \tag{4}\\
& s=\left(k+\omega_{k}\right)^{2}=4 \omega_{z}^{2} \\
& \bar{s} \tag{5}\\
& =\mu^{2}-2 k \omega_{z}-2 k g \cos \theta \\
t & =\mu^{2}-2 k \omega_{g}+2 k g \cos \theta
\end{align*}
$$

Where μ is the pion mass, $k=|\vec{k}|, \vec{q}=\vec{g}_{3}, \omega_{k}=\left(k^{2}+\mu^{2}\right)^{1 / 2}, \cos \theta=(\vec{k} \vec{q}) / k g$,

$$
\begin{equation*}
\mathscr{F}(s, \cos \theta)=\sum_{l=0}^{\infty} f_{2 l+1}(s) P_{2 l+1}^{\prime}(\cos \theta) \tag{6}
\end{equation*}
$$

It follows from the unitarity condition that at low energies

$$
\begin{equation*}
f_{l}=\left|f_{l}\right| e^{i \delta_{l}^{\prime}}, \tag{7}
\end{equation*}
$$

Where δ_{l}^{1} is the pion-pion soattering phase-shift corresponding to the state with an angular momentum l and isotopic spin I. The differential cross section is equal to

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\frac{1}{8} k q^{3} \sin ^{2} \theta\left|\frac{F}{4 \pi}\right|^{2} \tag{8}
\end{equation*}
$$

3. Dispersion Relation

Postulate now the behaviour of F at fixed t and $f \rightarrow \infty$. It follows from (8) that at fixed t and $s \rightarrow \infty$

$$
\begin{equation*}
\frac{d \sigma}{d Q}=\operatorname{coust}|\sqrt{5} \mathcal{F}|^{2} \tag{9}
\end{equation*}
$$

If this equality had related tovelastic process, then it would have followed from it that at fixed t and $5 \rightarrow \infty$ behaves as the total cross section for this process. There are theoretical considerations (Gribov), that the total ores section must decrease
 for elastic process. We assume that this holds also for the process under consideration. If we assume in general that the forward differential cross sections for the photoproduction and pion scattering at the infinity have equal degree of increasing, then the
invariant ampliudes for the photoproduction processes must decrease quicker than for scattering, since there must be an energy factor between the invariant amplitude and the matrix element of the photoproduction which is absent in the case of scattering. At the same time, if for scattering the dispersion relations are valid with one subtraction, then for photopr oduction they are valid without any subtractions. Thus, we assume that one-dimensional dispersion relations strictly proved in $/ 6 /$ for the process we are considering are valid without subtractions:

$$
\begin{equation*}
\mathscr{F}(s, t)=\frac{1}{\pi} \int_{4 \mu^{2}}^{\infty} \frac{d m \mathscr{F}\left(s^{\prime}, t\right)}{s^{\prime}-s-i \varepsilon} d s^{\prime}+(s \rightarrow \vec{s}) \tag{10}
\end{equation*}
$$

If in this relation we confine ourselves to the consideration of the nearest singularities, i.e., we take into account only the two-pion intermediate state in the unitarity condition, then for the photoproduction amplitude we obtain a homogeneous equation which must have a zero solution (the requirement of uniqueness is formulated below, 4). Thus, the process under consideration depends essentially upon the far singularities.

The following singularities correspond to 4,6 etc pions in the intermediate states and their account introduces the photoproduction amplitudes of many pions into (10). At the present time we cannot write the system of equations for these amplitudes However, it is clear that since alf these amplitudes have no "polar" singularities, such a system must be homogeneous, and its solution must be a zero one.

The following singularity corresponds to the koan-antikoan pair ($\boldsymbol{K} \vec{K}$). If non strong interactions are not taken into account, then the amplitude for the process $\gamma \boldsymbol{\gamma} \rightarrow K \vec{K}$ has also no polar singularity. It is not difficult to write a dispersion relation for it (without subtractions, like (10)), which has a zero solution, if the amplitude for pion photoproduction is equal to zero.

The nearest singularity which introduces inhomogenuity into (10) corresponds to the nucleon-antinucleon pair in the intermediate state since the dispersion relations for the amplitude of the process $\gamma^{\pi /} \rightarrow \mathcal{N} \overline{\mathcal{M}}$ have an inhomogeneous polar term.

After the inhomogenuity is introduced into the equations under consideration, the photoproduction amplitudes for 4 etc pions may be neglected in the region of low energies we are considering.

Thus, in $J_{m} \mathcal{F}$ in (10) we take into account two terms

$$
\begin{equation*}
J_{m} \mathcal{F}=\left(J_{m} \mathcal{F}\right)_{\pi \pi}+\left(J_{m} \mathcal{F}\right)_{J \vec{N}} \tag{11}
\end{equation*}
$$

where $\left(J_{m} \mathcal{F}\right)_{\pi \pi}$ is expressed in terms of the amplitudes for the processes $\gamma \pi \rightarrow \pi \pi$ and $\pi \pi \rightarrow \pi \pi \quad$ (formula 7), whereas ($\left.\operatorname{Jm}_{\mathrm{F}} \mathcal{F}\right)_{\mathrm{a}} \vec{\pi} \quad$ - in terms of the amplitudes for the processes $\gamma \pi \rightarrow \pm \bar{N}$ and $\pi j \rightarrow N \bar{N}$.
($\left.\int_{m} \mathcal{F}\right)_{\pi \gamma}$ in (10) contains the region of nonobservable angles at low energies. The nonobservable region is absent at

$$
\begin{equation*}
t=-\frac{\mu^{2}}{2} \tag{12}
\end{equation*}
$$

and relation (10) in this case has the form

$$
\begin{align*}
& \mathcal{F}(s, \cos \theta=g / k)=\frac{1}{\pi} \int_{4 \mu^{2}}^{\infty} \frac{\left(J m\left(s^{\prime}, \cos \theta=g^{\prime} / k^{\prime}\right)\right)_{s N}}{s^{\prime}-s} d s^{\prime}+ \tag{13}\\
& \quad+\frac{1}{\pi} \int_{4 m^{2}}^{\infty} \frac{\left(\operatorname{smc} \mathcal{F}\left(s^{\prime}, \cos \theta=q^{\prime} / k^{\prime}\right)\right)_{N \bar{N}}}{\cdot s^{\prime}-s} d s^{\prime}+\left(s \rightarrow \bar{s}=\frac{5}{2} \mu^{2}-s\right),
\end{align*}
$$

here m is the nuoleon mass. Obviously, in the integrals with lower $11 \mathrm{~min}^{\mathrm{t}} 4 \mathrm{~m}^{2}$ one may put $\cos \theta=1$ and neglect S, \bar{s} in comparison with s^{\prime}.
4. Integral Bquation and its Solution

At low energies in the observable region in expansion (6) it is sufficient to take into account the lowest partial waves, by neglecting F wave and the waves having higher angular momenta

$$
\begin{equation*}
G(s, \cos \theta)=f_{1}(s) \equiv f(s) \tag{14}
\end{equation*}
$$

where f is the amplitude of the P wave. By denoting $\nu=q^{2} / \mu^{2}$, we obtain from (13)

$$
\begin{equation*}
f(v)=1+\frac{1}{\pi} \int_{0}^{\infty} \sin f\left(v^{\prime}\right)\left(\frac{1}{v^{\prime}-v-i \varepsilon}+\frac{1}{v^{\prime}+v+9 / 8}\right) d v^{\prime} . \tag{15}
\end{equation*}
$$

Here

$$
\begin{align*}
& \Lambda=\frac{2}{\pi} \int_{4 m^{2}}^{\infty} \frac{\left(\sin f\left(s^{\prime}, 1\right)\right)_{N N}}{s^{\prime}} d s^{\prime} \tag{16}\\
& f(\nu)=|f(\nu)| e^{i \delta(\nu)}, \delta \equiv \delta_{1}^{\prime} \tag{17}
\end{align*}
$$

Equation (15) is crossing-symmetrical (in the substitution $\nu \rightarrow-\nu-9 / 8$) and an exact solution may be written for it (see $/ 7 /, / 8 /$).
1)Let for $\quad \downarrow \rightarrow \infty$

$$
\begin{equation*}
\delta(\nu) \rightarrow 0 \quad\left(\delta(\nu) \rightarrow c \nu^{-\alpha}, \alpha>0\right) \tag{18}
\end{equation*}
$$

Let us denote

$$
\begin{equation*}
\Delta(z)=\frac{1}{\pi} \int_{0}^{\infty} \delta(\nu)\left(\frac{1}{v-z}+\frac{1}{v+z+g / s}\right) d \nu \tag{19}
\end{equation*}
$$

This crossing-symmetrical function is holomorph over all the plane with the cut from $-\infty$ up to $-9 / 8$ and from 0 up to ∞. Its limiting values on the cut from upper (+) and lower (-) half-planes are equal to

$$
\begin{equation*}
\Delta^{ \pm}(\nu)=\rho(\nu) \pm i \delta(\nu), \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho(v)=\frac{1}{\pi} P \int_{0}^{\infty} \delta(x)\left(\frac{1}{x-v}+\frac{1}{x+v+9 / 8}\right) d x . \tag{21}
\end{equation*}
$$

When $\quad z \rightarrow \infty$

$$
\begin{equation*}
\Delta(z) \rightarrow 0 . \tag{22}
\end{equation*}
$$

Consider the function

$$
\begin{equation*}
\Psi(z)=\frac{1}{\pi} \int_{0}^{\infty} e^{\rho(v)} \sin \delta(\nu)\left(\frac{1}{v-z}+\frac{1}{v+z+9 / 8}\right) d \nu \tag{23}
\end{equation*}
$$

It has the same symmetry, the same region of analyticity and the same cuts as \boldsymbol{A} (Z^{\prime}) and its jump on the cut is equal to

$$
\begin{equation*}
\Psi^{+}-\Psi^{-}=2 i e^{\rho} \sin \delta=\left(e^{\Delta}\right)^{+}-\left(e^{\Delta}\right)^{-} \tag{24}
\end{equation*}
$$

Iherefore, the function $\Psi(\Sigma)$ must coincide with $e^{A(X)}$ with an accuracy up to a polynomial.

Since at $x \rightarrow \infty \Psi \rightarrow 0$ and $e^{\Delta} \rightarrow \mathcal{1}$, then this polynomial is:equal to -1 :

$$
\begin{equation*}
\Psi(z)=e^{\Delta(z)}-1 \tag{25}
\end{equation*}
$$

It follows from (23), (25) and (20) that

$$
\begin{equation*}
f(\nu)=\Lambda e^{\rho(\nu)+i \delta(\nu)} \tag{26}
\end{equation*}
$$

is the solution of equation (15). This solution is unique, as the general solution of the corresponding homogeneous equation has the form $\rho e^{\rho+i \delta}$, where P is a polynomial (crossing symmetrical); at the infinity it must tend to $0, i . e . P \leq 0$.
2) Let now for $\quad \nu \rightarrow \infty$

$$
\begin{equation*}
\delta(\nu) \rightarrow \pi \quad\left(\delta(\nu) \rightarrow \pi-c \nu^{-\alpha}, \alpha>0\right) \tag{27}
\end{equation*}
$$

Denote

$$
\begin{equation*}
\Delta(z)=\frac{z+9 / 16}{\pi} \int_{0}^{\infty} \frac{\delta(\nu)}{\nu+9 / 16}\left(\frac{1}{\nu-z}-\frac{1}{\nu+z+9 / 8}\right) d \nu \tag{28}
\end{equation*}
$$

This function has the same properties as function (19), but for $\boldsymbol{z} \rightarrow \infty$

$$
\begin{gather*}
\Delta(z) \rightarrow \operatorname{cocs} t-2 \ln (z+9 / 16) \\
e^{\Delta(z)} \rightarrow \frac{\text { cocest }}{(z+9 / 16)^{2}} \tag{29}
\end{gather*}
$$

Like in the previous case, it is easy to show that

$$
\begin{equation*}
f^{(v)}(v)=\Lambda \frac{1}{A}(v+g / 10)^{2} e^{\rho+i \delta} \tag{31}
\end{equation*}
$$

where

$$
\begin{gather*}
\rho(\nu)=\frac{\nu+9 / 16}{\pi} P \int_{0}^{\infty} \frac{\delta(x)}{x+9 / 16}\left(\frac{1}{x-v}-\frac{1}{x+v+9 / 8}\right) d x \tag{32}\\
A=\left[\nu^{2} e^{\rho+i \delta}\right]_{\nu=\infty} \tag{33}
\end{gather*}
$$

is the solution of equation (15). However, this solution is not unique, since we can add the general solution of a homogeneous equation which in this case is equal to

$$
\begin{equation*}
C e^{\rho+i \delta} \tag{34}
\end{equation*}
$$

where C is an arbitrary constant (cannot be a polynomial of the first degree according to the requirement of crossing-symmetry).

Thus, all the solutions of equation (15) in the case under consideration are of the form

$$
\begin{equation*}
f^{(\prime \prime}(\nu)+C e^{\rho+i \delta} . \tag{35}
\end{equation*}
$$

$A 11$ of them tend to Λ as $1 / v^{2}$ at the infinity, since for $\nu \rightarrow \infty$

$$
\begin{gather*}
f^{(1)}(\nu)=\Lambda\left(1+\frac{\alpha}{\nu^{2}}\left(1-\frac{9}{8 v}\right)+\frac{\beta}{v^{4}}+\cdots\right) \\
e^{\rho+i \delta}=\frac{\alpha_{0}}{v^{2}}\left(1-\frac{9}{8 v}\right)+\frac{\beta_{0}}{v^{4}}+\cdots \tag{36}
\end{gather*}
$$

And only the unique solution for which

$$
\begin{equation*}
C \alpha_{0}=-\Lambda \alpha \tag{37}
\end{equation*}
$$

is tending to Λ as $1 / 夕^{4}$ at the infinity. We shall consider as physical that solution of equation (15) whioh at the infinity is tending to an inhomogeneous term more quiokly than any solution of the corresponding homogeneous equation is tending to zera.

From (31), (35)-(37) we obtain the expression for this solution

$$
\begin{equation*}
f(\nu)=\Lambda \frac{1}{A}\left[(\nu+9 / 16)^{2}-A_{1}\right] e^{\rho+i \delta} \tag{38}
\end{equation*}
$$

where A is given by formula (33) and

$$
\begin{equation*}
A_{i}=\left[\nu^{2}\left(\frac{1}{A}(\nu+9 / 10)^{2} e^{\rho+i \delta}-1\right)\right]_{\nu=\infty} \tag{39}
\end{equation*}
$$

At high energies the oontribution of the dispersion integral to this solution is vanishine quiokly. Therefore, among all solutions (35) it is least of all sensitive to the behaviour of the phase-shift 8 at the infinity. Only this solution gives a physioal correot result in the case of zero width of the pion resonance. Indeed, at

$$
\begin{gather*}
\delta= \begin{cases}0 & \nu<\nu_{R} \\
\pi & \nu>\nu_{R}\end{cases} \tag{40}\\
e^{\rho(\nu)}=\left|\frac{\left(\nu_{R}+9 / 16\right)^{2}}{\left(\nu_{R}-\nu\right)\left(\nu_{R}+\nu+9 / 8\right)}\right|, \quad f^{(1)}(\nu)=\Lambda \frac{(\nu+9 / 16)^{2}}{\left(\nu-\nu_{R}\right)\left(\nu+v_{R}+9 / 8\right)} \tag{41}
\end{gather*}
$$

while in (38)

$$
\begin{equation*}
f(v)=\Lambda \tag{42}
\end{equation*}
$$

We give the expression for the photoproduotion amplitude for two models of the pion reso-
nance
1)

$$
\delta= \begin{cases}0 & \nu<\nu_{R}-b, \tag{43}\\ \pi / 2 b\left(\nu+b-\nu_{R}\right) & \nu_{R}-b<\nu<\nu_{R}+b \\ \pi / 2 b\left(\nu_{R}+b-\nu\right) & \nu_{R}<\nu<\nu_{R}+b\end{cases}
$$

Expression (26) yields

$$
\begin{gather*}
f(\nu)=\Lambda \mathrm{e}^{i \delta} \varphi(\nu) \\
\varphi(\nu)=\left\{\left|\frac{\left(\nu-\nu_{R}\right)^{2}}{\left(\nu+b-\nu_{R}\right)\left(\nu_{R}+b-\nu\right)}\right|^{\frac{\nu-\nu_{R}}{2 b}}\left|\frac{\nu_{R}+b-\nu}{\nu+b-\nu_{R}}\right|^{\frac{1}{2}}\right\}\left\{\nu \rightarrow-\nu-\frac{9}{8}\right\} \tag{44}
\end{gather*}
$$

2)

$$
\delta=\left\{\begin{array}{cc}
0 & \nu<\nu_{R}-b \tag{45}\\
\frac{\pi}{2 b}\left(\nu+b-\nu_{R}\right) & v_{R}-b<v<v_{R}+b \\
\pi & \nu>v_{R}+b
\end{array}\right.
$$

Expression (38) fields

$$
\begin{gathered}
f(\nu)=\Lambda e^{i \delta} \varphi(\nu) \\
\varphi(\nu)=\left[\left(\nu_{R}-\nu\right)\left(\nu_{R}+\nu+\frac{g}{b}\right)+\frac{b^{2}}{3}\right]\left[\left\{\frac{e}{\left|v_{R}+b-v\right|}\left|\frac{v_{R}+b-\nu}{v_{R}-b-\nu}\right|^{\frac{\nu+b-\nu_{R}}{2 b}}\right\}\left\{\nu \rightarrow-\nu-\frac{g}{8}\right\}\right]
\end{gathered}
$$

These phase-shifts and solutions are shown in Fig. 2 and 3 for the values of the resnance parameters taken from (9): $\quad V_{R}=1,5 ; \quad b=0,4, \quad$ In both cases the photoproduction amplitude has a resonance character, and its resonance is somewhat displaced with respect to the pion resonance. In the first model (43) the photoproduction resonance is considerably sharper. In the second model (45) the photoproduction amplitude vanishes at the energy near the pion resonance.

The author is very grateful to G.Blalkowski, A.Urewicz, P.S.Isaev and M.I.Shirokov for useful discussions.

References

1. S.Mandelstam, Phys.Rev. 112, 1344 (1958).
2. G.F.Chew and S.Mandelstam, "Theory of Low-Energy Pion-Pion Interaction", Lawrence Radiation Laboratory Reports , UCRL-8728.
3. Н. Н. Боголрбов, Д. В. Ширков "Введение в теорир квантованных полей."Гостехиздат, 1958 год.
4. A.Pa1s, Phys.Rev. 112, 524 (1959).
5. M.Gourdin and A.Martin "Photoproduction of pions on pions", CERN preprint.
6. А.А. Логунов. Диссертация, ОИНИ, 1959 г.
7. Н. И. Мусхелишвили. Сингулярные интегральнне уравнения. Гостехиздат, 1946 r .
8. K.Blankenbechler and S.Gartenhaus, Phys.Rev. 116, 1297 (1959)
9. W.R.Frazer and J.R.Fulco, Phys.Rev. 117, 1609 (1960).

Fig. 1

Fig. 2

Fig. 3

[^0]: * Analogous for singularities (for $T K$ soattering with a oharge exohange) were taken into account in the paper of Anselm and Shekhter whioh were reported at the Conferenoe on Dispersion Relations held at Dubna (May, 1960).

