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Abstract

A set of coupled integral equations for the low energy pion-nucleon S- and
P-wave scattering amplitudes is derived by using the forward and the backward scatte-
ring dispersion relations only together with the unitary condition. The cortribution
from the cut in the unphysical reglon 1s taken into account without using analytilc
continuation by the Legendre exbansion. The A/-A7 annihilation reactlon amplitudes

appear 1in the ;ntegral equations and represent explicitly the effect of the T 7C

interaction.

&



1. Introductilon

(1-3) made newvattempts to solve the problems of the

Recently, Chew and others
strong-interaction at low energy based on the two dimensional dispersion relation pro-
posed by,b;andelstam<4 6>. The integral equation originally gziven by Fandelstam involves
two continuous independent variables, which is difficult to handle’mathematically. Man-—
delstam's theory i° based on the assumption, that only two particles intermediate states
~make. significant contributions to.the unitary conditions, which can then only be valid
for the low;energy;phcnomena. It is therefore convenlent to subject the integral equa-
tion to a transformation, which transforms the two continuous independent variables de-
noting the energy and the momentum transfer respectively, into one continuous and one
discrete variablp, denoting'such as the eﬁergy and the angular momentum. Since only sta—
tes of small angular momentum are important in the low energy phenomena all amplitudes
of large. angular momentum can be neglected in consistent with the approximation already

made with regard to the unitary condition. The Mandelstam's 1ntegra1 equation of two
k independent - variables 1s thereby transformed into a finite system of coupled integral

equations of one independent variable, which 1s easier to handle mathematically.

In the works(l‘J) mentioned above, the dispersionrrelations for the partial wave
amplitudes are written down without difficulty. However, the unitary conditions in the
unphysical region are obtained by analytic continuation with the help of Legendre expan~-
sion, which begins to break down at the boundary of the spectral funotions. Even in the
region before reaching the boundary of the spectral functions there:is a substantial
part, which 1is as far from the physical region as it 1s from the boundary of the spec—
tral functions. Whether the higher partial wave amplitudes in the Legendre expansion
can be negleoted in this region 1s doubtful. The contribution to the integral equation
from the cut in the unphysical region is therefore not..as accuratelerebresented as
that from the cut in the physical region. ,

The circumstance 1s especially unfavourable in the problem of TC N scattering,
where the boundary of the spectral functions reaches down quite near the physical region.
With the help of the two dimensional dispersion relation and the boundary of the spec~-
tral functions given by Mande]stam &) it can be shown, that the Legendre expansion begins
to break down at k% = -14.5, ﬁ, represents here the momentum of the U rmeson in

the center of mass-system. The mass of the 7r ~mescn is taken as unity.‘The neglect of



the higher partial wave amplitudes can be Jusiified only at a still narrowér 1imit.

Cn the other hand, a comparatively much higher cut off momentum is needed in the phy-
sical region in order to obtain the correct location of the (3.3) resonance energy.
While the behaviour of the (3.3) amplitude is governed mainly by the contribution from
the cut in the physical region, the influence of the contribution from the cut in the
unphysical region on the other amplitudes 1is by no means inessential. It is therefore
interesting to derive the integral equations in such a way, that the errors due to the
approximations are redﬁced and are more evenly di;ﬁributed‘betWeen the physicai and the
unphysicai region, and that thé contribution from the cut in the unphysical region is

more accurately taken into éccount.

-in this papér, the integral equations for the S~ and P-ﬁave amplitudes of the
“Tt N -scattering are derived by  using the forward and the backward séattering dis-
persion‘relations only together with the unitary condition. The fdrward and the back-

ward scattering dispeision relatlons have the particular édvantage, that fhe scatte -

ring amplitudes in the unphysical rggion can be e*pressed directly in terms of the ampli-
tudes of the crossing reactions with no need of analytic continuation.The problem of the

break down of the Legendre expansion does not occur. The integral equations dfc thus
expected to take the contribution from the cut in the unphysical region into account
more adequately. The backward scattering dispersion relation introduces the émplitudes
of the annihilation reaction .N“*A7 — T+ T into the integral equations and takes
.thereby‘the influence of the .ﬂt‘qt 1n£eraction into account. On fhe other hahd,
the .integral equations thus obtained_ha&e to be solved simultaneously with the integral
equatlons for the NM-# annihilation. The method can ve easily extendéd to treaf othen
bproblems of the strong interaction. a
Quite recently Efremov, Meshcherykov and Shirkov7) have obtained an interesting
set of 1ntegra1-equations for ﬁhe TCN  scattering under the éssumption, that the’
N-&7 annihilation reaction 1s dominated by the S~ and P- states.in the low enefgy
region. They also exploited the advaﬁtage of the dispersion relation for the dbackward
scatterings). Their set of integral equations has the interesting advantage, that it
can be solved without the know-ledge .of the N-N annihilation amplitudes, once the
Tt T k scattering pha;éeshifts are given. The integral equation derived in this
paper is suitable for the casé; where the real part of the higher angular momentum sta-
tes is not negligible in comparison with those of the S~ and P-states of the ' A/;A7
annihilation. - '



In the second section of this paper, the location of the singularities of the
partial wave scattering amplitudes and the range of validity of the Legendre expansion
are discussed. In the third section, the dispersion relations for the forward and the
backward scattering are written down. The connection between the S— and P-wave scatte-
ring amplitudes on the one hand and the forward and backward scattering amplitudes on
the other are given. In the fourth section the integral equations for the 5- and P-
wa;e‘scaﬁtering amplitudes~are derived. The results obtalned are bompared with that

of Chew, Goldberger, Low and Nambug).

II. The Region of Validity of the Legendre Expansion

The location of the singularitiesxdﬁd cuts of the 7 ~N partial wave scattering
amplitudes has been studied by MacDowelllO). For the investigation of the range of va-
1idity of the Legendre expansion, it is more useful to give the location of the singu-
1arities a.two dimensional,reﬁresentation, sorthat their relative positions with respect
to the boﬁndary of the spectral functions can be survéyed easily. The notations to be
employed in this paper are those in the current use. However, for convenience's sake

they are explained in the next paragraph.

As 1s well known, the following three processes

1. T (%)t N — WAk, g + NCA)
IT. T, 8) 4 N(f) —= -k, x) + NEE) ¢ 0
11l N gy + Nep) — r(-p=)+ TR B)

are describved by one single Green function. " represents the <7r -meson, while #
and A7 represent the nucleon and the antinucleon respectiveiy; The p's inside

the brackets denote the corresponding mpmentum four vectors; « and /6 are the
isotopic spin indices. In the momentum representation, the Green function '7— is of the

following form:
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Only two of the three variables § sy S t are 1ndependent. 7 denotes

: *
here the mass-of the nucleon. The invariant scattering functioas A~ and Bz satisfy
the following crossing relations. -
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According to Ma.nde_ls.tam4), théy also satisfy the following two dimensional disperslon

relations:
+
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Qa and b are the spectral functions. 3 is the renormalized and rationali-
zed TN coupling constant. For the convenienoe of the discussion, the following

variables in the ocenter of méss system are introduced: % and ¢ denote the mo-
mentum and the scattering ,an’gle of the'reaction (¢D) ’é- and $ denote those of
the reaction (II); P, i and @ denote the momentum of the nucleon and antihuoleon,
the momentum of the - —-meson a,}xd the reaction angle of the reaction(III) respecti-

vely. The following relatiens exist then for the reaction (1):



s = omra o+ 2k + 2 onE Y Y

§amiet -2kx —2fomma k)

‘ o | | 6)
£ = ~2k1=x), - X = cos$
The' corresponding relations for the reaction (II) are:
' 2 ~2 - -2 =2
$ = mP+1 - 2k-x —2J(m“+lz}\)(l+k')
'§ = mE+l+ 2k 4+ 2/J(?’l2+k&)(l+k")‘ (7 |
_ L = .
t+ ==-2k (1=-x), W = Cos b
Those for the reaction (1I1) are
s = - pr- 8t +2pg @ | |
- z' . B .‘ .
Fo o -ptegto-RPEE o 0 (®
o %) oo ’
t=4—(m2+,‘,)_"~l-(l ; k ,
' Z 2 Cos@ s

The phvsical region of the reaction(I) is represented by the region I1in Fig. la.
It 1s:1imited by the conditions $>(m +I) »', -I < " < 1 ' . It is therefore. to the
:right of the straight line - S =(m + I)2 and lies between the boundaries.
_—.'(mz-l)‘l R ‘f“>(9)

- F

i
[

tzo.

The phvsical region of the reaction (11) is denoted by II 1n Fig.la. It 1s 1imited by
the conditions 5 (m-H) ~1< " <41 -, It also lies between the boundaries (9),
but situates to the 1eft of the straight 11ne (’m ¥ 1)2. bThe physical region
'ot the reaction (111) 1s denoted by III in Fig. 18.. It is 1im1ted by the conditlons
t 2 4 mz and ~-{<£ 2 51 { = Its lower boundary 1s therefore tha.t pB-rt of the ourve
. 2
§Fs5 = cmz-.l)
‘ . (10)
. V : y 2, ’ ’ ‘
which 1lies above the straight line ¢ = 4m ', Thus the straight line t=0 connects the
forw‘a.rd.soa.ttering of the reaction (1) with the farward scattering of the reaction (11);



the curve §8 s(m™ n? besides connecting the backward scattering of the reaction (1)
with the backward sc.attering of the reaction (11), also connects the backward scattering
of the reaction (1) with the forward and the backward scettering of the reaction (111).
For t 24m* ana t<4 the equation §s =em* )% gescrives the two bré,nches of
one hyperbola shown in b‘ig.ls. For 4 <t < 4m? y S and § become complex, the
equation describes an ellipse tonching the hyperbola at both ends. This. ellipse is shown ~
in Fig.lc. 7

The boundary of the spectral functions is also schematically shown in Fig. 1a. as
S
dashed curves . The region, in which O. , b::., do not vanish, is marked 12, those cor-—'

+ -
responding to a.,; , b, and a.

)3 b.zs are marked by 13 and 23 respectively.

23 H
The singularities of the .partial wave scattering amplitudes of the reaction @)
come from two sourees. The first source 1is the functional.dependence of §, t on- s,

X = Cos ¢ .. From (6) follows

kl = {S—(mu)z}'{‘s".m-')z} ' ' | -(11) :

It gives a singularity at § = 0, which 1s one of the asymptotes. of the hyper'tfola‘

5S =(m2— 1)2. It 1s easily seen from Fig.la, that one end of this asymptote approaches
the backward scattering boundary of the reaction (11), while the other end approaches
the forward reaction boundary of the reaction (111). '

The second source 'of.singula.rities is the vanishing of the‘various'denominators in
the diopersion relations (5). - The ve.nishing of the denominator 3—’5'__5‘ glves rise
to the region of singularities lying to the right of the line 5 = (ﬁ +1)2.~It 1is ‘denoted
by a in Fig.lb and 1s identical with the whole physic%l region of the reactions (1).
The singularity coming from the first pole terrnq” ' mi-5 isydesigna.ted’ as ‘b in Fig.lb.

It is a small segment from the line’ S = m'z . The region of singularities arising from

N | B L
the vanishing of the denominator ’ -5 situates to the 1eft of the line § =(m +1)2

It consists of two parts designated by ¢ and d reopectively in Fig 1b. C is a part of the
physical region of the reaction (11), but . lies entirely in the unphysical region.

; .t *
Its largest portion is covcred by the area, where the spectral functions 4,, and ,bz_,

23
do not vanish and the Legendre expansion fails, The singularities coming from the second

pole term ¥ mie T also consist of two p_arts, designated as € and _f in Fig.lb.
!

) t-t

shown in Fig.lc. It consists of two parts j and A . 2 is a part of the cylinder

The region of singularities arising from the vanishing of the demominator s

surface . P
s = (m*-1) (12)



~one end of which 1s limited by t = 4, while the other end. is limited by the ellipse
55 = (ml-l)z mentioned above. There is a substantial part of the cylinder surface,
where the Legéndre expansion fails due-to the limitation from the spectral functions

a.:; and b:sn. The,region ﬁ is limited by the boundary ¢ = 4, S=0 and the‘upper
branch of the hyperbola ES = (‘mz -1)2.,The largest part of the region Z 1s covered

t %
by the area, where &,, and l:z3 do not vanish and the Legendre expansion fails.-

The singularities and cuts of the partial wave scattering amplitudes of the reaction
(1) in the complex S=-plane can be obtained by projecting Fig.lb and 1lc on the complex
S-plane. They are shown in Fig.2. The correspondence between Fig.2 and Fig.lb,c i1s obvi-
ous and. needs no explanation. . ‘ .

The most stringent limitation on tgf validity of the ngendreAexpaqsion occurs on
the cut ¢ in 71g.2, which corresponds to the cylinder surface ¢ in Fig.lc. The ima-
ginéry:parts of the invariant scattering amplitudes‘on 3 are fo be obtained by analytic
continuation wiih the help of Legendre expansion from the réactidn’amplitudéé of the'A
reaction (111). According to the theorem of Heihell), the regidn of’?alidity'of the
expansion'at a fixed value of ¢ 1s the inéide'of an ellipse, which will be termed
as the Lehmann ellipse in the following to avoid confusion with the eilipse described

2

by §5 = (m? ~1)°. The Lehmann ellipse passes through the 'boundtiry of the spectral

functions and possesses foci at 2= Cos & = + 1, which lie on the curve §s =('m:'-1)2'
as shown above. Brief calculations glves the equation of the Lehmann ellipse in the

region 4 < t £ 4m2 as:

x? ¥t ’
- 4 e~ =1 a»
2 1
where z 1 :
' t R v ‘
. x'= I, y=mia4l-g -ReS (14)

o : _ = ¢ z'_
1= 42_ 4F78% = S 4z om=

- R S 2
S,(t) 1is here the boundary of the spectral functions @Q,; and b,; . The equation

a3 for’ the cylinder surface can be’rev}ritteh as:
x1+.(g+§-m‘-:) = (m*a0) . (15)

‘The 1imit of the region of validity of the Levgyendre eipahéién 15 determined by the
inter-section of the Lehmann ellipse with the cylinder surfé.ce';'virhich can be obtained by
solving the equations (13) and (15), using the boundary of the spectral functions given -
by Mandelstam. The most stringent 1imit occurs at’ kz:'-'-']A.A,SY as,rﬁentioned; in the intro-
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“duction. The corresponding values of t and X = Cos ¢ are + =12, ¢ =542 respecti-

vely.

0f course, the range of validity of the Legendre expansion for the real part of the
*nvariant~scattering functions is very much narrover as pointed out by Lehmannla). It 1s
not determined bJ the boundary of the spectral functions, but by the lower limit of the
integration over o 5§ in (5). It occurs at k =-2.36,-which 15 very stringent indeed.

. ' v N . .-
III. The Forward and the Backward Dispersion Relations

‘The dispersion relations for the plon-nuclecn partial wave scattering amplitudes have
been written down by MacDowelllo). ?ogether with the unitary condition, they can be used .
as the integral equations for the TN -—scattering after‘snitable‘analytic;continuation,
The_discussion of the previous section shows’however, that the integral eguations .thus
4obtained do not ‘take the contribution from the unphysical region accurately due . to the
early Tailure of the Legendre expansion. On the other hand, it is expected, that partial
waves other than that of the (3 3) state receive important influencee from the contri-
bution of the unphysical region. It 1s therefore interesting to investigate the possi-
bility of avolding this difficulty.

The previous discussion also shows, that the 1limit of the range of validity of the
Legendre expansion varies for different’scattering angies. For the forward scattering,
the dispersion integral is taken along the path t=0:{ The scattering amplitudes of‘the
reaction (1) in the unphysical region are directly connected with those of the reaction
an in the physical region with X = Cos $ =1. No analytic continuation is thus
needed. For the backward scattering the dispersion integral is taken along the path
ss @n -1)2. Besides being connected with the backward scattering of the reaction

~(11) in the physical region, the scattering amplitudes of the reaction (1) in the un-
physical region are also directly oonneoted with those of the reaction (111) with
£ = Cos@= +1. Onoe the unitary condition for the reaction (111) 1s analytically continued

into the region 4 £ t £ 4n?

as shown by Mandelstam 3), no further analytioycon-
tinuation is needed in this case eitner. The most unfavourable. case occurs at 4>=54°

as mentioned before, where the Legendre expansion breaks down at kz = ~14,%. For the
low energy TN scattering, it is know experimentally, that only a small ‘number -of
angular momentum states are important, while all other states are negligible.vTo deter -
mine these small number of scattering amplitudes, only dispersion relations for a small

number of angles are needed. These angles can be choosen such a way, that the Legendre
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expansion falls only in distant regions. In fact, in the energy reglon, where waves
other than thoée of the S— and P-states are neéligible‘only dispersion relations for

-two‘differentfangles»are'needed. The obvious choice 1is then ¢ =180° together with
¢ =0°. The integral equations thus obtained are ekpected to take the‘contribution

from the unphysical region into account more adeouately.

More Waveo'oan be taken into account ty employing more'dispersion relations et
otner angles. For the case of TNV scattering, it is advantageous to choose angies
near the backward direction, since the angle worst ior the Legendre expansion is 47=54°,
which 1s nearer to the forward direction. Hecently, Efremov, Meshcherykov and Shirkov7)
have obtained .an interesting‘set of integral equations for the W~ scattering,
which take into account the effect of qt'ﬁt interaction, but in which the émplitudes
of the reaction (111) do not appear. Besides assuming, that the reaction (111) is do—
minated by the S— and P-wave in the low energy region, they also exploited this advam-
‘tage of the dispersion relation for scattering angle near “the backwarad direction?)

The forward scattering dispersion relation is'well known. They are:

A (s‘co$¢=l)=‘_’rfd$ {5 ¢ s~s }A €si1)

2 tmon‘

+ N 1 .. ‘
B7(S 1) = I .,._/43 {S 5 +;,—_—§.;}P‘ s, 1) (16)

mi-s * mi g,
(mul

+
Af\ and B; are defined 1n Mandelstam's paper4), which coincide with the imaginary

parts of A* and B® in tne physical region of the reaction 1. 5, 1is defined as

§,. = am*i1 -8 : (17 )

It is also straightforward to write down the dispersion relation for the backward
scattering. The location of the singularities and cuts is given in Fig.l and Fig.2.
The pole. terms are separated out first. The integration contour 1s° ohoosen as»shown in

Fig.3. The backward dispersion relation are then:

2
oo - . (M-1) Dy
AT(s cosg=-1) = =L [ds’ Ajes.-0) e A, (sl-1)
] T . S’-S pons _——.—.s’-s | V (1.)
{ -
m+l) . ’
'R Ay (s]-1)
A ‘/ “/. J[ d/i ‘}.45 ——:F:T;f-,
_ -mY% . : .
gt c?’ c o3 %si-1) ,("’"’ Besi-1)
Bes-1) = m2-s + mi § + L‘/dvslz. -5 - 7'/4(‘ PP
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A;, BZ" and A3 s B are also given in Mandelstam's paper. They coincide with the
+

"

imaginary parts of 4, B~  in the physical region ef the reaction (11) and (111) respect
ively. The contour 3 is the upper half circle proceeding in the clockwise direction,
while the contour 9 is the lower half circle proceeding in the anti-clockwise direc~—
tion as shown in Fig-;. 5. 1is definpd as

§ = L 2 )
s = 5 (no 1)

(19)

. » . . .
The signs before 4, , B, and A; . By eccuring in the integrals have to be determined
s .. ’

2
by examining the signs of the small imaginary parts of § and t occuring in the
dispersion relations (5). For the. sake of 1llustration, the determination of the sign
before A; _in the integral along g+ is shown in the following. For the backward scat-

tering, t ;—4k?.,0n the upper half circle § 1s of the form
sepe espim

Using (11), we obtain immediately:
) . , . .
I t = ?L'{(m"-:) -t Amy : (21)

Thus +  has abnegative imaginary part outside the upper half circle, and a positive
im;ginary part inside the upper half circle, The‘sign bofore A§ in the integral along j;
hasvto be negative, a result opposite to that of Mac—Dowelllo)‘

The dispersion relations (18) can be put into a form similar to (16) The integrals

in (20) are actually taken along the curve § $ = (ﬂt —1) . It 1s advantageeus to sub—

Ject some of the integrals to the transformation.

= _ 1_ 4% .
In particular,
2 ~ 1
~ tm- . o 5 o
T Alesi-n f f e S Agesi-h
i fae T e et e 3
"fo $o tma+n? 7 T (23)
s “mi E
L Ayes!-1s o L, F ATes-0
;/d 4 5'-5 g .7? dSs ':F' ;l- E_
- 80 )

-ms
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}Applyinp the crossing, relations to (23), we obtain

. : -~ - +,
tm u Al rs,- / , 5. ,4’ [T
= + —[ds — —
- L olS s S5 i Ko $- 5
, 2 ,
: (mts) ) B /
+ oty . , (24)
Ay es,-1) , 5 ATCsl-1)
: o2 T = as = S
w/.,,s G [ B A
- 0O
-m%r
Simlary, we -get . . .
o0 + , :
S WO ., T BYsl-n
-Llds o = $;jd5'-§:-' PO
T s'-$ . N - (25)
° (m+1) ;
* . -l" [ B + .,
0 B (s/-1) Yoox Bysi-n
Llas ——— = dAs’ == =
ac : S~ 8 qr R4 5 S~ 5.
“mtes

Furthermore, the 1ntegra1 over 3+ is the compiex.conjtgate of the integral over ]_

for physieal value of s. (20) can then be transformed into the follow_tng form:

. £ | ' Afesi-1)
Ag(s,-i)zi-#-'/a(.f {;Z_T k4 T X% J}A (s "1)—-%-22_[“5 s=5
4 ) (mann® v :..
s o
- P LS _{:..__'...._ 1(5'-1 .
- Tc'/"“ { sts &8 ,-__—,—_}A;M )
-w. V » . N
’ “ - (26)
+ gl e 31 i z i * .,
-~ — x — = B (s -4
Bt Uz-m‘-s F ooyt --/45{.5‘ * s-.r_f 1 )
‘ B (ln+l) :

-mir

, , : S
2 B(s/-1) 5 S
-;Q,‘/’ {s'-.s" vr/‘”{s.r F 5 s’-.’r:ﬁ'BJ_“' 1)

. !_ _ :

If D- and higher waves can be neglected 1n comparison with the “-waves, F - and higher

waves can be neglected in comparison with the P —waves, the S- a.nd P— we.ve scattering
amplitudes f (S) ’ fP (s) fp can be easily expressed 1n terms of the forwa.rd
and the ba.ckwa.rd scat%ering amplitudes.

t s
% z{}lcs,1)+3§.<5.-1)}

L

£

ft ft
(s) - (s)
£ )

s)

ne

@n

e

3 {fj(s, 0 "‘.'_{it(‘,fli}

£ -
'f,,/‘” -i- { fl (s, 1) .--fie(.s,-\n},
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The expression fi and )(z are defined by Clhew, Goldberger, Low and Nambug)'as:

. .E+M ' ‘ :
(S, x ZcoS = A~ (s )+(F-—m)3 s %0
fi 5, x .o @) P { x ' x}

(28)

+ o Sy
b4 - ~._A; (;,k).,.([f.;m)ﬂ (S,—\’)j
flesxr= g

E is here the energy of the nucleon.in the centrr ‘of mass system.
Iv. The Integral Equations
The next step is to express Al, Bl in terms of the imaginary parts of the TN
+
partial wave scattering amplitudes and A;: B3 in terms of the imaginary parts of the
B * * + s
NN annihilation amplitudes. The expressions for Al and Bl' can be obtaimed
directly fmm (27) and (28). . CT T T T e e

,4(51) r+m4’{—»{)‘“’+3f,. } E Zn{f ts)-f (5)}

E+m

-2 C ,./?-f-m SR SRS LI R ﬁ_'m 2 +
I{;.‘.A' (s,-1) ~ : Zn{.f‘:(m thv(s)} - ______;(,,'{)‘- (5)--#.;(“}

Nl\-

1 Brs = {j, (s) +3f,. m} + &{j (.n-fr(s)} 29)
R A ' S : s -

' - + *
-JT'%BI:U'..Q Eﬁ_ Zw{ )ﬂé(s, Jf,icst} f (n}

w0 X e

To express A3 and le in-terms of the’r’eaction amplitudes of the reaction (111),
it is neccessary first of a.ll to obtain the relation between S, “x mCos 4:' “of the

_ reaction (1) and t, 2;603 a of the rea.ction (111). It follows from (6) and (11),

tha.t for the backward sca.ttering .

! (30),

: 2
t =2m*+2 -5 - -Jr-(m"-l)
It cen be shown, that on the contours ef’integratibns'oocuring in (26)
§-5 . : - , _
Zz2 = R & o Lo - (31)
9 o .

The N-N annihilation reaction has been studied by Fraser and Ful/poz). It is straight-
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forward to express A3 and B;' in terms éf the AFA7 annihilgt;on partial wave helicity
amplitudes f+ introduced by them., I and J denote here the‘isotopic spin and the

total angular momentum of the /Vfﬂ7 system respectively. "4 and et refér here to
the two helicity states. Takidg into account the unitary condition for the reactlon (111),

we obtain after simple calculation:

s e Even ‘ 0T o7
(s, -1 = -_ . (T + T(T+1) -
A3 5 -=1) Jz JZ + ¥ T+ Z-..f_(f) ,Jn-.f*(t)} .
- ' (P?) 32
ACS =1y = bm %t 7 4 f- ’"q/:rcn*)%.f :t-)-;}.,f(t;} 2
T : .
. :
B tS,-1) = *T E“Z‘"‘ (T+ T(+1) (1'7/) Z«f )
T w

2" T~ LT
Bi(s-1) = 2w e;-_ld(7-+i)4/:(.r+:) (#9) A f ety
" : : .

where on the contour 5

e
§ =m~ne” Yt 0% ¢4

’

t = zm"fz -J._(m.’“-t) cos ¢

(33)
Py = f(ﬁad)ﬁhy v
For ~e0 ¢ S5 ¢ -miy -
¢ = Z.ML'F‘Z -3 -?'(M"—I)L
(34).

Py £ { Fototo sy
’ + - i + .

It is interesting to note, that on the gontour 3__ A3 and 33 are real, but A3 ,a.n.d.BJ o
are pure imaginary. The first few terms of the expansion (32) might be sufficient to
represent Ag and B;' for values of t not far larger than 4, whlch 13 the region giving
important contribution to the ’disp’ersion relations.. Howéver, thié é.lsd,_belqhgs to the
unphysical reglion of the reaction 111, where no exp’erbiment 1S'av§,1\1‘a:b1e to us. 'i'he' actuai
number of terms to be‘k‘_ept has to be determined in the course: of solving the igtegﬁal .
equation. ‘ e ‘ : . L o

Using the definit ion



’ — _.'__..'. ?:' ) ’ EEEEN ‘.
Kyesisns log ¢ + ] (35)

we obtain from (16), (26), (27), (28), (29) the following equations, which in combination
with the unitar‘yx condition give the integral equations for the TN scattering. The
+ .
following equations are for the amplitude f&cs, ‘.
NN EN R

* 1t I? .
Foesr = Boesy 4 Lo s 5, (50 + Ty, 0S)

ARy

% H > z
+ w(E+m) 3% 0 2 ' ;
’Ps: (s) = 16745 { mis T (m"- 5, PYEN 3-'_)} ’
o A
t Etm ,/s_d” /;_/F' L t >
Its)= _/d: 75l Eom fc.r) o Inl ff,t(”-ff}(”}}
(m-n . C‘I«//
o9 . .
' ,  Amiw-w t 36
II,zm- + %‘%‘_— ds'r{BK_CS,J) Z Z“f,’{‘.‘) (36)
0 - - 5 K y
(mw)" ((
’ -lmd'k) w + }
’ (s
v K, 85 Tram 5~f (s f;;, )]
: -m , :
ey = - {/d‘ ‘-‘5"4 (s, -1)+“JK (SS)Bcs.u
111:‘“"-‘/6,,{4/- £ [K F ]
+ 2 Qé/d:’}_’_:}_[ A ,(5,-1) + W 73_,'('{-5‘,-1 )J}
j o".'

0f course, the expressions 1\.‘3 and B3 in . 111'_, (s) are to be substituted by the expressi—-

ons (32) 'I‘he corresponding equations forf (I)-fit)a.re.

. f- 'Pt . . + H_i mt
- ] = ts) $) (s)
}Pcsa ) = B 4] . + I,

(

O S D A

+ ‘ ,[_+m)(£ m) 2 ' | ' |
?‘ ’(J‘)r. (—mr——/:-—{';::?;(m‘-f++m‘-?.)}

-z . SR R o TR N .

et el /- L Em fidT o7

+ 50+ "o Al 1’ shp 7
I_! = ./ -S E £ m Z"” “’ ft’zu’]"'z-'-m *4’—}” ‘ }

(m+|)



1+

o
| [

[0
o
¥
*
<

D
O
R

o Eem g i ame TS
‘“‘“"/’741:,“1 ds_{:?K.(s,f).——E-;-m—‘—Lf C/

4|

e J.m+/'+/"
.+,K+(s‘;)[.5+m }«f (.f')i- £’ "1-;
B "'”ﬁn+l ‘ ‘

jds[ K(sJ)A s ~1)+(f'+m)/( (s:5) BF (s-n)

Im+ “’Zn(.f (S)-f (s))]}

: E-m
Ty 4= i
R
[ A rs -1)+(/-?+mJB *¢s) -1)]}

+.z‘i’ef""

The equations for the amplitude 1;13)_‘
N ' J ]

z

+ k4 * B x
sy + T sy + Tyes0+ I, ). .

+
o - 7 RS
3 z a 2
I .
r+ w(E+m) 3t 1
P'(.n - F g s aTE )
E+m Jo 445
. . - [ 34
I,, = -nf“ “s  Eam /5 J'Mf&( ) _ : _
{ (m+u o % oo
(ce)
4 + )

+ E+™ s
Irr‘m /z oy { ; i
z (mw) - . s -
+
amrw-w T, - Wrw s-f (s }
,an&(:) — h(.g( f,—,! )]
2 X . .

t , P
)
Iﬂf,m =-4 I )
= 2

-

These equations are rather lengthy, but their structure 1i1s- simple. Each of the ampli-~
+ + +
, 17, 117, 1117, P i1s the pole contribution,

tudes 1s a superposition of four terms 1D
+
are the contributions from the regions of the reactions (1), (11),

while L . 117, 111

(111) respectivelr.
Since the amplitudes of the reaction (111) appear in the above equations, the inte~
A

gral equations have to be solved simultaneously with the 1ntegra1 equations for the N-N

annihilation.

BOzerunensrl HECTHTYY
U opeprwix mecaenosasnl ¢
| BUBIMOTEHA
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It 1s interesting to compare . the equatione (36) (37) (38) with the corresponding

result of Chew, Goldberger, Low and Nambu ). The main differenoe 4s of course the

‘terms HIJ ’ mP_.. ’ 1:11,,-é appearing in our equa.tions which are. entirely absent in

their equations. 'I'hese terms represent explicitly the effects of the 7t interaction,
1,7
since IM j+ " vanish within the two mesons approximation of. the unitary condition, 1if

the: T - interaction vanishes.

To oompare the pole c‘ontributions and the contributions fron the regions of the
+
reactions (1) and (11), it 1s convenient to negleot ;{n](_,i and Jnf,_,_ in comparison with
< w2
Pn f/” and drop terms smaller than the main terms by a factor of (oTJ) as -they have

. 4 * a2 \
done. 'I'he following approximate expressions for P o I, “am IT,_,_ are’then obtain-

3
eds
+- g ] w
= A e e o — | - - + I +
73’(5) = g 235 { ( z»z) ( )J |
x
oz SE[E - E &l ©
5, = x5 /3
2
+ co f
b4 " w
I, (s) % :——-/—-;{l':,:'—“}"" it
2 f" .
’ + % +
The approximate expression for ﬂ—"',I’ 3 and]I -.ares
. -1 b %- |
ho fk LY w e
7;2 rE- o lu-sr s m0-a
AT 2 . : .
| A N - (40)
+ ; ! ] ,
II" L= --—-jol z,‘z w-w m}"‘“}(f“)
34 .
SR g tos
I[:, ~ * L d“"k—,i w'+w m}zi‘*&“’
1"z *

f i1s here renormalized but unre.tionalized psendo-v'ector coupling oonstant defined as:

: N

f2 igmm | r o
: * + X . 4
~ The approximdte expressions for Py 9 I’, and Hr, are:
‘ 1 £ z
?_-0; : : Lf,;"kz
~ o+
B =EE T
z

(s2)



IP;(S)’;E;‘E dwf{’:—‘ M}Zuj’(:)

' uw-Hv'J" K w g (wrad
I, (n E ]w.w o e A s vl
Thus the pole contridutions and I,, are @xactlly the same as those obtained by
Chew, Goldberger, Low and Nambu within the aprroximation made. I’ ’ If and
IP* differ from their corresponding °7preusions only; by . te_:‘ms smaller than the
main terms by a fa.ctor ;;-,' « But IP and Ib look . quite different Actually,

4
our equatlons (38) are of the unuub*racted form. If a guhtraction 1<; made at W = 1, If
becomes similar to their result but H".l remains different. This would probably

cause some changes in the. behaviour of t;he (3.3) resonance.
. w

It 13 a pleasure to express here my thanks to Dr.Shirkov, Meshcherykov and
Efremov for many fruitful discussions, as well as to participents of Prof.Bogolubov's

seminar for interesting discusslons.
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