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PROBLEMS OF MAGORIZATION OF FEINMAN DIAGRAMMS



Introduction

The investigation of the amalytical properties of the
vertex paxtll/ and of the nucleonfnucleon‘and K-meson—nucleoﬁ
socattering anplitudes/Z’B/, has shown that for these prooces-
ses it 1s impossible to obﬁainfthe dispersion relations star-
ting only from the principles of covariance, causality and
spectrality. Since the perturbation theory serles reflects
the notionﬁ of the particle interaction in more detail, a
considerable attention has been recently drawn to the study
of the analytical properties of the ferms of this series.
Some progress has been achieved in this direétion./4 -12/

It were the papers by Nambu/4/ and Symanzikls/ in which
such investigations have been started. To establish the
dispersidn relations an interesting method of majorization
of graphs has been suggested in these papers. This method
allowed Symanzik/5/ to show that the information contalned
in the terms of the perturbation theory series for the ver-~
tex part and for the nucleon~nucleon scattering is suffi-
cient for obtaining the corresponding dispersion relations.

This paperx) is devoted to the extension of the majori-
zation method. A means has been worked out for finding the
so~-called pri;itive diagrams, such that any diagram is majo-
rated by one of the primitive diagrams. By expressing the

x) A part of the results of this paper is published./17/



‘quadratic form of the diagram in terms of the incidintness
matrix a generalization of Symanzik’s theorem 1is obtained.
This permitted to establish that some primitive diagrams
majorize the rest cnes. The method developed here is applied
to the vertex part and to fhe scattering processes involving
nucleons and scalar mesons.

The application of the obtained results toe the theory

of dispersion relations will be treated in subsequent paper.

Part 1. Primitive Diagrams

In the first part the notion of primitive diagrams
will be introduced. The primitive diagrams of any process
possess such a property that every graph of this process is
majorized by one of the primitive diagrams. Here a method
of obtaining the primitive diagrams will be worked cut. It
will be illustrated on examples of the vertex part and of
some scattering processes. For the sake of simplicity it 4s
assumed thaf three ( and only three) lines meet in every
vertex of the graph. The number of the primitive diagiams'of
each of the proocesses treated is finite. It is likely that

this fact is general.

1. Regularized Expraession of the Matrix Element
in the Perturbation Theory

1. As is well-known, the contribution to the scattering

matrix from a Feynman graph (&5 may be written in the



oK -representation as
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where p“ is the external momentum entering the vertexa |,
i 1is the number of the vertices of the graph, Z is the
number of internal lines; the function }—(Px,...,p,,;a/,,...,a’e)
is a polynomial in Pi* Pps+++ s P and a rational
function of o 4 ... o, with poles at the points «; =0.
The matrix ﬂao(a() is positive definite, if all o} are '
positive.

Expression (1.1) is, generally speaking, a divergent
integral due to the singularities of the function }—(,0;0()
at o/‘ =0 ( the ultraviolet catastrophe). Bogolubov and

Parasiuk/13/ have found the regularized expression of integral
(1.1) to be
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where : C ' . , i
C(p;x;T)
oé):(‘z_'l,...,i;)éi) /.f (P,a’ 2')/ [na/]zzeef

C(p,'d;t)_ is a polynomially bounded expression with respect

c .

to the variables P, &«

ELl

2. The form
2
@y (op) = Fu P = Mo (1.3)

/4
where n-1 2
ﬂ.a (<, P) =§=1 A s () Pu Pr > M, (<) =‘§.;a<,m
entering (1.1) , may be obtained in the following way.
Let the 4-momenta K, on the internal lines of the diagram ~
be chosen so that in each of its vertioces the law of momen-
tum oconservation 1s fulfilled. This means that the momenta X,
satisfy a system of n-1 inhomogeneous linear equations.
For a connected graph the number of independent "intermal®
momenta i;, coesy tf equals f£= 6-n+l |, The momenta K,
are linear combinations of the "external" momenta p and

of the momenta ¢ . Introduce the function

V4 ¥
Ka (<,p, ) =5 o, (KS-m]) = Z' a; .t ‘2"2, L+e
v=d h! (1.4)

The form Q («,p) is obtained from (1.4), if instead of 7

we substitute the solution of the system of linear equa.tions



i, gt 4 £ (1.5)
1f the determinant Iaul does not vanish, then
L
7 . C
Q (6P = -2 A 5:5 = <
gt /ag/ (1.6)
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where aij are the matrix elements of (ay) .

3. The diagram is called connected, if any two of its
points may be connected by a continuous path passing through
its 1lines and vertioes. Otherwise the diagram 1s called
disconnected. Let a disconnected diagram & consist of

L connected graphs $1 geoccey 2} of lower prooesses.
Then T
T = 7; . T:o T, .
@ * 2 # (1.7)

Hence, the study of disconnected graphs in a trivial

way reduces to the study of connected omes.

4, A connected diagram is called weakly connected if
there exists such 'an internal line, after whose cut the
diagram decomposes into two parts. Otherwise a connected
diagram is called strongly connected.

According to the definitiop, in a weakly connected diag-
ram o) there is an internal line L s after whose

cut the diagram decomposes into two parts ¢$1 and :1)2 .



The momentum KL y corresponding to this line, is uniquely
determined by the external momenta. The integral T‘.b of

such a diagram is equal to

T,=J, ), 24 s(zp)

P2 kl-m,

(1.8)

where P (KL) is a well-known polynomial witﬁ respect to K.L .
Thus, the line L gives a pole in To « The other singu-
larities of the diagram D are determined by those of
the diagrams 3)1 and 1)2 . Therefore, in order to find

the branch points it is suffioient to consider the strongly
connected diagrams of the given process, as well as the
strongly connected diagrams of the corresponding lower pro-

caesses.

5. We shall solve the following problem. Let in the
diagram 3 there be such two lines LJ_ and l‘z s that
the diagram does not decompose into two parts after the cut
of any of these lines and deoompdses into two parts after
the cut of both of them (Fig.l). It is required to find
Qé(“:P)in the case when all o except o and «, , cor-

‘responding to the lines Lj_ and Lz , vanish.



Fig.l

In this case the condition

Ky~K =Ps+P - *Pn (1.9)
is imposed on the momenta K, and K; , corresponding
to the lines L, and L, . In the diagram D there
exists a closed loop, passing through the lines [2 and Z;».
Let K., K, 3 eeue s K; be a set of "internal"™ momenta of
the diagram §D satisfying the momentum conservation in
each of its vertioces Then K: and K, satisfy equation (1.9).
We orientate the above-mentioned loop and add an arbitrary
momentum [ to each momentum corresponding to a line from
this loop. The remaining momenta of the diagram are left
unchanged. This procedure does not affect the momentum con-

v
servation in each vertex of the graph. Thus, 4 is an

independent momentum.



The form J( is equal to |

]{ (<, pst) = o (x, m)-nz,(q my) =

- {1.10
= (o, + o) 1 +2t(°(:"t +oG K ) + Z'“'(K ). * )
1 ¥
From the condition
42K _ (,,(+az)z‘+o(K°+a//c’==0
2 ¢ T2 rer 2.2 (1.11)
follows
o
t “{1K1°+°(2 Ko
o) + oy ' (1.12)
By substituting (1.12) into (1.10), we get
2
o.-+ a/d 2 =
Q (t3P) = Fr) e _ 0/1_”’12‘”‘2 my
of + oy ‘ (1.13)

6. If the momenta are such that their scalar products

are real and the inequality

h-1
Qn(’w,P)zZ /4‘,;("");%/% 2_ x,m’ < ﬁ}‘x
: F

v=1
(1.14)

holds then (1.14) may be reduced to the form
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lLet us denote by 6'5 (@) the domain of the values of the set
of external momenta. with the real scalar products determined
by the condition (1.14). The sum of the regioms U G (D)
is denoted by G(@) . Integral (1.15) is absolutely oon-
vergent,' ifthe set of external momenta takes the values

from the region ( (D) .

7. For the diagram &0 treated in 5, in the region
( (D) the inequality

Pzz(&.,.... "'PN,)Z < (m1+m2)2.
(1.16)

is fulfilled. Indeed, in the region 6' (?) for arbitrary

non-negative values of such that 2___'_ oy, > 0 the form
Qz < 0. Therefore, 1in this region ex;;e’ssion (1.13) must
be also negative. In order that expression (1.13) would be
negative for all non-negative &, and «, , it is neces-

sary to fulfil imequality (1.16).

2. Majorization of Feynman diagrams

8. To establish the dispersion relations for the scatte-
ring amplitude it is not necessary to know the domain G (D)
for each graph 0] sy but only the intersection of the re-~
gions Gg = aQR G(2) of the diagrams forming a certain set
R . mhis is because according to the perturbation
theory the amplitude of any process is represented by a sum

of integrals corresponding to all the various graphs of this



process. The kind of diagrams jvem:erning this sum dependents
on the type of interaction k

Let R be a set of connected diagrams of a definite
process. If, for two graphs DE R apna DER, it is
known that @ (D) S G (D) then in finding the intersection
of the regions GR =:DQRG(25)among the two graph & and D’
it is suffiocient to take into account only the graph D .
In this case we say that the graph & majorizes the graph
SO’ or that the graph $’ is majorized by the graph 0 .

It follows from (1.14) that if

A, (% P) > Ay (=« pP)
max 2z Max ——————7"
< M%) x My () (2.0)

’
then G (D) & G(D), i.e. the graph O majorized the
graph D’ . The inverse is also true: if & (D)< G (D)
then (2.0) is fulfilled.

9. Let us consider the connected graphs wi.th Z/v =2/?
external nucleon and [M external JU -meson lines, in
each vertex of which three and only three lines converge:
an even number (2 or 0) of baryon lines and an odd number
(1 or 3) of meson-lines. The set of all such graph is de-—
signated by 9?, .

In each diagram DE R there are ) open polygons
formed by lines having a baryon charge. Since the I -meson
mass is the smallest in &0 s and the nucleon mass is the
smallest among the baryon masses, then in replacing all the

lines of the above-mentioned open polygoms by the nucleon



ones, and the rest lines of the graph - by JT -meson ones,
M; decreases, and, hence, Q;b - increases.,

Thus, the graph ED* obtained after the substitution
of the masses majorizes the initial graph D . Therefore;
GR. = G:R’ where ﬂ* is the sub set of graph R*Cﬁ,
in which there are .ﬂ nucleon open polygons, whereas all

the rest lines are JU -meson ones.

10. Further we will not treat the general case of real s
scalar products of the external momenta "Pa s but restrioct

ourselves to the particular oasex) s when

Pz = (?ﬂaPa)z?O
(2.1)
for any real ﬂa « The space of all the vectors of the
form p= g ﬂ.,/:., is denoted by P . 1n case (2.1)
from (1.4), (1.5), and (2.1) follows immediately
LEMMA 1. The form Q;,, is equal to the smallest value
of the rorm JC,.O on condition that the vectors K, € P
satisfy the law of momentum conservation in each vertex of

the graph/ 9/ .

x) In /455,7-11/ the vectors satisfying condition (2.1) are
ca.lled Euclidean. Note that this definition of the Euclidean
space coincides with that generally adopted, if only the
zero vectors has a zero length. The space of veotors satis—
fying only condition (2.1) is usually cailed semi-Euclidean.



Note that the statement of the basioc theorem of paper/7/
follows immediately from this lemma.

1l. Considered as an example the following graph ( see
Fig.2).

Fig.2

Dencte by P; the external momentum outgoing from w0
the vertex ¢ ( the sum of all external momenta 1s equal to
zero). Put the momenta on the internal lines meeting in the

vertex ¢ , equal to 4P . Then

4](_' = (oly+ o )(P1 dm’) + (o, + ot Y(RP-4m®) + (oty+ots’) (p3-4m?)
2 (2.2a)

for the first graph and

4]{% = (g + o ) (pf-4m’) + (aty+ )Y (pi = 4m*) + G4ea) (pi=4mIt
. _ (2.2b)

+ (o(,,-fd,’)(ﬁ,z— 4m?) + (% +a/5’)[(f, +p)- 4,,,2]

for the second graph.



[P

If

P£z< 4)712 , ¢=1,2,3
(2.3a)

then expression (2.2a) is negative, and hence, by the
lemma the corresponding le‘ is also less than zero.

By analogy, if

)

< 4m2’ ,,‘=1,2,5,4, (P,+ 2<4m22
P; Prtle) v (2.91)

then expression (2.2b) is negative, and, hence, by the
lemma, the corresponding 02,3 : is also less than zero. In 7
it was proved that in the region (3 (D;) the oconditions
(2.3a), are fulfilled., and in the region & (D;) the
conditions (2.3b) ai'e fulfilled. Thus, by condition (2.1),
the region G (2)1) is determined by the inequalities (2.3a),
whereas the region G(@z) is determined by the inequalities
(2.31).

12. This lemma allaws to prove the following two theorems
which play the main part in the majorization of graphs.

In order to formulate the first theorem, we determine
the notioz.; of subdiagram . If as a result of removing
from a diagram DE R some internal lines and internal
verticesx) a graph D'eR is obtained, then we shall call

x) The vertex is called external, if an external line enters.
it. Otherwlse it is called internal.



the graph g), subdiagram of the graph & (with respeoct
to K ). This definition needs a further explanation..

If in a certain vertex @ of the graphD ¢, lines meet
then in removing all the Za lines it is necessary to re-
move the vertex «& inself. The vertex & may be re-
moved also in the case when f,_ "2 lines are removed, whereas
the remaining two lines are united into one. In no other ca-

se the vertex @ is removed.

13. Let us give some example of subdiagrams. Consider
*
the set of graphs ,(j?, .
v ’ *
a) Choose in the graph DER two lines ab and cd
(see Fig.3a).

4

a § a e b
7 ]
Cc d c g
, i £
o) 8)
Fig.3

On these lines we add the vertices &€ and and
connect these vertices by a meson line ( see Fig.3b). As
a result we obtain a new graph De R*. The initial dia-
gran D  1s a subdiagram of the graph D .



b) Let in the graph De m*between the vertices «
and § there be a self-energy part, nucleon or mesen
(Fig.4). In virtue of the faoct that in each vertex of the
graph an even number (0 or 2) of nucleon lines oonve.f-
ges (that ensures the cc;ﬁervation of the nuoleon_oharge),
in the nucleon self-energy part there exists a continuous
path ab sy conneoting .the vertices @ and £ s and pas-
sing only along nucleon 11nes; In the meson self-energy part
there exists a continuous way aé s oconnecting the verti-
ces a and b s and passing only along meson lines. We
remove all the lines of the self-energy part along whioh the
path aé does not follow, and all its vertices except &
and & . The way af turns into one line @4 nucleon

or meson, depending upon the type of the self-energy part.

K A
0. 0.0.9.0.0.9,
NI
2020.?.:‘;:.30}3.:’:9:4:V
K XA/

V0 0.0,0.9.9.0.0.0.¢.
0.9 0.0.9.9.9.0.0°0.0.¢
02020200.0.020%0%0 %

9%
.0, 0. 0.0
) %4%6%%%%% %2

‘Fig.4

The graph $/ obtained from the graph & by subsfié
tuting the self-energy part by the corresponding line, 1s
strongly connected and is a subgraph of the graph 0 .



o) Any connected graph cbnstructed only of meson lines
and vertices is called a star, and its external lines -~ .
prongs.

Let in the graf)h DE R*there be a certain star Z ‘,
all prongs of which are ending on the same polygon at the
points Sy 5; 5 eeeee 9y Sy 9 Sk, the points S, ,
ceseey Sy lying between the points “S, and S, . In view
of conneotivity in the star % exists a continuous way / ,

connecting the points S; and S, . Let us remove all the

lines of the star except those along which the way L.
follows, and all its vei'tices y as well as the vertices

Sz 5 eeeey Skg . Then the way L turns into a meson
line connecting the points .S; and S , and we get a new
graph D’ .rﬂ.)* . The graph D" 1s a subdiagram of the

diagram O .
Having applied to each such star the above-described

process of substituting the star by the meson line, we get
a2 new subdiagram of the graph D .
®
d) Consider the graph <LE R of the form ( see Fig.5)

4

Fig.5 .



in Whioh the lines 'A.'. 9 22 9 e ey sz.’i and [1 [} 4 9

i
cey f,tl are meson ones. Having removed the lines 22 ’

4 9 eeeey A,, - together with the vertices they connect

p)

we obtain the subdiagram ( see Fig.6)

Fig.6

Fig.7



in which the lines A, , A, , oo , Ay anda & , 6 ,

ceee 4H1 are meson ones. Having removed the lines 22

A

we get the subdiagram ( see Fig.8)

H

y ) ceee g Ay together with the vertices they coﬁnect,

Fig.8

14..TBEOREM 1. Eaoh diagram is majorized by any of its ..
sdbdiagrams.

Proof. Let some lines Lzs, $ =1, .... ,1+n, , N> o
of the graph be united into one line L, of the subdbgraph.
We have m,.=m,, $§=1, .cc. y 1+n, . Let K, be the
momenta on the internal lines of the subdiagram satisfying
the conservation law in each of its vertices. If on each in-
ternal line of the graph subjeot to a removal, the momentum
is put equal to O and eaoh line L, the momentum Ko
is put equal to K, corresponding to the line Az ’
then the law of momentum conservation will be fulfilled in

each vertex of the graph as well.



Let us denote the Feynman parameter of the line ‘f’zs
by =x,. , and the parameters of the removed lines by 5y .

(3]

Then

. 2
K=~ L g + T (o)

(2.4)

where

Since

JL o Zz Xy (k=) (2.5)

- .
then J{.:a&‘j{:o” and, hence, by lemma 1 Q@ = '“?a’ too.
Thus, ((D) = G(_;Z)') and the treorem is proved.

15. THEOREM 2. Let the graph & contain a closed
loop with n+1 vertices, to N sides of which the mass M
corresponds, and to one side-—~ the mass m=<M . Change the
masses on these sides in the following way: M-m, m—-M .,
As a result a new graph iD is obtained, which majorizes
the graph 0 .

Proof. Let K 5 eeee K, K,,,l & P - ve the momenta
_on the sides of the closed loop orientated in a definite way.
If an arbitrarywmomentum t 1s added to each of these mo-
menta, and the other momenta of the graph are left unchanged,
then the law of momentum conservation in each vertex of the

graph will not be violated. The form .]f@; of the graph ;7)'

is equal to



’ 2 2 Ve 2_ .2 2_,,3
xz' = ned [(Km1+ t)—M]-'-‘.Zl“c [(Ki+t) m]+vz-ﬂ" (?v m")
| (2.6)
7
where o; are the Feynman parameters of the sides of the

loop _Fv are the parameters of the remaining lines of the
graph. The smallest value of the form‘xm( for e P 1s

my é~A
Ka’ ("2 J‘f Vo 77 (dl + . +d ) M dﬁ‘l-f'
d‘. +a/2 -+ e Xh-#-.‘t
(2.7)
+ 2 m?
> B, (g/-m?)
If we put
2 2
, . M, t..4,) +ma,,
d‘.' = ﬂ, L’f,z, ,h, d”:l_._ aaZNJ, X = ” (] ',
™ a’.,-l-aé-l- +¥""‘(2.8)
then
n -1
—_— — 2 > 2 . (k. - k.Y
M-m® 3 it ¢ d ¢ J)
xﬂﬂ =‘K® + mz :
Q/1+d2 + .. +a(n+1 (2'9)

Hence

X, <K,

and, therefore, by lemma 1

Qz = OE'

Thus,



G (D) s G(D).

Note, that if the graph 2D Dbelongs to a certain set R ’
Ve .

then the graph ) , generally speaking, does not belong

to R . However, its subdiagram may belong to R . In

this ocase such a subdiagram majorizes the graph D .

16. Consider the application of theorem 2 to the
graph of the following two forms.

a) Let the graph De R be of the form ( see Fig.5),
the 1ines A, , .... » Az,,y are nucleon ones, whereas the
lines €5 4 ...+ 5 {,,, are meson ones.

Applying the operation of theorem 2 to the triangle

s A s A

together with the vertices it connects, we a the graph

with sides [

1 , , and removing then the line

of the same form, with ¥V  replaced by v-1 .
After Y such operations we get a graph ( see Fig.6) on
which the line L is a meson one, and the line A is a
nucleon one. This diagram majorizes the initial graph D
b) Let the graph D& .(R*be of the form ( see Fig.7),
the 1ines A, 53 A, 5 eeee 5 Ay g being nucleon ones,
and the lines ’f’,-, A () meson ones.
Applying the operation of theorem 2 to the quadrangle
with sides 6, A,, 43, 4, , and removing then the lines A,
and A‘, together with the vertices they connect , we get

& graph of the same form, v being replaced by v-2 .



If V=4yu-1is odd, then after ¢ such operations we obtain

the graph drawn on Fig.8 on which the line L is a meson

one, whereas the line A is a nucleon one.

If v-ZIu is even, then after M such operations

‘'we obtain the gra\ph drawn on Fig.9.

Fig.9

Depending upon the parity of V , the initial graph is

majorized by the graph of Fig.8 or Fig.9.

pav2S | and

17. The system of lines Ai ’ ),_ g eees 9 A

b 30 5 «eev 5 £,,, of Fig.5 will be designated by the

sign [7 of Fig.1l0a, and the system of lines of Fig.7
by the sign [l of Fig.10b. If the lines




A and € are meson ones, then the letters [ and n
will be provided by the index m" , if the lines ¢ are
meson ones, and A are nucleon ones, then these letters
will be provided by the index ~ . In according with what
has been proved earlier if the graph De .?*ha.s a part r
or 1 , then it is majorized by the graph D’ which is
obtained from ) by the following substitution

(see Fig.11).

o—_

< §:§-—-
o0
) )

— vy
m o
Fig.ll

18. We call the diagram vﬁ of ﬁ* primitive in 91. ’
if with the aid of theorems 1 and 2 it is impossible to
find a majoriziﬁg diagram in ﬁ* . For instance, a c¢losed
loop with. 4,*4 sides from whose vertices /H external
meson and f,v external nucleon lines go out is a primitive
diagram. The only exoception is a closed loop with two exter-
nal and fn*’i internal nucleon lines when 4' > 0.

Denote by ﬂo the set of all primitive in R* diagrams.
As each of the graph of R' has a finite number of vertices

and lines, it is majorized by at least one graph from ﬁ, .



‘Therefore,

Gg = Gg* = Gg,

In the next paragraphs the set .(/?, with {"+[~54w111 be

found.

3. One~Partiocle Green Function

19. The nucleon self-energy part ( ZH =0, [,_v =2).
Any graph D& ﬁ'of the nucleon self--energy part, according
to 13¢c, has a subgraph which consists of a nucleon open
polygon ? and some meson lines Jjoined to it. The open
polygon P conneots the external vertices @ and &
of the graph O .

Let the meson line going out from the vertex 4
come back to the open polygon P at the point a’ . If a

does not coincide with 5 s then among the meson lines
which emanate from the vertices lying on the segment aa’ ‘
of the open polygon ? we choose that }one which comes to
-the polygon g) into the farthest from <« point of p .
Denote this point by CZ; s the other end of this line - by

a, .1If al' does mot ooincide with € , then among
meson lines, which emanate from the vertices lying on the
segment ala; , we choose that one which comes to the open
polygon %P into the farthest from @ point of the polygon.
The ends of this line are designated by 4, and az,' . Repe-
ating this process until the point 0(\,' coincides with é ’
we shall single out the system of lines drawn on Fig.1l2.



Fig.12
The remaining meson lines are removed together with the
vertices they connect. As a result we get the snbdiagram

of the graph &  drawn on Fig.l3a.

Q) 8)
Fig.13
According to 17 this subgraph is majorized by the

e
graph of Fig.13b. Thus, any graph DE R 1s majorized by

3
]
3

the primitive diagram of Fig.1l3b.

20. The meson self-energy part (é; =2, é,:o). Since
/i, =0 , all the lines of any graph DeR® of the meson
self-energy part are meson ones. In view of the connectivity
in the graph D exists a continuous path l: connecting

the external vertices & and 5 « A1l the stars whose



prongs are ending on the path L are replaced by meson
lines comnecting their extreme vertices ( see 13c¢). Repeating
further the considerations of 19, we are led to the sub-~

diagram of Fig.l4a

Q) . 6’)
Fig.l4

According to 17 this subdlagram is majorized by the

)

*
primitive diagram of Fig.l4b. Thus, any graph D E R
is majorized by the diagram of Fig.l4b.

4. Meson-Nucleon Vertex Part (f; =], f; =2).

2l.Any graph De ?*of the meson-~nucleon vertex part
has one external meson vertex ¢ and one nucleon open
polygon oonnecting the external vertices Q4 and 6 .

a) Let the vertex ¢ 1lie on the nucleon open polygon
ab . Any meson star with all its prongs ending on the
nucleon open polygon ab 1is replaced by a meson line con-
necting its extreme vertices on this polygon. As a result
we obtain a subdiagram'in which every meson line connects
two points of the nucleon open polygon. In an analogous

manner one can show that in such a graph there is at least



one of the following two subgraphs ( see Fig.1l5).

Fig.15

According to 17 these subgraphs are majorized by the
graph of Fig,16. |

| c
/\ q<€( 6
a 8 '

Fig.l6

-

Applying to graphs of Fig716 the operation of theorem 2,

we get the following primitive diagrams ( see Fig.l7).



a) 8)
Fig.l17

Thus, if in the graph @Eﬂ.the vertex C lies on the
nucleon open polygon, then the graph D is majorized
by one of the primitive diagrams of Fig.l7.

Further we prove that any graph D€ R" as also ma jo—
rized by{ one of the graphs of Fig.l7.

b) Let the vertex € in the graph De R lie outside
the nucleon polygon aé . In virtue of the connectivity
there ‘exists a meson way from at least one point of the
nucleon open polygon aé to the point ¢ . Among all such
points the nearest to & 1s called characteristic point a.
In view of the strong connectivity @ does not coincide
with 5 . Bach star connected only with the nuc¢leon open
polygon 1s replaced by a meson line connecting its extreme
vertices on this pblygon. Thus, we single out in the graph

A a certain subgraph 50/ . In view of strong conneoctivity
of the graph 52)’ among all the meson lines going out from
the segment lc?g of the nucleon open polygon there may be
found at least one which comes to the segment a@ of this

polygon. Let us denote this line by 4 y and its ends by 4,



:
F

"this graph majorizes the initial graph. Let the points &,

a a , a,€ad,aedé.
Let the point &; coinocide with the point a
see Fig.l8a).

&) c)

Fig.18

Having replaced the nucleon lines of the segment aal’ by
meson ones, and the meson line 4 - by a nucleon line, we
obtain a graph with a new nucleon open polygon af Ql'g ’

on which the point @ will be characteristic. By theorem 2

and @ do not coinoide. In such a case, in view of strong

connectivity among the meson lines going out from the seg-

“ment a,é? of the open polygon @€ there exists at least

one which comes to the segment 2@, of this polygon. Among
such lines is chosen that one which comes to the nearest
point to @ . Designate this line by fz s and its ends by
@, and 2, , a, € aa, » a, € a,& - Let the point
@, coincide with the point a@ ( see Fig.18b). Having
replaced the nucieon lines of the segment a, aJ_’ by meson
ones, and the meson line [_’t by a nucleon one, we get a
graph with a new nucleon open polygon & a14 a; & y ONn

which the point @ will be characteristic. If the point ,



does not coinoide with & s we continue this process
until the point @, ooinoides with & . All the meson
lines except £, » cese s Cy , ending on the segment @4/
of the nucleon open polygon , ;re removed together with the
vertices thej connect. As a result we get the subdiagram
drawn on Fig.l8c. Acocording to 17 it 1§‘majorized by the
‘graph of Fig.18b. Therefore, if in the graph D€ R"the point
c does not lie on the nucleon open polygon, then 1t is
majorized by a diagram in which there exists a meson path
. from the point a to _the point cC « Thus, there remains
to oonsider the graphs in which there is a oontinuous path
caé ( open polygon ), the segment ca of which is a meson
one, whereas the ségnent aé 1s a nucleon one. Each star of
such a graph whose prongs are ending on the open polygon i
cab 1s replaced by a meson line connecting its extreme
vertices on this polygon. As a result we obtain a subgraph
in which all meson lines end on the path caé . Now it is
not difficult to prove that in such a graph exists at leastv

one of the subdiagrams drawn in Fig.19.

Fig.1l9 )



According to 17 these graphs are majorized by the primi;
tive diagrams drawn in Fig.1l7. Thus, it is established
that any graph D E R* of the meson-nucleon vertex part
1s majorized by at least one of the two primitive diagramé
of Fig.17.

22, One can prove by analogous considerations that
in any graph D€ R " of the meson vertex part ( &, =3, (v =0)
there is at least one of the two subdiagrams ( see Fig.20).
Both these graphs are primitive diagrams

a)

Fig.20

5. Nucleon-Nucleon Scattering ([1, =0, é; =4)

*
23. Any graph of the class 92 of the nugcleon-nucison
scattering 1s majorized by at least one of the following

primitive diagrams ( see Fig.21).



a)

Fig.21l

Proof. Let the external vertices a and & of the graph

;D_E.'R.'lie on the nucleon -open polygon ab , and two other
external vertices C and d -~ on the nucleon open polygon

cd . It is suffiolent to consider the graph in which
from the point @ there{exists a meson path to the polygon
cd . The proof of this statement is analogous to 21 b.

This meson path may come both to an external vertex, say, to
the vertex C sy and to any internal point € of the poly-—
gon cd ( see Fig.22).



a) &)

Fig.22

2) Consider the first case. Each star all prongs of which

end on the open polygon bacd 1is replaced by a meson line
connecting its extreme vertices on this polygon. As a result
we get a subgraph in which each meson line which does not
belong to the path ac , conne?ts two points of the open po-
lygon bacd . Repeating further the considerations of 19
it is easy to prove that the graph D has at least one

of the graph drawn in Fig.23. According to 17 the graphs A
and £ are majorized by the graph of Fig.2la, 8 and F
- by the graph of Fig.2lc, & and G - by the graph of
Fig.21d; finally, the graph ( 1is majorized by the graph
of Fig.21b.
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Fig.23

b) We shall call the open polygon of the type drawrn inf
Fig.22a NMN polygon. Now we have only to consider such
graphs from JQ. in which no ANMN polygon exists, but does
exist the system of lines of Fig.22b whioch further will be
denoted by Y .

Let in the graph DE -(R-‘exist such a system Y . In
view of strong connectivity on the open polygon bag
at least one point exists from which starts a path to the
open polygon ced without common linear sections with the
system Y . Among such points the nearest to g is called
é. characteristic point of the openm polygon bae nwd denoted
by g . The corresponding path frxom [: {e the open polygon
ced is desiznated by /[, . Each star -connected wiih
the open polygon bae is replaced by a mescn line connec-

ting its extreme vertices on this polygon. Repeatin® further

the considerations analegous to 21b, we prove that 1if 5(: ba



the graph & 1is majorized by one of the graphs of Fig.24.

L
5<E;i\\ji”//;f a e &
o(; 8)
Fig.24
whereas at gé a€ - by one of the graphs of Fig.25.

(2 1/
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Fig.25

According to 17 the graph of Fig.25 y) is majbrized by
the graph of Fig.25 «y) , whereas the graph of Fig.25d) -
by the graph of Fig.25p . In accordance with the same sec-
tion 17 in the graphs «) and P of Figs.24 and 25 the



vertex part r'_isjreplaoed by the .vertex 5 . After this
in graph 24«) all the nucleon 1ines of the segment & gf
are replaced by meson ones, and. the meson line gf - by
nucleon one.1Aooord1ng to theorem 2 the new graph thus ob-
tained majorizes the graph of Fig.24 «y . In this new dia-
gram the point'g is a characteristic point of the open po-
lygon é‘fae | o
As a result, if in the graph JDEfR* there is a system
Y’ s then it 1s majorized by the graph in which there

exists at least onme of the four systems of lines of Fig.26.

6 .9 —2
. 5 a

o. ~@ .0
a) 8)

6 —e

c) , d)

Fig.26
In this figure the point g' is the end of the path Z-.
This point may be both an internal point of the nucleon open
pélygon cd y and its boundary point. In the latter case it
is sufficient to oonsider only the system of Fig.26Db, since
if in the graph there is a system a), o) or d) of Fig.26,



then there would exist also a NMN  polygon . The system
of Fig.26b together with the nucleon open polygon cd

in this case forms the following part of the graph ( see’
Fig.27). |

Fig.27

It 9 1s an internal point of the nucleon open poly-
gon cd , the systems of Fig.26 together with the nucleon
polygon c/ form the following two systems (see Fig.28).

2___1 6 <2 ¢
5
4 7
) v
a) _ 5)

Fig.28



Thus, it i8 established that if in a graphk D gl*r
extsts a system Y , but there is no MMN polygon, then
tt ts mnjerized by a graprh in which there is at least one
of the three systems of Figs.27 and 28. It is these graphs
wvhich we have to consider. By analogy to 21b one can prove
that it is sufficient to consider graphs containing the sys-
tem of Figs.27, 28a, or 28b, 1ﬁ which thgre is a meson path
L “from the point 1 to the part of this system, comple-~
mentary to the segment (1,2).

¢) Let in the graph DeR” ve no NMN poslygon, but exist
a system of lines of Fig.27. In the following this system
will be denoted by I. In such a graph the path L together
with figure I forms one of the.following three filgures
(see Fig.29).

4 2 2 2 ’
6 { 4 6 1% 3 6
2 7 9 23 5 g2 5
«) 8) ' c)
Fig.29

Hencé, in the graph &£ there is at least one of the
three subgraphs drawn in Fig.29. In the graph 29a we remove
the line (2,7) together with vertices 2 and 7. As a result



we get the diagram drawn in Fig.30. In this subdiagrém we

5

| Fig.30 '

replace the nucleon lines (4,5), (5,3 ) and ( g9 y6) by
meson ones, whereas the meson line (4,6) by a nucleon one.
After this we ‘remove the line (5L3 ) together with the vef—
tices 5 and (9 . As a :esult we obtain the primitive diagram
of Fig.2la. In the graph of Fig.29b we replace the nucleon
lines (1,2) and (2,; ) by meson ones, &nd the meson line
(1,3 ) - by a nucleon one. After this we remove the ling
(2,9 ) together with the vertices 2 amd g o As a_reénlt
we get the primitive diagram of Fig. 2lc. The diagram of
Fig.29¢ 1is primitive. It is drawn in Fig.2le . .

Thus, in the case under consideration the graph &
is majorized by one of the primitive diagrams a), c), e)
of Fig.21. -

d) Let in the graph DE fR'exists no NMN polygon ,
but exists the system of lines of Fig.28a. Further we shall
denote this system by II . If the way / from vertex 1
leads to vertex 4, then the graph X has the subgraph:of o



Fig.30, and, hence, it 1s majorized by the primitive diagram
of Fig.2la. ‘The path L cannot lead to the segments (2,5)
and (3,6), since otherwise fhere:would exist a NMN poly-
gon. If the path L leads to segments (5,6), (2,3) or (3,4),
then the figure II together with the path [  makes one

of the following three, respectively (see Fig.31).

o

) g 3
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g 3 5 1 4 9
7 3
2 2
a) 5) c)

Fig.31

These figures are denoted by IIa, IIb, IIlc.

e) Let in the graph D€ R no NMN polygon exist, but
exists the system of Fig.28b. Thié system will be designated
by III. The way L cannot legd from point I to the segments
(398)y (548) or (7,8) , since otherwise there would exist
a NMMN  polygon. If this path leads to the segment (2,6),
(6}7) or (5,6) , then the graph & is majorized by at
least one of the primitive diagrams a), c), e) of Fig.21,
sihce in these cases there exists figure I in 1it.

If the way L 1eads



to vertex 4, then the graph L has a subgraph drawn in
Fig.32. Apply the operation of theorem 2 to the quadrangle

6 2
1
S5y 7
y
8§ 3
Filg.32

1234 of this subgraph and remove then line (2,3) together
with vertices 2 and 3. As a result we obtain the primitife
diagram of Fig.2lc, majorizing in this case the graph D .
If the path L leads to segment (2,3) or (3,4) s then
figure III together with this path forms one of the follo-

wing two system of lines, respectively (see Fig.33).

a) 8)
Fig.33



These systems will .be denoted by 11la, IIIb.

So, there remains only to cronsider the graphs which do
not contain a NAMNM polygon, but contain at least one of
the five figures IXa, IIb, IIc, IIla, IIIb.- As before, one
can prove that it is sufficient to restrict oneself to the
graphs in which there exists a meson path from point 4 to
the system complementary to the segment (4,3) (or (4,3 J) ).

£) Let. in the graph D€ \(R*be no NMN polygon, but exists
. figure Ila. The path L from point 4 cannot lead to seg-;
ments (3,6) and (2,5) since otherwise there would. exist a
NMN polygon. If thris path leads to the region ( g1,
then the graph & nas subgr®aph of Fig.30. Hence, it is
majorized by the primitive diagram of Fig.2la. If the 'path
L leads to the region (1,2) or to (2,3), then in the
graph there 1s a subgraph of Fjl.g.34a or Fig.34b, respeotively. -

9

6 { 4
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3 7 f
a)
Fig.34

Having applied the operation of theorem 2 to the quadran-
gle 432f of the graph of Fig.34a and to the triangle 43f
of the graph of Fig.34b, we get new graphs, in each of them



there is a primitive subdiagram of Fig.21lb. The latter one
in the given case majorizes the graph & . If the way L
comes to the segment (6,3 ), or (5,# ), then in the graph
there is, accordingly, a primitive subgraph £) or g) of
Fig.21.

g) Suppose that in the graph &DE .CR* there is no NMN
polygon, but there exis#s the figure IIb. The path L .
cannot lead from point 4 to the regions (3,6) and (2,5),
since otherwise there would exj;st a NMN polygon. If the path

from point 4 leads to one of segment (5,6), (5,3 )y
(2,3 ) or (1,2), then the graph & has a subgraph, in
which the loop (12g I) satisfies the condition of theorem 2.
After applying the operation of theorem 2 to this loop the
subgraph will turn into the graph conteining a NMN poljgon.
Thus, in this case the graph & 1is majorized by the graph
treated in 23a. If the path [ leads from point 4 to the
segment (1,9 ), then the graph & has a subgraph of Fig.30,
and, therefore, it is majorized by the primitive diagram of
Fig.2la.

h) Let in the graph ﬂ)eﬁ*be no NMN polygon, but exist
the figure IIC. If the path L leads from point 4 to any
segment of this figure, except (1,4 ), then the graph D
has a subgraph in which the closed loop (1233 1) satisfies
the condition of theorem 2. After applying the operation of
theorem 2 to this loop this subgraph will turn into a graph
containing a /V/“M/ polygon. Thus, in this case the graph $



is majorized bjr the graph treated in 23a. Tf the path [
Vleads'from point 4 to segment (1,3 ), then the graph has a
subgraph of Fig.30 and is majorized by the primitive diagram
of Fig.2la.

1) Let in the graph D& R ve no NMN polygon, but exist
figure IIIa. If the path /[ 1leads from point 4 to any
segment of this figure, except segment (l,g‘) then such a
graph has a subgraph in which the oclosed loop (123> 1) satis-
fies the condition of theorem 2. After applying the operation
}of theorem 2 to this loop this subgraph turns into a graph
> containing figure I. Thus, in this case the graph O is
majorized by the graph treated in 23c. If the path L
leads from point 4 to segment (1,9 ), then the graph 0
has a subgraph of Fig.35. Apply to the loop (12341) of this

‘subgraph the operation of theogem 2 and remove then line (2,3)

together with vertices 2 and 3. As a result we get the primi-
tive diagram of Fig.2lc, which in the given case majorizes
the graph 20 . .

6 2
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Fig.35
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Proof. 1In the graph D€ fR‘of meson-nucleon scattering
the nucleon lines make up only one nucleon open polygon. Let
a and 6 ve the external vertices situated at the ends
of this polygon, whereas C and @ =~ the other two exter-

nal vertices.



j) Let, finally, in the graph DE R’ be no NMN

polygon, but system IIIb, If the path L leads from
point 4 to any segment of this system, except the segment
(1, g ), then the graph has a subgraph in which the closed
loop (123.9 1) satisfies the condition of theorem 2. After
applying the operation of theorem 2 to this loop, this sub-
graph will turn into the graph in which there is a NMN po-
lygon. Thus, in this case the graph & 1is majorized by the
graph treated in 23a. If the path [, leads from point 4
to the segment (1,9 ), then in the graph D there is a
subgraph drawn in Fig.35, and, hence, it is majorized by
thé primitive diagram of Fig.2lc.

So, it is proved that any %raph from g{* of the nucleon-
nucleon scattering is majorized by at least one of the pri..

mitive diagrams of Fig.Z21.

6. Meson-Nucleon Scattering ( Cw =2, L, =2)

¥*
24 . Any graph of the class 9? of meson-iucleon
scattering is majorized by at least one of the following

primitive diagrams ( see Fig.Bb).



a) Consider first the ‘grapl'} SDE.(R*, in which the vertices
c and o are situated on fhe nucleon polyzon. Each
star in such a graph connected only with nucleon open po;y—
gon 1s replaced by the meson line connecting its extreme
vertices on this polygon. As a result we get a subgraph
in which each meson line ends on the nucleon polygon. Repea-
ting further the considerations of 19, it is easy to prove
that the graph D has at least one of the subgraph drawn
in Fig.23. Hence, it follows by 17 that in the case under
consideration the graph Q) is majorized by at least
one of the graphs drawn in Fig.37.

O © C
O db Al

Fig.37

Having applied to tﬁese graphs the operation of theorem 2,
and, then, 1if requiréd, the operation of theorem I as well,
we obtain the primitive diagrams a), b), ¢), e), £), h), k)
of Fig.36.



In all these primitive graphs exists one of the open
polygons drawn in Fig.38 ( the external vertices are marked
by numbers). Prove.that any graph from ﬂ* is majorizéd
by a graph in which exists one‘of these polygons. The first
polygon will be called NNM polygon , and the second
NM polygon.

2R

QR R ) atta—C) (e e )
d 2 3 4 f 2 3
a) {)
Fig.38

b) This has been already proved for the graphs in which
all the external vertices lie on the nucleon open polygon.
| Consider the case when three external vertices, say, |
«¢& , C and b lie on the nucleon polygon, whereas the
forth vertex o - outside this polygon. In view of the con-
nectivity in the graph there is a meson path from the ver-
tex d to the nucleon open polygon , e.g. to its segment )
ac . Repeating further the considerations of 21b, it can

be seen that in the case under consideration the graph has at

least one of the subgraph drawn in Fig.39.



A)

Fig.39

Acoording to 17 in the subgraphs b) and d) the vertex part I
is replaced by the vertex & . Applying further the ope-
ration of theorem 2 , we establish that the subgraphs a)

and b) are majorized by a graph in which a NN¥M polygon
exists, whereas the subgraphs 0) and 4) - by a graph in which
there is a MM polygon.

¢) Let now two external vertices lie outside the nucleon
polygon. In view of the conneotivity there exists a meson
path from at least one point of the nucleon open polygon to
~one of the external vertices ¢ or <& , not passing through
the othe; one. That point of the nucleon polygon from which
such a path starts and which is nearest to d is called a
characteristic one. Repeating further the considerations of

21b, we shall prove that in the case considered the graph
1s majorized by a graph with a MM polygon.



d) Let in the graph @éﬁ'exiatla NNM polygen.
Repeating the considerations of 23a, one can show that in
this case the graph D is majorized by at least one of
the graphs of Fig. 40. Applying the operation of theorem'z,

Fig.40

it is easily seen that these graphs are majorized by the
primitive diagrams a), b), e), £), 1), k) of Fig.36.

e)‘Let in the graph 2)592'9. NM polygon exist. Because

" of connectivity on the MM polygon will be found at least
one point from whioch there leads a meson path to the point
d s having no common points with the NM  polygon. Among
such points the nearest to Q@ 1is called che.ra.cteristio'

- point and denoted by @ . If the point & is situated on
the segment af , then the graph L has at least one of

the four subgraphs of Fig.4l.
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Fig.41
If it 1s on the segment bc s 1t has at least one of the
four subgraphs of Fig.42.

Fig.42



By 17 and theorem 2 it is easily seen that any graph
in which there is a AA7 polygon is majorized by the graph
in which there 1is githér a MNM polygon of figure I |
(see Fig.43). |

Fig.43

£) Let in the graph D of ._‘/2* fhere be a MNM polygon. =
Repeating the considerations of 23a, one oan prove that in
this ocase the graph & 1s majorized by at least one of
the primitive graphs a), b), g), h), 1)s i), k) of Fig.36.

g) Let now in the graph be no MMM polygon but figu-
re I. By analogy to 21b one can prove that it is sufficient
’to consider such graphs containing figureil, in which there
is a meson path L from point 1 to the part of this figure
complementary to the segment (1,5). The path /L cannot
lead from point 1 to the segment (2,6) and (3,6) since other-
wise there would exist a MNM polygon. If this path leadslto
point 4, then the graph has a primitive subdiagram of Fig.36c¢c.
If the path [  comes to one of the segmehts (2,5),(3,5) or




(4,6) it forms together with figure I one of the following
two figures (see Fig.44)

Fig.44

These figures are denoted by Ila, Ib.

Repeating the considerations of élb, one can easily
make sure that it is sufficient to oinsider.only sudh graphs
containing figures Ia or Ib, in which there is a meson way:
from point 4 to the part of this figure complementary to the
segment (4,6) or (4,3 ), respectively.

h) Let the graph D from @* have figure Ia. If the
path / 1leads to one of the segment (1,9 ), (2,6)y (2,9 )
or (5,3 ) then in this graph there 1s one of the primitive
subdiagrams c¢), e), m), n) of Fig.36, respectively.

i) Let now the graph of R* contain figure 1b. If the
path L Jdeads to segment (2,6) (1,9 ) or (1,5); then in
this graph there is one of the primitive subdiagrams b), ¢),
d) of Fig.36.



If the path [  leads to the segment (2,5), then
the graph & has a subgraph of Fig.45, which is reduced
to the primitive graph of Fig.36 a) with the aid of the

operation of theorem 2.

5
3 1 ‘
2 4
e
Fig.45

We do not consider the other segments since the figure is
*

symmetriocal. Thus, it is proved that any graph from R

of the meson-nucleon scattering is majorized by at least

one of the primitive graphs of Fig.36.

25. It is possible to prove by analogous considerations
¥
that in any graph of the class 52 of meson —-meson

- scattering ( 4w =4, QV =0) , there is at least one of the
primitive diagrams of Fig.46. V

=
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Fig.46

In the given case the proof is especially simple
since in any graph from QQ:* of the meson-meson scattering
there exists a polygon passing through all the external
verticés. Besides, these primitive graphs may be obtained as
subgraphs of the graphs of Fig.36 1n which the nucleon lines
are replaced by the meson ones.

It is evident that the obtained primitive graphs of
Figs.36 and 46 may be also used in studying the amplitudes
/14/

of the processes involving J- quanta

Part II. Majorization of Primitive Graphs

In order to determine the region (;$' it is sufficient
now to restrigt ourselves to the finite set of primitive
diagrams. Some of the primitive graphs majorize the others.
For instance, the primitive graph of Fig.20b is majorized
by the primitive graph of Fig.20a, whereas the primitive
graph of Fig.46c - by the primitive graph of Fig.46a:



This follows from the results obtained in 11. To compare
the primitive diagrams with each other more detailed informa-
tion about'the‘quadratic forms is required. Symanzik's theo-
rem and some its generalization prove to be an effective

means for this purpose.

1. An Expression of the quadratic Form of the Graph

in Terms of its Incidence Matrix

2. Let an arbitrary graph with »n vertices and £
internal lines be given and let on each such line
a direction be defined. Suppose that all the external lines
enter the corresponding vertices. We enumerate the vertices
and lines separately. The incidence matrixf%ﬁ%hdq...,n H
V =1 ..oy 4 of such a graph 1s determined in the

following manner:

I, if the line VY goes out from the vertex ( ,

%{' -I, if the line V enters the vertex ¢, (1.1)
0, if the vertex ¢ does not belong to the line V .

The law of momentum conservation in each vertex of the

graph is written as

4
z- €. K:v =P£ s e=1,...,n, (1.2)

v={

4
&

-
+2
O

s



where A, , .... , K, are the momenta on the internal
lines, Prr coee s p, are the external momenta.

Note, that in each colomn of the matrix E two and only
two elements are different from zero, one of them is equal

to I, the other - to =J1. If follows from here that

n ¢
=t ovet T (1.3)

Thus, for the self-consistency of Eqs. (1.2) it is necessary
to fulfill the condition

g P = 0.

3. If the graph is connected, then the number of

(1.4)

independent equations among Eqs.(1.2) is equal to n -1,
and, hence, £={-n7+{ momenta may be given arbitrary.
The momenta may be fixed arbitrary to such and only on
such lines whose cut does not violate the connectivity

of the graph. By changing, if necessary, the numeration

of lines one can achieve that the first .f lines possess
this property. Consider first the case when all the verti-

ces of the graph are external. We add the following equations

K =4 (1.5)



to the SyStem' Of"EqSAo (1‘.2)at .-i'ﬂl’ ‘o oo g fL‘—ii

As a result we obtain the system

Lk =S (1.6)

where ;
S_lzt, ’v"”"S;_'—:z;'é S/+.i=f:>19""'g[=/0”’1;
( 1 O hd .' . 0 o o o @ O \
o 1 o * e o o » . 0
L = o o0 .. 1 o . (o) a.n
€ _ € - - etf ex,;d tos €ie
\e""‘-’ e"";z' T en-l,i eu-l,fol. " en-;,e )

The solution of this system is unique and may be written
in the form ' |

<=L o) =L
: (1.8)



4. Let us determine in the 4 £  -dimensional veotor

space K the scalar product.

(k,3)= 2 K9,
v=1 :

(2.9)
and introduce the diagonal matrix 'ar,)v = o, S;v y 0,>0.
Then

£ 2
(K,a/C) = Z x, K,
v=4 (1.10)
Substituting (1.8) into (1.10), we get
At p=(L"s, al’s)=(s, L al™
s 3P/ = S,a S/ = S, a (111)

The matrix inverse to the matrix .[Ia L , will be La"['.
If the variables r and P are put in correspondance

to 4 and Z , then the quadratic form inverse to (1.11),
takes on the following form

/_4:, (<3 4,2) = (x,la*]l x)=

n-g (1.12)

f
Zi_l-o-i— +Ze Z)+ (Zeuz.)

s =1 S=f+] Xs

2

5. The quadratic form A (o¢,p) obtained after the integ-

ration over the internal momenta is equal to (see Part I )

ﬂ@ (oﬂp)-.ﬁ e:z‘z ﬂ;o (et ¢, p) (1.13)



The following lemma ( see, e.g. /5/) makes it -simple to -
find the quadratic form ”.2) (o, Z) inverse to the form /4.0 (d,,D).

LEMMA 2. Let the quadratic form F(X,y) be defined
by |

i-(x,a)—Z Q. X; “'ZZZK,X é’e+z Con e e =
iyj=t q fut fuf
= (x,ax) + 2(x,8y) + (¥, "9’/)-
The quadratic form, inverse to it, is denoted by F(f;,7,).
The quadratioc form = F&)= extremum F(x,4) nas an
inverse quadratic form F(:‘;) equal to the value of the
form F(;,'Z,) at 5, =0.

Aocording to this lemma

- - n-1
A (x2)= A (d;a,z)=Z Ze Z.
D 2 Suf ( ) (1.14)
It follows from here that
7
/) (x P) = __\°f d where
2 ) 5}
[/
4
_ Z e‘.s eJ'-‘ (1.15)
rf/ s=1 D(S

Let now some of the vertices of the graph be internal. We
shall consider the vertex N as an external one. Then

ﬁa(a,p) turns out to be a quadratioc form of the momenta of



the external vertices of the graph only. By (1.14) and
Lemma 2 the quadratic form ﬂ (=, 2) inverse to /4 (X,P) ’

is equal to

4 1 -4 2
A (x,8) = exte 2_ - ( 2— ‘s )
<O Z. s=.’ (£ ’

int

(1.16)

where zint are the variables corresponding to the inter-
nal vertices of the graph.

Note that in the derivation of these formulae we did
not make use of the assumption that the momenta are Euoli-
dean.

In the particular case when the vectors z'?‘- are

Euclidean, the extremum in (1.16) turns into the minimum.

2. Symanzik’s Theorem and Its Generalization

To formulate and prove Symanzik’s theorem it is useful
to give here some elementary notions about norms.x)

1. Let Z be a real N dimensional Euclidean
space. The space P of the linear functions (p,Z) defined
in Z 1is calied the space conjugated to Z sy 1f the scalar
product in ?,is determined by the formula

2 = max
P = (P:P) = ‘1 (P)z) (2.1)

x) Further, we omit some elementary proofs which one can
find in the books on funotional analysis

(see, e.g.,16 s chapter XI).



The spaces gD and Z are isomorphous and conjugated to
each ther. | | |

2. The real funotion f(?) , Z€E Z 315 called a’norm
if it possesses i:.he_ .féilowing properties: |

a) For each % e.'Z. and any real number A

(A7) = DI
b) The triangle condition -
f(x-f;y) < £(x)+ £(Yy)
whe?rexe Z ’_ cyé Z
0) If }(2) =0, then Z =0

From properties a) amd b) it follows that  f(Z)=O0.

3. Let 4 be a positive definite symmetridal matrix.
Then the function ‘

FOB) = |(z,Az2)

satisfies the conditions a), b), and o) and is an example

of an norm. In particular, |Z[= /(7 Z)

is a norm.

(2.2)

There exist norms non-representable in the form
(2.2). 1f, for instance, oy >0 then the functions

' N
{(?1,,2”) = Z ds /ZS/

s=1

— | . max "I‘"?ﬁ.l
f (2’ ) Zﬂ) = §=1,...,N O(S

are norms.



4. Let f(:!) be a norm in 2 y then the function

[(py=max [&pP)f
{(2)51 | . (2.3)

is a norm in f/) . This norm, is ocalled conjugated to 1(2) .
The norm conjugated to $(Z) is equal to f(2) .
We give some properties of mutually conjugated norms.

a) The norm conjugated to the norm (2.2) has the form.

[(p) = 1)
£(p) = Vip, A7) ot

Proof. Since ﬂ is a positive definite symmetric
matrix, then on the basis of the Cauchi-Bunyakovski inequali-

ty we have ) , .
(2,p) = (A'z. 47%) = (2, A48)(p. A P)
Since in the region (2,Az)< 1 for any P

-
there exists a non-zero vector parallel to A P sy then

F(p)= max [P = |ip, AP

(z,Az)61

*

v) Let f,(P) and £, (P) Ybe two norms in P,
}1 (2) and ,tz(z) the conjugated norms 1in Z . In order
that the inequality

) >
;1 (P = 3(2 P, P& -([3 (2.5)



holds, it is necessary and sufficient to fulfil the

inequality

2) < £ (Z) e Z.
Proof. Let G.t and az be the sets of points & ,
where }1(1)5 1 ana }2(2)51 respectively. By (2.6)
G“E C,1 and, hence )

max l('Z,P)) > max /(Z,ID)I

z2€ G, - 2e(,

c) If f(Z) and ;(P) are mutually conjugated norms
and )>0, then the norm A f(z) is conjugated to the norm
£(p). |
5. LEMMA 3.Let\ there be a family of norms f: (P) ’ 1imi-
ted for any P y 1f of takes on all volves of a set ..7 H

S

let ;fd(Z) be the family of the oconjugated norms.
Then the function

——

f(P) = max f‘ (/D) ‘ 2.7

£€J

is also a norm; the norm conjugated to it is the largest

one satisfying the inequality

§(2) < "'"3’ £, (3) (2.8)
X €.



It follows that 1if mm $.(%) 15 a norm, then it will be
alé

conjugated to f(P) s l.e.,

§(2) =d'::'7" £ (%) | ‘(2.9)

Proof. It oan be easily seen that function (2.7) sa-
tisfies the properties 'a), b) and c¢). For instance, the
property b) ‘

f(,.w-g.)s ma x f (p+g) < max f P)+ ’"‘“’f (g) = f(f’)"'/fi).
“gJ xe)
S0, ,C(p) is a norm.
The interval of values P satisfying the conditions
f(p)t.[ , i;(p)sj
will be denoted by G— and aT“ s respectively. From (2.7)
follows that |

S 5
Gd - G (2.10)

Since
f, (2) = max /(p,2)/
peb,
then by (2.10)

f(z)= ax /(p,z)/< ma x /(P.Z)/ /(2)
PEG P J (2.11)
for a o (2.11
f(2) s £, (2) woxe



In virtue of what has been proved earlier there exists a

largest norm ¥(Z) satisfying the inequality (2.11)

FZ)S PR € £,(B) 40 o wed. (2.12)

But since @(Z)< f“(Z) » then by 4b we have

(F(P) = EI(P) for any «eJ ,

hence P(P) > max § (p) =i
P(P) 1ax £ =5
Applying again the property of 4b, we get

P(2) = f£(2)
: . (2.13)

Comparing (2.12) and (2.13), we obtain

F(z)= 9(z) (2.14)

Thus, it follows from (2.11) and (2.14) that f(2)
is the largest norm satisfying the inequality

()< min { (2)
Xe J

6. Let the space Z be a direct sum of the subspaces
X and Y ’ Ez(x,g)&'z, xéX:Jé- Y

Then, if f(Z)';' f(x,g) is a rorm in Z sy then



= { (x,
F(x) :;n £ (o) (2.15)

is a norm in X .

The space ._(P conjugated to Z decomposes into

the sum of the subspaces Q and S » respectively.
The following analog of lemma 2 holds

f(?')-‘:f(i,s) al s=0; g9e@], ses,
7. By 3 the function

—_ 7
§ (tpy =[] Ay s P
2 —_
M; () ’ (2.16)
2
where /4:0 and Mm are given by formulae (1.15) and

(1.3 p.I), is a norm in P . According to 4 a), b) the
function

Jr—— 2 3 i
5,008 = 1) 4 w2 (2.17)

where /42) is set by formula (1.16) is the norm conjuga-
ted with fz (%p)

8. Let us cdlculate the minimum with respect to o
of the function

¢ , ; n- 2
J 8 =3 o m ;j(%_ %)
s=1 v=1 ¢



since

bim J X E) = lam X, 2 = OO

then the minimum is attained at an internal point of the

region where X  changes , in which

L
Jr »-f— il 2 2_x fnv2 n-f

T =mio. - 2e 2 ) - = (e 2)=1
~ is vz i XV l"—", (4" x‘;- =1 ¢ .
Hence we find ¢

r e 2 1 .

]2__ €4 2, } : 7 X, 1, 2
. R B -
Xs = e n- (2.19)
mg L Z{ (>7 €, Z )
v= [

Substituting (2.19) into (2.18), we get

4 n-1
. 7 > 2_e. 2
{E«n \ZD(“.Z) = Z’- m, l",f ecv 2‘-/ (2.20)

One can easily make sure that (2.20) is a norm.

9, Now it is easy to find the minimum with respect
to & of the fucntion fr(rx,z). Indeed, by using (2.20),

we get

P — P (2.21)

J(tt)‘mm )C (%, )= min me J(’/?) = min 2. m /)’6 Z/
Z.’,,,t Z ; v=1 (=1 .

w”m



By 8 and 6 fg(Z) is a norm.
By lemma 3 , the norm 7(? JZ) is conjugated with the

norm

A, (% P) (2.22)
M (%)

10.Symanzik ‘s theorem follows immediately from 4b and 9.

ld
Theorem 3. Let D and 0 be two diagrams of
the same process. The necessary and sufficient condition

for - ,
I(?«Z\ (“"‘:/o) > /7:,;.5’ W x )/3)

max = max
4

x M;' (x) x M_;, (x") (2.23)

to hold for all pe&P, is that for all & Z the inequality

£ n-1 £’ -1 L,
min D m, }Z é’,.,l?‘./ S min 2_m/ IZ- e Z {
zint vei i=1 Zint v=l ld v

is fulfilled.

(2.24)

4 .
Here €, and €;, are the incidence matrix

of the graph & dnd D~ . The variable 2 and ¥ ’

corresponding to the external vertices coincide.

II. In 6 ( part I) the domain (3 (D) of the graph D
with a given numeration of the external vertices was defined.

If such a graph belongs to the set R ( see 9 part I)
then together with this graph the set .(R. contains all the
graphs obtained from the given one by permuting the numera-

tion of the external nucleon and meson vertices separately.



n
Each such graph i1s denoted by @z where

UT:(z.sz) 2:(??”'[")
1 ‘2 g /o dr d2 -

are arbitrary permutations.
Determine the domain H(@) as the intersection of

the. domalns

Heo) =[] G(2,)

.over various Jr and .

The region H (ﬂ) characterizes the graph @ irres-
pective of the numeration of its external vertices. The
region GfR, coincides with the intersection of all the

regions H(D) -
12. From 4b and 9 results immediately also the following

generalization of Symanzik’s theorem.

Theorem 4. Let there be given K+1 diagrams JDG-
(6=0,1,...,) of the same process with fixed numerations of

the external vertices. Let f (P) be the norms corresponding

2
- to the graphs ;Z)G. (2.22), In order that for all pE& ?

the i1nequality

f M= mex 4 (P)=f P (2.29)

b= f,...,K 6 L1



holds, it is necessary and sufficient that for all Z& X
the conjugated norms 4would. satisfy the inequality

f @ =4{ (Z).

100K D,

20"

(2.26)

By Lemma 3 _{4 . (Z) 1s the largest norm, satisfying the

condition

f, [(B) £ min f%(z)-

P G=1,...,k (2.27)
The theorem presents a necessary and sufficient con-
dition for the domain GZ) to contain the intersection
-] .
d ins i.e.
of the domain Gcbg ’ ’ K

Gy

In the following we shall make use of this theorem

o
az - 6=1

[

6

only in the particular case when 2)6 (5'=1,--.,K ) are
representatives of the same graph ) , with different
numerations of the external meson and nucleon vertices. In
this case the theorem presents a criterion for including
the region H;Z) ( see 11) into the region &'@o .

In thils paper we shall only make use of the following
simple corollary from (2.27):

Corollary. To fulfil inequality (2.25) it is sufficient
that for all ze Z

min f@ (2) < féb (Z) - (2.28)
5 []

F=1,...,K



Note. Let & (Dy) be a set of points Z , in which
£b (Z)< 1. The set of points Z , satisfying the ine-
(4
quality

§ (=1

1,.

is the convex envelope of the sum sets of 626%9,6' =ly, e

3. Majorization of Primitive Diagrams

13. The vertex part. v

According tog4 of part I the class 9?0 of the primitive
diagrams of the meson-nucleon vertex part consists of the
two graphs of Fig.l7. With the ald of Symanzik’s theorem
we shall show that the diagram of Fig.1l7a majorizes the
graph of Fig.17b. Indeed, the norm:ED(Z) of the graph of
Fig.47 in virtue of the triangle inequality. ’

Fig. 47



:

_is greater than the norm .£, (Z) of the graph of Fig.l7 a):

fm (Z) = min {M [lzi-xlﬂx;] +_m[lz,_—gl+ lg-zrzlﬂzz-x;,«/ﬂ]}:'
X,y | |

= min {(M—m)[/z,«XI+/xI]+ f’-[(lzi-xu 1%-2,]) + (1X] +12;=x])s
X y :

+ (12,-XI+1X1) + (I2-y | +1y-22)) + CIZ,=yl+1y]) + (/%"31/*/5’/2]ja
> MIZ) + m[12-B1+12.1] = £ (2).

So, any graph of the meson-nucleon vertex part from 5?
( 9 part I) is majorized by the graph of Fig. 48 a).

/

a) v )

Fig.48



It follows from here that any graph of the meson meson
vertex part from .Q is majorized by the graph of Fig.48 b).
This result has already been obtained earlier (see point 1
part II). .

14. Meson-Meson Scattering.

According to 25 of part I the clasg Ro of the primitive
diagrams of meson-meson scattering consists of three graphs
of Fig.46. The primitive diagram of Fig.46 b) is majorized
by the graph of Fig.46 a) ( see point 1 part II). The same
result follows from theorem Ss. Indeed, the norm fg) (%)
of this graph ( see Fig.49 b) )

f,@=m mm{/z X, + Py By | 4 1T = Ta ]+ (=g # 13~ Za ]+

-

F1Y =Y+ 1% =23 + 12 -] + 1 T2] + /é'z/]-‘-'

=m - min .2’_ {[/gf-—g:,/+lx,-221] +[/z,—x,[—rlr,-.rz/+/x,-z_,/+
I,y

+12,- 4,1 + 1Y, g/zlﬂyz Ll +[1% Y+ 4 Z1] +
+ [lzs‘le+|le+lz3-yzl+lgzlj +[122—x11+ lx,~ X ] + 12,1+

12 Yyl + 1Yy Yl + 10l ]



'jai, 96 9k'
z, 2’ 22) 235
Z °Z | X | X
' a ? ¢ ‘o) Xe
i Fig.49

because of the triangle inequality is greater than the
norm }%(2,,2,,,2,) of the graph of Fig.49 a), equal to

fy (B = m [ (822l #1280+ 12 +151]
’ | (3.1)

Now show that according to <theorem 4 , the graph
of Fig.49 b) is majorized by a pair of the graphs of Fig. 46a)
with two different numerations of the external vertices,

i.e., that

G(D;) 2 H(DL).
Indeed,

f (2)=m - min {1zi—x;+1x-ézt+1x:+Izz-i’slﬂi’s-y“
D T %Y

+Iy-Zil+lgl]=

-m/Zz 23[+ zi-m mm {(.[z x/+/:c/)+(lz.,-g/+lgl)+

+ (12,-x[ +1X-2,]) + (12,-X|+I1x])+(l2, -:yl+lgl)+(lz,-y/+g-z,,2;;

> Mg -2l +miz )+ $m Liz, 14120 +12,-2,) +12,-2,1} 2



> mIZ-F) + mitl +m-min { 12,-81+1%], 12,-B1+12,[]=
= mun { {w‘(zz:zhz?’) > ‘fz (’23,21,22)}

where }:b (Z,,2;,%;3) 1s determined by formula (3.1).
[ 9
So, any graph of meson-meson scattering from R is

majorized by the diagram [J of Fig.50.

e

jﬁ

Fig.50
i.e., the domain Gﬂ= G.R = H(D) . il
) [

Note, that according to Symanzik’s theorem it oan
be shown that the graph @g is majorized by neither
of the graphs @a with a fixed numeration of external
vertices, i.e. that the domain G(ab,) does not contain
either of the regions § (Da) -

15. Nucleon-Nucleon Scattering

According to §5 of part I the classfﬁ?oof the primitive
diagrams of nucleon-nucleon scattering consists of seven
graphs of Fig.21l. On the basis of Symanzik’s theorem and
its generalization it is possible to show that the primitive
diagrams c), d), e), £), g) of this Figure are majorized
by the graph a). Therefore, any graph of nucleon—~ nucleon
scattering from 91 is majorized by at least one of the
two graphs of Fig.51, .



Fig.51
je@ey Gg,_ = GR, = H(@i)nH(ﬁz) . We proceed to the

proof of this assertion. Consider first the graphs d), e)
and f) of Fig.21l. The graph d) ( see Fig.52) has the norm

fad( Z) equal to

Fig. 52

’(,:zs (Z) = ‘min {M (12,-2,] +12,~,]+[2,-X, | +1%,/)+
f z

o M (x-x, |+ ]2, -2 1T~ 2, |+ X, x, ]+ /I:,/+/1r?s/)]*>



> min (M_m)(/21-4't_",';'/+lr,—?2/+/z3—zz/+/x,/)+

xg ’ xz

+m- min { (I12,-2,|+12,-F]) + (12, -, | +1%,1) +

xu’z

R

+ (12Tl +ix -2, | +1%) ) + (:IZ,-I,[+/1‘,—1',/+II¢-23/)]>,

> fm (%,,%,,%)

a

where

j;“(z,,z,,z_,)= M (12,-2,]+1Z5]) + m (18] +12,-%,]) .2)

The graph e) ( see Fig.52) has the norm f:b(Z) equal to
[

; (Z) = min {M (IZ.'I|'+Ixf‘zz| + IZ3—\1',,1+II,,[) +
D x

+ M (1% B 13+ 12,35+ 1T B+ 1224 +15-5/) )



2 min '(M-m)(l?.,';z,‘+.II;-Zzl+lzs'xq‘+ ’xhl) +
.r,,r, )

+m. min {(II,-.Z',/'_*11}‘22/)+(/le+/12-2~3/)+

Xy X2

+ (18,2, +1%,-%, | + %] ) + (lZz—x,/+lz,—rzl+IIZ-Z_,/)j;
2 fma'(zA[)zz ,23)

where 7(&, (zg,zz,zs) is detemined by formula (3.2). The

graph f) ( see Fig.52) has the norm f (2) equal to
D
. ¥

fb(?) =-n;'m {m(/z,—x:,/+/x,-22/+/1‘a-2'3/+/x.l)+
$

tM12,-%,) +1x-3,] + | X, + |7, -7, +1%-x,/ +/3, -2_,/)} =

= n;in {(M-m)(IZ,—x,I-i-l.t,-er,HIzl+IZ,-23[+I—‘¢}-I:,I+ Ix-2/)+

+m(lz,-x, FIX X413, +12,-2, )+ x, -2,/ ) +

T (122 +13-2, 4 1%, + 2, 2,/ + I 7, %) 2

2 min (M=m)(Iz,-2,] + 12 ~ 2, |+]x, | +12,- X3+ |2y~ 2, [ +]x,- ),

+m. ;m: {/z,-r,/+/z;-zz/+/z,—4/+/x,/+ l2,-2x,/+
1972

A= +1%] + 128, -2, +1%-%, [+ 17, -2,/ ] >



2 '.F (23122321)
:Da.

where ib (Z,,Z22,Z5y ) is defined by formula (3.2).
( M
Now proceed to the consideration of the graphs ¢) and
g) of Fig.21. The graph o) ( see Fig.53) has<the norm £D(Z)
C

equal to
q Xy
QL A
Z3
Z 2
| X X, X2
¢) 8

Fig.53

f (Z) = min {M (lz,-x/+/x-zzl+/z3/)+
c/ x,y

+m (Iyl+ly-2,l+Izz—gl+[r—23/)]—>—

> min (M-m)(12,-X|+1x-2,] +123] ) + 0 [Z5}+

’J

+ --mm {(/z -z +1x-25]) + (12,- Y/ +{¥- Z,/)+(/z -x[+1%x- ZJI)+

+ (lzz—xl+lx-z3/) + (/z"J/*’v"/) + (/Z,—g/+/4/)] >



> M (12,-%) +12s]) + 3m (12,251 +12,- 2/ +12,/+/2.]) >

2 M[IZ,-ZZI-HZ;/) +m-mot (/2,-2'3/4-/22/, /21/'*/2:’23/):

= min (fy (BB, 7(:25“(‘2”2”2’))

-

from where, by theorem 4 , the graph $¢ is majorized

by the graph ﬁ)a_ .

The graph g) ( see Fig.53) has the norm )( (%) equal
D

to 4

;’565(2) = n;lcin {m (lz,—l‘sl+ll‘,|+]xz-z3l+|zz'. x”)_,_
+M (lz,-x,l+I¥,-Xz}+lxz-2,]+ 123 %3] + 'fs‘xul"'"ryl)} =

= mun {(M—m)(IZ.-rd+lr,—xz/+1xz-zz/+lz,—rs/+lxa-1+/+'/xvl) +
X

+ ém(lz,—x,/+:x,~xz/+/xz-zz/ 12,2y | + 1T = Xy) + 12, - £, [+
+ Ir"x2l+lx1/+lrz"23/+ /23"13/‘*/13—1,/ <+ / 1’,/.,. /2,-1"/.’_

+ Iz, + 1Z,-%,/+ /%[ + /71".’(:/* [ %~ 23| +/2,- %3/ + /%, -Z_,/)]>

> M (12-5]+12,0) + $m (12 +18)+/5,-2, |+ 1-%/)>



2 m‘n[ fw‘(21;22)23) 2 £ﬂ‘ (22,21223)]

i_‘r
from where, by theorem 4 the graph 5:5 is majoriged
by the graph iizb e | -

16. Meson-Nuoleon Scattering

Acoording to §6, part I, the class _5?, of the primitive
diagrams of meson-nucleon scattering oonsists of the 14
graph of Fig.36. On the basis of Symanzik’s theorem and its
generalization it will be shown in 16 a) that the primitive
diagrams c), 4), g), h), J), k), and n) of this Figure
are majorized by the diagram a).

It will be established in 16 b) and 16 ¢) that the
graphs 1) and 1) are majorized by the graph e), while the
graph m) is majorized by the graph f).

Thus, any graph of meson-nucleon scattering from 52
is majorized by at least one of the following four graphs

(see Fig.54),



ujufelo

1 2 4

Fig.544
1.8y GR =GR, = ) H(‘%u)

16 a. Consider first the graphs d), h), i), k) of
Fig.36. The graph d) (see Fig.55) has the norm £b (2)

d
equal to

Y X,

.'B‘ 23 |
X
<)
. X
Z X 1 4

2




)c (%) = run {M (/Z,-—I,/-;-/x’/).f
+m (/Zp‘xsl'l'lxsl-f'll's"xr,l+/2,-JCZ/+/IZ-Zz/+['zz-x,'[+/zl-le.,./x,-2§ﬂ_

= min {(M-m) (12,-x,/+1x,) + Efm[(/Z,-x,/+/x,l+/z,-1:,/+/z,/)+
x

+(18,~x,] +1x,~ % | + [X,-Z,[ + [2,~ X3+ Ix5-%, | + I, -2,1) +
+ (1% )+ 1%~ %/ + 12,-x,/+1x,—2,] )+

+ (120 + 1%, -%] + x5+ | -2 ] + |1~ 2, [ + /19/)_]] >

> f (2,2,,%)

where
fﬁ‘(.zbzz,zs) = M/Zy/ -+ M(/Z— zz/ + /2:._2:/"'/?3/)_ (3.3)

It follows from here that the graph @d is majorized by
the graph %a, . The graph h) (see Fig.55) has the norm

}m“( Z) equal to

£ ()= rmin {M (12X | +1%,- %] + 1%, ] ) +
D x
h

+m (/2,’131"'11'3'22/ +Izz'x1/"'/73"1&/7"/2.3'14/*/’:'19/4‘ /rol)]?-

= min (M-m) (Iz,—x,/+/z,-xz/+/xz/) +

XX,



+m- mA.n {(/Z—.T/-f'/x, x,_/+lx;/)+(lz,-r,/+lx -Zl)+

+ (12,- X1 + 5% + [ 5, =% ) + (/z,¢x21+/rz/)] >

2 £D (21:22:23)

o

where } (2.,2;,23)15 determined by formula (3.3)

The graph j) (see Fig. 55 ) has the norm } (Z)
J
equal to

f () = min {M (12,-x4/+ /2, X2 ] + /1;"1.1/*/13/) +
D. x |
d
+m ('11"22‘ +I2,-X |+ XX+ 12— %) +{ X, ~ 25/ 4"10/)} =
2 i {(M-—m) (17,~%,] +1%,-%, ] +12,- X5l +1%:1 ) +
+ 3m [ (lg-x0 + 5= %] +1%-2] +i5]+] %]+ I%=%]+1%/)+
F (12,- Xl 4 1%~ Ty] + 13- K|+ 1%, =By | + &= Tl + 1 X=X | +12,- 2,0 ) +

+ (lzy-xy) + 1%, + 12,- X3 +1%5] )J} >

Z fﬁ (21522)2‘5) .



Therefore the graph @J is majorized by the graph Da .
The graph k) (see Fig.55 ) has the norm }‘.,Z) (2) equal to
[ 4

{@(2) = mx:'n {M (12,-X,1 +1x,=%s] + X=X, | + 12, ~ X3 | + 1731) +
K

+m(lz2,-X] +1x,-2,]| +lx,,—zz/+1x,77rz/+1x, —Xc |+ 1%y~ 23/+Izs-2,/+lrgl)}

2> (M-m) rruin (12, =% + 13- %) +1% =X | + [ X=X | +1%5] ) +

+ %r:,m {(/Z,—I,,I+Ir.,"sl+/’:"‘2’"“’z’rs/ + 1 X[+
+ 12, -X, |+ 122, +1T=% [ + (X=X, ] +]X1) +
4+ (/z,—x.,/»-/;lz‘,-zz/+ 12,-x,+/%-%:] ) +
+(/Zz"rq/ F 12, =X | 4+ 13- X | + 1T =25 | +[2,- X[+ IX-X 1+ /x,_—r,/+/,\3-23))+

+(lz3—r‘[+lrsl +123-1;I+113/)} =

2 fza(zl) 22)23)'.

Consequently, the graph i),‘ is majorized by the graph 50,, .
Consider now the graphs c¢), g), and n). The graph c)

c

(see Fig.55 ) has the norm fso (2) equal to



x1) 4 m (1231 # 13 Bl 12y rig-ai+igf

i 12,-xl+

‘Pﬁccz) ::; {M( 1 |

> (M-m) min (:z-x:+lzl)+ m |22l T
*d

+ . {(:z —x1+:x1+12,-31+'w) +

r,}

+(|z ~x)+ |x| +1%s -J“’J’)*

+ (1% _x|+|2- X+ Yt ly—isl)}

= Mlzl+5 (I:,—z,'l+lz,fi,l+lz,_/+lz,l) + mlz;—zsl >

?’ W'” [ {m‘(zlizz;z.?) ) *5“'(21,23)22)_7.

~ It follows, then, that the graph & 1s majorized by

the graph Do - ‘
The graph g) (see Fig.59) has the norm fz) (2) equal to
. . B

f‘”fﬂ = r;:; {M iz,| + m(:z,-xl-rlx-'zzl +/x- 2;/+l21-]/+lgl+ly-2312},—>

> Mli','l + 5 run {( lx-2,)+1%-23]) + (12,-x] +1x~2,]) +
b 35 .
4+ (li,-xl+lx-zsl)+(IZ,,-JI+IJI) +(I;1-231+Iy/) *U?z-ty/*/g-zz/)] >

.Z min [é(z,,z,,z;) ) )(5 (21az_3)zz)]_



From this follows that the graph ED& is majorized by the
graph Z>a, .
The graph n) (see Fig.55) has a norm equal to

f(2) = min {M(/z,-x,/+/x,—le+/zz-r3/+/r,/)+,
xz
n

(12~ X+ 1= 2 [+ (B =Xl + /=X #1 %= X[ # 1)) >

> min (M-m) (/z’—xl[—f/,\:,—le-f-lxz-13/+/13/) +
b 4

+m- min {(/2,-1,/+lr,—xzl+lxz-xsl+ 12%5] +12, -2,/ 1%, )+
2 =z

+ .(lzz-xz/ +1X, =% | +]X,~ 25 +12,- X |+ (X, =Xy [+ 123 -2,/)+

+ (12, -x,/+I1x-%21) + (1Z,-%]+ 1x,1 )+
+ (/x,{+/2,-1‘3/) + (/z,-r,/-:—/x,—zsl)} >

> MIzZ| +miz,~%Z:l+ —-2’-'1 (/Z,-'Zz/+lz,—2_-,l+lZzl-f-IZ:,I);

2 min [j- (2,,72,%), f (z,,zs,zz)J
2 N

o



Consequently the ﬁn graph is majorized by_the graph ;'Z)a_ .

16b. Consider now the graphs 1) and m) of Fig.36.
Note that in these graphs there is a part drawn in Fig.56 a).

Cmmli—— ———
a) 6 -

Fig.56
Prove the following lemma.

LEMMA 4. If in the graph 2), there is a part drawn
in Fig.56 a), then the domain G (D’) of this gra‘ph contains
the intersection of the domains pz<4m2 and G(a‘Z)) s Where
P is the external momentum in the verfex a , 0 is
the graph obtained from @, by substituting the part drawn
in Fig. 56 a), by“that drawn in Fig. 56 b).

Proof. The form ]{.i)' (see part I (1.4) ) may be written

as

K = %’(212— M?) +o(2/(7,:-/\12) + o [(tfq,i)z—M2]+

D (3.4)

+p, (2-m®) + g, [(2-p)=m?] + Z/,): (k" =m7)

Putting t= 2£ for P2< 4mz we have



- N ) / z
K < ol g s g+ Lot £V o)
2’ _ |

Since
o
(?,,""g)z";‘(‘i P)2+ f{% "'7:'P s 4tP=9z,
then . | ) A
(9,+£) = 2(47+%)
and

where

/
o= +%

By Lemma 1 (see part I, 10 ) then follows that for
Pz<4m2 the inequality '
<
Q:b’ Qﬁ (3.6)
which was to be proved.

, Applying the lemma proved earlier to the graphs 1)
and m) of Fig.36 we find that the graph 1) is majorized
by the graph e), while the graph m) - by the graph £f),

namely,

(D)2 HDe) ,  G(D,)2HD,). 6.1



2
The condition}><4n?is taken into account automatically,
according 7 of part I by changing the numeration of the

meson vertices in the graphs e) and £).

16c. Consider, finally, the graph i) of Fig.36. In this
graph there is a part drawn in Fig.57 a).

<D
e
e

2 2, ., )

a) 6) ¢)

Fig.57

| Prove the following lemma.

LEMMA 5. If the graph D’  there is a part drawn in
Fig.57 a), then the domain G (D) of this graph contains
the intersectio; of the domains (5(D) of the graph
obtained from D’ by substituting the part a) by the
part b) of Fig.57, and the domain C;(Zl) of the triangular
drawn in Fig.57 ¢).

Proof. The form J<5r of the graph 2’ minimized over

the independent internal momentum corresponding to the loop

of the part a) of Fig.57, is equal to



-

— 2 2 ' 2 2 2
J{ - oyoly Pp +ol 3 (Py+4,) + oty P1 +o2%3 9, + o0, (Py+P2) +oGa, (,Jz
[4 X —
D o) + oy + Xy + o

/
— Xy +oa) mP (ot ) ME+p, (30— m?) 40 (g2 M+ T i}y

Putting
X, o,
/7 ds d" / dz «3 — 13
= = + > -
wrl
we write J(z) as follows
o)+ + oL, o3 (g raIm™+ag M +a(
D o +oy 4 ofy +o, a(,+a’2+a/3 1o,
(3.8)

where J{Q is the form of the graph ) obtained from &’
by substituting the part a) by the part b) of Fig.57

Ky=prai-m)+ p [Cproa om ] pu a2 Y +2 § em);

QA — 1s the quadratic form of the graph drawn in Fig.57c):

g oly P22+°(1°(~ P12+°’z°’q (P+p)° “ y

Xy + Xz +

-

It follows from Lemma 1 and formula (3.8) that for &, <O
Ry < Q,

what was to be proved.
Applying the Lemma proved earlier to the graph 1) of
F1g.36, we find that it is majorized by the graph e) of this

figure, namely,



G (D) 2 H(2e). .

Indeed, in the case given, after substituting in the

graph 0; the part a) by the part b) of Fig.57 we obtain
the graph D (see Fig.58 a) ).

L))

Fig.58

The change of the numeration of the external meson
momenta in the graph of Fig.58 a) transforms in into the
graph of Fig.58 b). Assuming ;=0 in the form o
of the graph of Fig.58 b) we obtain the form &, of the
triangular graph o£ Fig.57 ¢).

Thus, the region (3(4) of this triangular graph
contains the region G’ of the graph of Fig.58 b), and,



hence, (3.9) is valid.

In oonclusion the authors express their gratitude
to N.N.Bogolubov for his interest in this work and valuable
advice, We also thank A.N.Tavkhelidze with whose ocollabora-

tion some results of the paper have beem obtained.
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