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It Ia 11hown that the rate of aooumulatloil of Information for a given group 

of parameter" during the mea11urement of some function I!! equal to the partial 

variance of that function, provided the method of least squares Is valid. On 

this basis the problem of the continuous planning of Indirect experiments ill 

solved. 

Introduction 

The planning of experiments seeks to obtain the largest information for a given group of parameters 

at the expense of the least efforts. Efforts may imply time, money, and other undesirable factors and their 

combinations which can be measured numerically and should be reduced to minimum. Among all problems 

arising in planning experiments, only statistical ones will be discussed here. 

A mention that the use of mathematical statistics is necessary for the rational organization of experi­

ments, can be found even in the early works of the creators of the modem theory of statistical analysis of 

experiments. In particular, R.A.Fisher who first formulated the principle of maximum likelihood, considered 

planning as the main inverse problem of statistics. However, Fisher and his followers developed exclu­

sively the theory of planning direct experiments under badly controlled conditions that is experiments in 

industry, trade, agriculture, and so on. At the same time, physics and related sciences deal, as a rule, with 

indirect experiments when a great number of different measurements are combined in order to calculate a 

small group of parameters having an immediate theoretical interest. Here, in passing from the immediate 

results of observation to the values of measured parameters there is a method of least squares which com­

plicates the picture. The theory of planning indirect experiments scarcely developed, and in the latest 

literature one can find only papers having far too distant relation (if any) to the actual problems of planning 

physical experiments. 

In 1958 N .P .Klepikov and the author of the present article investigated the planning of experiments 

in which extrapolation of the measured curve in the inaccessible regions was needed. In particular, we 

had in mind measurements of scattering amplitude at zero angle. The problem was solved, and the results 

were expounded in the book/1/, which contained a chapter devoted to the planning of experiments. In this 

chapter the problem just mentioned and some its generalizations are treated, the notion of difficulty func­
tion h is introduced, and many qwestions connected with planning are discussed. 

The solution of the extrapolation problem showed that there exist, in fact, most advantageous points 
of measurement and most rational distribution of total experimental time among these points. It showed also 

that a comparatively small displacement of the points off their best positions or the violation of rational 

distribution of time diminishes sharply the precision of extrapolation what confirms the practical urgency 



~ 

=( 

~ 

~. 

4 

of planning . It is worth noting that an obvious graphical form was found for the recipe for choosing a va -

riant of experimental equipme"lt and positions of measurements, as well as for estimating a precision attain· 

able at extrapolation. 

The main shortcoming of the planning procedure pmposed in paper/11 was always understood to be a 

static formulation of the problem when the whole experiment is planned at once, the difficulty function h 

being supposed known beforehand and no earlier, "unplanned" measurementfj, to exist. Meanwhile, in reality 

the ci.ata necessary for planning are accumulating and becoming more accurate only little by little in the ... 
course of an experiment, so it is very important to be able to find most advantageOus positions for measure-

ments simultaneously with the measurements themselves that is to make a continuous planning. Indeed, no 

experiment is ever born as a whole and complete thing, and after some groping measurements and taking 

into account all the existing data one should decide what step to make next, that is, what measurement to 

choose next in order to reach the aim : the determination of theoretically important parameters with a suf­

ficient precision, as fast as possible. The choice of the best next measurement depending on the results 

thus far obtained may be also called the dynamical planning. In the course of a continuous planning, 

neither the best measurement positions, nor the time distribution coincide with those obtained by the static 

planning (although they are tending to the latter ones when the experiment is infinitely continued ), since 

the measurements already made change the importance of individual regions . 

In the foregoing we assume that the results of the observations are normally distributed and linearly 

dependent upon the parameters a we are determining. The formulae obtained below will always be valid ~··· 

in practice when the method of least squares can be applied. This implies, on the one hand, that the depen -

dence of the direct results ot observations on the parameters we are measuring may be non-linear, and on 

the other , that the distributions of probabilities of results of observations may be somewhat different from 

the Gaussian ones, but this non-linearity and the violation of a Gaussian form of the distributions must be 

reasonably small. 

In fact, for applications it is essential only that the distribution of the parameters a would be alike 

the Gaussian distribution in the vicinity of two standard deviations and that the error matrix would keep its 

usual meaning. 

·1. The Problem 

When we measure experimentally a certain curve y(a,x) at some points x; we do not usually take 

interest in all the parameters a which this curve depends upon. There are a lot of examples illustrating 

that in order to specify one-two quantities A important from the theoretical point of view an experiment had 

to be arranged on the measurement of the curve dependent upon 10-15 unknown parameters. As usual, this 

happens because the parameters of interest cannot be measured directly, so that there remains nothing 

but to measure them together with the ballast parameters which are containing in the dependence y(a ,x) 

but which we are not interested in. In planning an experiment, one wishes, naturally, to spend as much 

time as possible to specify the quantities which are of interest, and as less time as possible, to specify 

those 

• 
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those balast parameters which have to be measured, unfortunately, jointly with the parameters of interest. 

A continuous planning of an experiment is aimed at finding such a measurement among all those to be 

made at the next moment that would yield the largest additional information possible about the given group 
of quantities and would require the least labour consumption. As we shall see later this formulation of the 
problem implies that the accuracy of each of the parameters A or their linear combinations are uniformly 
important to us. It may sometimes happen that some of A-s are relatively more important than others. ln 
this case a more general functional expressing the accuracy of A-s should be used instead of information. 
We shall not discuss this more ~Emeral case in this paper. 

It is clear intuitively, that those measurement points are most advantageous at which the depen 

dence of the curve y( a,x) on the quantities we are interested in, is expressed most strongly. On the con­

trary, when the behaviour of the curve y( a,x) is mainly determined by the ballast parameters, the results 

of the measurements will bring almost nothing new about the quantities for the measurements of which 

the experiment is arranged. Therefore, information about .4-s must be connected in some way with the sensi­
tivity of y (Cz,x) to the variations of A-s. To investigate this connection we have first to know what amount 
of information (and about what quantities) can be obtained from the measurement of the dependence y(a, x) 
at each point x. 

Further we will go on considering only the planning of such experiments the purpose of which is to spe­

cify the given group of the quantities A= I a1, ... , arl. Evidently, one may specify some quantities 
only when some primitive, groping measurements of these quantities have already been performed. Then, 

basing on such preliminary experiments, one may try to answer the question how to choose the next measu­

rement in order to obtain, by spending minimum efforts, as much additional information as possible about 
the quantities a a . 1•···• r 

Additional information about the quantities A may be,_generally speaking, obtained by measuring any 

function y (c) of the parameters c (known with errors), provided the parameters are intercorrelated in some 

way with the quantities A. For instance, the parameters c were measured earlier jointly with A or are 

their functions. In the latter case, not loosing in generality, one can consider some of the parameters c 

coinciding with some of the quantities A. The rest of the parameters (we shall denote them by B) will 

hereafter be referred to as ballast ones. (By calling them 11ballast 11 we stress that it is not the aim of 
. * 

the present experiment to specify them ). A set of all the quantities under consideration - i.e., the 

quantities A and ballast parameters B will be denoted by a= I a
1

, ••• , aml . 

•• 

* In praotloe lt may tum out useful to measure y( c) even If all the parameters C are ballast one !I. 
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Let us suppose that the information about the parameters a which is available at the beginning of the 

experiment, is given in the form of a probability distribution p(a
1 

, ••• , a ). We restrict ourselves 
m 

to the case when the distribution p (a) is normal and may be fully characterized by setting the mean 

values ul>···•am and the error matrix ajk', k,k '=1, .•• ,m. Then the distribution of the parameters a1 , ... ,·at 

we take interest in, will be characterized by the corresponding submatrix afj 1 j,j ' = 1, ••. , t which is 

obtained by cutting out fro~ the matrix a
2kk, the lines and columns referring to the ballast parameters 

at +1, ••• , a m.Le\us express the available amount of information about the parameters a1 , ••• ,at in terms 

of the matrix a jj, . 

By definition, the amount of the information q in the "communication" p (a 
1 

, ••• , at ) is given by 

q = r p ( a1 , ••• 'at) log p(a 1 , ••• ,at ) d a1 , ••• d at + c' (1.2) 

in which the normalization additive constant c and the base of the l<XJarithm should be fixed. For a future 

analysis the most convenient normalization is 

q 2 ( p In p d a 1 • • • dar + r (1 + In 2 " ), 

so, for one normally distributed parameter with the variance 

q = In w. 

') 

2 1 
a = --- , we get 

w 

For the set of r quantities with the error matrix a Jj , , expression ( 1.3) yields 

q (a 
1 

, ••• , ar ) =- In \a2 \, 

where \a2\ stands for the determinant of the matrix 2 
a jj , • 

(1.3) 

(1.4) 

(1.5) 

In the following, when denoting by .v t:(a), a set of all functions which can be measured in the given . 
experiment we shall mean by e ( as well as by the "point" :; ) a set of all numbers characterizing the 

measurement uniquely, including those specifying a choice, if any, of experimental equipment. a will in­

elude all the quantities A and ballast parameters B which can be enc9unted in the dependencies y. 

Let us make a certain additional measurement .;. Then, according to the method of least squares, the 

specified values of the parameters a are determined by the condition 

2 
VI= wdy,t-<a)- Yt: 1 + . . k,~, ~i k - a k) zkk, (a k ; -;I k , ) = min (1.6) 

-<. 

• 
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;=a~ 
where w is the weight of the additional measurement equal to the inverse variance of the 

result of the measurement y ~ , and zkk , is the matrix inverse to a1ck '• 

From (1.6), we get by the usual routine that the errors in the specified values of the parameters will 

be estimated by the matrix ( z + A z r 1 inverse to the matrix ( z +A z ), the latter being equal to 

z +_A z 

If one assumes that the values 

dependences Y~a), then 
~ 

hence 

aa k 
(1.7) 

had been obtained experimentally, i.e., by measuring certain 

ay e(a) 
( 1.8) 

(1.9) 

Expression (1.7) is equivalent to (1.9) in the linear case. But when the dependence Yfa) is not quite 

linear over a equality (1.9) should be preferred. 

Departing· from (1.9), it is possible to find the rate of the accumulation of the information when the 

measurement e increases the weight we 

a q( AJ 
( 1.10) q' 

we a we 
However, if one starts just from formulae (1.5) and (1.9), then for each measurement we are interested in, 

the calculations should be performed which are as cumbersome as those of the complete analysis of the 

problem of m parameters by the method of the least squares • 
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A relative advantage of the measurements e depends not only upon the speed with which the 

information as a function of the weight w is accumulated, but also upon the efficiency of the measure -

ment e . The efficiency ot the measurement Me> is convenient to put equal to the increment of the , 

weight of the measurement gained at a price of efforts A equal to unity*. Evidently, the efficiency of 

the measurement of some curve is zero outside the experimentally accessible interval. The function A( .;1 
may be predicted according to the analysis of the experimental conditions or established experimentally if 

the measurements have been already started. 

I;:vidently, the most advantageolls measurement is the one for which the speed of accumulating the 

information (about the parameters A ) as a function of labour consuming 

V(!) 

will be maximum. To provide for the condition 

a q (AJ 

a we >. (~ 

V(~ 1!1BX 

( 1.11) 

(1.12) 

it is only necessary to find a sirrple way of calculating the function q we· In the next section a theorem is set _ . 

forth which establishes the relationship between the rate of accumulating the information and the vari - ~· 
ance of the function y j-a) , solving, thereby, the problem of finding the most advantageous measurement . . 

2. The Basic Theorem of Planning 

Let there be given the error matrix zic~'of the parameters a~~, ••• , a.m· We call the parameters 

A = a
1

, ••• , a... main group ; the remaining parameters B = a , ••• , a make up an additional group. 
-T r+ 1 'll 

In the matrix z-1 we single out the submatrix R -1 which is referred only to the parameters of the main 

group , and the submatrix r-1 which is referred only to the additional group of the parameters 

aw, 
*The efficiency may be determined formally by the equality A(~ = ~ einoe the proportionality ta.citly 

cJA(e> 
a.dmitted in a. verbal formula.tlon, doe8 not matter. The rela.tion W = C A ie importa.nt only for the statioa.l 
pla.nning. For tha.t rea11on it ie 11treaeed in the book/ II when the· difficulty function h(%) is introduced. 

Thill difficulty function ill connected with 
A (x) by the relation A (x) 

1 

h2(%) 

• 
• 
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z-1 = (( ~l I s-J ) 

~-1 
(2.1) 

(the rectangular matrices s-1 and s-1 show the relationship between the parameters of different 

groups). 

Let among the parameters a there be no linearly-dependent ones, so exists the matrix z inverse to 

the matrix z-1. We divide the matrix z into submatrices in the same manner as it was done with the mat­

rix z-1 : 

z (2.2) 

We call the matrix Q-1 inverse to the matrix Q the error matrix of the parameters of the additional 

group under the condition that parameters of the main group A are fixed. 

Let us call the quantity q (A) given by the formula 

q (A ) =- ln det R -1 =- ln I R -1 I (2.3) 

the information concerning the group of the parameters A • 

Let y ,j..a) be an arbitrary function of the index .; (the variable .; may be both descrete and con-
tinuous) and a•linear function ~f the parameters a 

(2A) 

Let ·as a result of the measurement .; , the elements of the matrix z acquire the increments 

(2.5) 

l 
where w == -

2
- is the weight of the measurement equal to the inverse variance of the result of the 

measurement a y. 
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Then the theorem takes place : the rate of the accumulation ot the information about the given 'group 

A of the parameters a in the course of the measurement of the function y fa) . is equal to cr decrease 

of the variance of the function y .;(a) in fixing * this group of the parameter;. 

According to the notations introduced above, the theorem states that 

a q (tl]_ , ••• ,a r ) 

a w! 
~ 

2 2 
u m (f.) - u m-r <.;) - ... 

~ 1 ~ 1 
k,k'= 1 <fok(f.'> zkk' <PkJ..'f)- k,"f;;r +lk(,;IQ-kk'cpkJ....;> 

(2.6) 

The meaning of the theorem becomes more obvious in case when there are no ballast parameters and 

all m parameters enter the group A. Then 

and 

a q 

aw 
X 

a;_m(x) = 0, 

2 
=am (x) , 

that is, the derivative of information is equal to the square of the corridor of errors a (x) . 

Proof. 

Let every submatrix into which matrices z and z-1 are split, and its inverse one, if any, 

be put in one-t~ne correspondence with the matrix of the m-th order , having zeros on the 

place of the missing elements. For example, 

p =~~~~ (2.7) 

*When the dependence Y d-_a) Is linear by the parameters a only approximately, the parameters should be 

fixed equal to their mean ;.alues which they had before the fixing according to previous measuremeDts . 

l 
~. 
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Soch matrices added by zeros will be denoted by small letters. Evidently 

z=n+ p+p+ q, (2.8) 

Then, the statement of the theorem assumes-the form . 

(2.9) 

m 
(the su!llmation I 

1 
over the dumb , repeating indices is implied here and in the foregoing). 

We begin to prove (2.9) by varying the information. Making use of the well-known relation 

a I x I = I x 1 tic~, a x k , k , (2.10) 

we get that 

( 2.11) 

The expression (2.11) contains the derivatives of the matrix elements R-1 which can be found by varying 

the equality 

(2.12) 

Indeed, by varying (2.12), we have 

(2.13) 

hence 

(2.14) 

Substituting (2.14) into (2.11) and remembering, that by the definition 

az , 
. _:___p__Jl = 4> , 4> ' aw p p 

(2.15) 
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we are led to an explicit expression of the derivative of information in terms of the matrices i~troduced 
above 

aq (A) 

aw 
-1. -1 

= <Ppz pk rkk' zk 'p 'tPp' (2.16) 

Since <P 
·p 

are arbitrary functions of ~. then to prove (2.9) it is necessary to prove the matrix 

equality "' 

R-1 s-1 ) 

r-1_0 -1 

-1 -1 
zpk rkk' zl( p' 

-1 -1 
zpp'- qpp'= 

5-1 

A direct calculation of the left-hand side of equality (2.17) yields 

-1 -1 
zpk rkk'zk'p' 

( R-1 s-1 \ 

\ s·1 s-1 R s-i) 
On the other hand, it follows from formulae (2. 7), (2.8), and (2.12) that 

- -1 1 p r + q s- = 0 
' 

p.-1 + •• -1, (-Hi) 
13y multiplying ( 2.20) from the left hand side by the matrix q-1, we have 

-1- -1 
- q p s t-1 -1 - q . 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

By multiplying, further, (2.19) from the left by the matrix q-1 and from the right by the matrix r, 

we obtain 

q-1-p + -g-1 r = 0, (2.22) 

whence 

--1 -1 t-1 -1 s rs = - q . (2.23) 

Thus, equality (2.17) is correct. The theorem is proved. 

" 
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Rigber Derivatives of lnfornation 

It easy to show by a direct calculation, that 

(2.24) 

where 

(2.25) 

The formulae for the higher derivatives of information follow immediately e.g., 

(2.26) 

Corollary 1. 

The speed of the accumulation of information is a quantity invariant with respect, at least, to the 
linear substitution of the parameters inside the main and additional (ballast) groups 

a.·~ b· = i c .. aj; 1 < i < r I I j =1 IJ 

(2.27) 
a; -+ b· = f C•• aj ; r + 1 < i < m ; I IJ 

i= t+1 

Indeed, one can become sure by an elementary check, that both the variance u ;.c;~ an~ the vari~nce 
u

2 
t, ~ are invariant with respect to the substitution (2.27). Therefore, the quantity __ q_ , being m-r > aw 

their difference, remains also invariant to such a substitution. 

Corollary 1 shows that the increment of the accuracy of every linear combinatiOn of the parameters A • 
is of the same importance for the growth of the information about A. 

Corollary 1 proves to be useful in planning the measurements of the quantities which do not enter y(a) 

explicitly. Because of this, tlf'ey cannot be fixed simply by cutting oYt from the matrix z. For instance, 

we take interest in the value of the curve y_t;(a) at a certain point ;o. i.e., in the quantity b = y ~:0(a). 
In practice it is possible to fix the parameter b (what is necessary for planning) by adding (with the help 
of (1.7)) at the point .;0 ''the measurement" y =Y /: (;;) with the weight "heavy" enough and to use 
the variance 0 > 0 

(2.28) 
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instead of a ~-l (~ in the calculation of the function q ./; t: . 
aq 
aw, . 

2 2 
am(~ -am(~ I 

Y,t .(a) ~yo . 
.o 

(2.29) 

The invariance of the quantity q ' provides for the validity and unambiguity of similar methods . 
w~ 

.... 
Corollary 2. 

The quantity qw is restricted by the inequality 
~ 

1 
qw',; < w,; 

which follows immediately from the meaning of the quantity a 2 (~. m 

(2.30) 

Corollary 3 • in 

The quantity q,; satisfies the inequality 
~ 

I , 
tq"' · w,t<r, 
':. ~ . 

where w ~ ate the weights of the measurements y ta) . 
The inequality (2.31) turns into the equality 

~q./;~· w~=r, 

if all the information q is obtained by measuring y .;'since in this case the identity 

.. ~a~ W w~= m , 

is valid what can be verified by a direct calculation. 

Distribution of Information among \teasurements 

(2.31) ... 

(2.32) 

(2.33) 

In the analysis of an experiment it is often important to know how much did every measurement help 

to reduce the errors of the parameters A. Accordinq to (2. 32), the rate of the accumulation of the infor -

motion satisfies the relation 
I , Wf q • t: w,..--- = 1 , "; r .. 

(2.34) 

the 

~ 

• 
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w;: 
This relation shows that the separate terms q w g -f- may, in a certain sense, characterize the 

relative amount of the information (about the parameters A) obtained from each measurement g. 

Strictly speaking, the information given by some measurement eodepends on the order in which the 
measurements g were made • In the analysis of a completed experiment the actual order of measure-

ments is of no importance. If we assume that all the measurements were made simultaneously and the weights 

were increasing, being always proportional to the weights w e finally obtained, we get just the quantity 
, weo 

q weo -;- for the relative amount of information given by the measurement eo. 

3 . .Drift and Jumps of the Most Advantageous Measurement in the 

c ourse of an ExPeriment 

It is always important to know in practice what measurement becomes most advantageous 

v(e> = max 

in future since the measuring apparatus must be adjusted before hand for this change • Let us first investi-

gate qualitatively probable movement of e. assuming e being a continuous variable. 

By formula ( 1.11) 

two co-factors enter the function v <e>. As for the function of the efficiency A<e> , its changes have a 
charact-er of unpredicted corrections, so that we shall consider it constant in time. On the contrary, the 

function q .; is steadily decreasing after each measurement, what may cause large displacements of e . 
the most advantageous measurement point e. Really, from (2.30) one can obtain the inequality 

v(e> < (2.1) 

whence it follows that as the measurements are being made at the point e where v <e> reaches the maximunt 
the magnitude of this maximum is rapidly falling. The maximum itself as well as the most advantageous 
measurement point e may drift aside • 

Let us plot time t VS ntost advantageous point e where we are measurinq at a moment t (Fig.l). 

Let the point 0 show the moment when the planning had been started after some preliminary (unplanned) 

measurements and the point eo. , v <9>> = max had been found. 

Let each measurement require a unit time, and the next most advantageous measurement point e 
1 1 e 2,". 

is calculated anew before each following measurement (in Fig . 1 at the moments 1,2 ••• ). 
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It should be expected that the best point e will be displacing only insignificantly until it happens at a 
certain moment (moment 8 in Fig. l) that the maximum of the function v (~ (maximum n.1) correspo.n­

ding to this point would became lower than one of the earlier minor maxima (maximum n.2) of this function, 

and the most advantageouS measurement point would jump there (to the point ~8 in Fig. 1.). 

Since the measurements decrease most strongly just the maxima at which they are being made, then the 
most advantageous measurement point will further jump for a while between maxima n. 1 and n. 2. Then 
there will appear a third maximur.1 ( moment 19 in Fig.1) and so on , until their number reaches the total 
number of the parameters m (in Fig. 1, the case m = 3 is shown) . 

.. 
When the number of maxima becomes equal to that of the parameters, there will be no new maxima of the 

function v (e>, and the point ~ will begin, obeying a certain law, to "visit" all the m maxima, pro­

viding, thereby, some distribution of efforts between them. The function v (~ will be getting smaller at 
the same rate for all e 1 "SO the maxima will cease to move and remain near some points e. (1 ), ••• ,e_ (m). 

OQ "" 
Evidently, for the function v<.e> to remain further unchanged in shape (what is most advantageous from 

the point of view of the speed with which the information is being accumulated), it is necessary to spend 

the efforts for new measurements at the points ~"" (1) , ••• , ~"" (m) proportional to those already spent 
in their vicinitie:;;. As for the calculation of the next most advantageous measurement point, it can be 

stopped. 

If the function A.(~ is not strongly dependent upon the measurements made, or this dependence is 
known, it enables one to calculate the movement of the most advantageous measurement point beforehand, 

since the second co-factor q .:., ' entering v <.;> depends only upon the weights we and not upon the 

. results of the observations * . 

' 

,;:--

Indeed, having found eo , we can add conditionally the weight weo =A.(~) at the this point , then 

to find the point e1 , to add again conditionally the weight w <e1) = A.(e1) and so forth, imitating, there­

by, the whole process of a continuous planning of an experiment. When all the m maxima become apparent, 

the calculation can be stopped and the graph like that shown in Fig. l can be drawn. This graph will be­

come now the plan of an experiment. If the function A.(~ changes strongly in the course of the experiment, 

a further plan must be calculated anew. 

4. C oncluslon 

Let us illustrate by a real example what advantage in the accuracy may be expected due to the planning 
of an experiment. In paper /2/, the angular distributions of neutron-proton scattering at different energies 

were used for the determination of meson-nucleon coupling constant. It 1s most convenient to be concerned 

with the determination of the constant 12 from the experiment at 380-400MeV. 

* If the functi01: Y e<a) depends upon the parameters a 

pend to a certain extent upon the results of the measurements 

not quite linear! y, then the function q ' will de­

Y e· But this, however, can be usually ~glected. 

val: 
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. /2! h ff f · d a · the gul · t .A.s can be seen fro:n the figure given in paper ' t e e orts spent or measurmgdn ill an or iller-
val rP- 100° were distributed approxirmtely uniformly. The calculation of the quantities q;. ((!<) i) wj has 

shown that in such distribution of the efforts 7 extreme points at angles e close to 180° yielded -90% 
of the information about f 2, .,.,;hereas the rest 29 points added only 10%. If the experiment under discussion 
is considered as the one aimed at the-determination of the constant £2 only, then it would become pos­

sible, if the planning is applied, to determine the constant £2 2-3 times mo~e accurately without addi 

tiona! time and money c®nsumption. A similar specification of the constant ? with the previous distribution 
of efforts would require a 4-9-fold increase of time spent by an experimental physicist during his work with 
the accelerator. 

In universal (for example, preliminary) experiments where almost all of the parameters a entering the 

dependence y ~a) are bf immediate interest (enter the group A), the application of planning will give 
much more modest advantage in accuracy. On the contrary, in e-1Periments for y.'hich the ratio -~- is great 

m r 
, (for the experiment described above is .equal to 10), one can expect, if the planning of experiments 
~is ·applied, an essential specification cJf the results. 

The author takes the opportunity to express his gratitude to Prof. J .A.Smorodinsky for fruitful dis­
~cussions of the work and toDr. N.P.Klepikov for critical remarks. 
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