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1. The usual approach to the quantum field theory based on the Hamiltonian formalism was born as an 

immediate transfer to the field theory of the way, that lead from the classiccd to the quantum mechanics. To 

specify the' theory one prescribes thereat the form of the Lagrangian. Then, one obtains as a result of varia

tion the equations of motion which after the well-known quantisation procedure turn into the Heisenberg equa

tions for the operator field functions. The theory can be in fact formulated in this way merely in the limits of 

the perturbation expansion. Indeed, we cannot even write down the equations (the removing-of-infinities

prescriptions!) and not only solve them, otherwise then in terms of successive powers of the coupling con

stant. 

This inherent obstacles of the Hamiltonian m~thod have brought to an other approach.- it is often called 

'axiomatic' one, though this name doesn't seem to us the best. Namely, one tries to build up the theory on the 

basis of certain fundamental physical requirements which the solutions of the equations must satisfy without 

dealing with these equations explicitly. This way becames recently the subject of main interest in connection 

with the dispersion relations- the only exact result in quantum field theory. 

The basic physical principles of the axiomatic method may be formulated in different ways, Thus, we may 
' 

'requite, for instance, the Heisenberg fields commuting on any space-like hypersurface to exist at each point-
/ 

the pursuits in this direction have been made by Lehmann, Symanzik and Zimmermann ( see/1 ,2/ and numerous 

further papers). On the other hand, we can follow the programme suggested by Heisenberg131 and restrict our

selves to treating the scattering matrix. The latter way was chosen by '3ogolubov, Polivanov and the au

thor/4/*in connection with the theory of dispersion relations**. 

In a·ny version of the axiomatic approach there arise natural questions about the compatibility of the sys

tem of 'axioms' introduced and its sufficiency in order to define (with what ambiguity?) the theory. The 

first of this questions can find no definite answer as yet since the existence of a non-contradictory scheme 

of the quantum field theory is not established at all. The aim of the present paper is the study of the second 

Question. !'Jamely, we shall show that once the perturbation theory is adopted, the formal exoansion of the 

scattering matrix in powers of the coupling constant follows from the basic principles of the axiomatic appro-
y 

ach supplemented by assumptions on the transformation properties of the fields considered and about the deg

!ees of growth of the matrix elements with the same ambiguity as in the usual theory. · 

2 •. We shall start from the system of basic principles as formulated in PTDR, Sec.2. Specifying the trans

formation properties of the fields we restrict ourselves for the sake of simplicity to the case of one scalar 

*· Hereafter referred to as PTDR, 

* * The system of baslo prlnolples used In PTDR has originated from suoh a system proposed earlier by Bogolubova 

within the framework of perturbation theory 'and the hypothesis of the adlabatlo swltohlng on and oft of the Interaction, 



4 

field I out-field If (x)l. We shall write the (extended out of the energy shell) functional expansion of the 

scattering matrix in normal products of the <p (x) as 

o4 ·n; n ~ = L 7 Jx:t. ... dxn 4> (x.~.,. .. , x11 J : !f(x:t.l··. t.f{x,.) : 

/1~0 

Ill 

Here ¢ n ( Xt, ... /: t, ) are C -functions symmetrical in their arguments. By the 1'1-fold variational differentia· 

tion we obtain for these functions the expression 

n ·"<0/ $~ ~~> cp (x~,, ... ,x .. ) .::: (. 8lf(KL.J ... 8lf'(x,) 

which on making use of the vacuum stability condition ( PTDR, I,( 6) ), may be brought into the form 

n 
~ (Kt., ... ,x,}::: i-" <o I gns + 

3C{'Cx:t.J ... Jlf'rx..,J t fa> , 121 

more convenient for our further purposes. 

By the property PTDR, II ( 1) the functions cP n ( x,. , ... , x, ) with all arguments different are to be 

generalized functions integrable in one of the classes C (q,r). Should this be true for the coinsident arguments, ....,, 
too, their Fourier transforms cp ( ~ , .. ·., P11 ) defined by the relation 

Jdx, ... rlx, e 1 fcxp </>'(x,, ... ,x.)= (ircJ' .f[p~'···rp,) $"(p., ... ,p.) 131 

( the f-fuilction comes to take into account the translation in variance ) would also be generalized function 

integrable in some classes C (q',r') and , hence, $ ( p ltwould be polynomially bounded when any of the 

momenta tend to infinity. We impose upon the cf(p) a w:aker condition (held in the usual theory) ..:.'{hat of 

being polynomiallybounded at an uniform extension of all the momenta. Namely, we demand to exist for any 

n a finite growth index - the minimum integer .12 ( Yl ) such that when all the momenta are extended uni-

formly, 

Pt..=!:t.P ) ... J Pn :=. J, E / 
P~ C><> 141 

,._ SUn)+ ot. 

the function cP (J, P) increases slower than P for any o( "?0, 
Now, to specify the theory we have (instead of adopting the interaction Lagrangian of the usual approac~ 

to prescribe the growth indices J1 ( n ) for all n . Especially, a renormalizable theory does hold but a 
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Nn 
finite number of functions cp (f) with positive or zero index. It is also evident that we cannot set the 

growth indices quite arbitrarily; the problem of what sets of indices are admissible requires a special invest!

* gation • 

3. Let us establish now an infinite set of equations connecting the functions cPn( )( ) with differentnum

be~s of argume,nts. Such a set descend from the causality condition ( PTDR, II (2) ) 

2 t;;j { 8 ;~v) f/) == 0 for x ~ y . /51 

** . It may be shown by induction that the more general cond1tion 

S;(x} (rlf(Y~)~n~(Y~) sf) ==a ' if ;< {{;; all ( y .. , ... , Y,) /6/ 
. .;;If} 

follows from the condition eq./5/. Now, eq./6/ permits to prove again by induction, the operator indentity 

171 

which take place, provided (for some 1. ~ :5 .s; n-1. ) the splitting 

/7a/ 

holds. 
rl 

In order to come here to the functions .¢> ( X ) let us take the vacuum expectation values of the both sides 
. *** 

of eq. /7 j. The product of operators in the right-hand-side is to be expanded in the complete ·set of states 

making use of the formula ( PTDR, I, (4) ): 

i "f ,~ /k "•· fi!, . ~. > < "· , . , /5. I 
n•D 

/8/ 

Now, the matrix elements so arising may be once again reduced to vacuum expectation values by means 

of the property PTDR, II, (3). Then we obtain that: 

* Cf. B, V.Medvedev & M,K,J'ollvanov, to be published In JETP. 

** *** The proofs of the statements /6/-/10/ will be published In JETP (of. Dubna preprlnt 0·599 ), 

We assume here there are no bound states In the theory and, hence, the st~tes entering the sum In ~q. /8/ do 
form a complete Aystem, · 
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cpn(~~,. .. ,x,):. f ~ -z· 2i!i:~;! jdi.c···di!t du~ ... du.-Jeluj ... du~Jdv_. ... d~j.• 
t:O V,•O f''O 

j . rl, d•fH' (·) (-) 
. dt: ... th~ dv; ... d'f. '( (x;~. , ... , )(l1, l~r··· lz' u~, ... ,u,) 2J r~.rl~) .. ~ (rc2~). 

/9/ 
'(•J 1 (-} .1 V ........ I . I (•.) I (-) I 

. ~ (u.-u~_) ... 7J '(u.,-t..t,-) ¢ (u,.., .. , u,..,~, ... , ~) 2 (v.,.-v~..) ... 'if (v_...-v_.,..) • 

,L n-Ht~ , t ' v.' 1 X· X· ) 
·"fJ (i! .. ,. .. ,l"'~' .. ''r' Jd•.t.'"'' "" • 

as. soon as the condition /7a/ is fulfilled, \ 

Thus we arrive at an infinite equation set which the functions cp" ( x) determining the scattering matri~ 
must satisfy. One may opine that, together with the unitarity· condition PTDR, I, (5) which reads in terms of 

4> -functions as:· 
~ 

cp"(~~. .... ,x.,) +-f::.1.J"cf:/(xt, ... J.,) = 8,0 -

n-.t vo ~~ ,.J., 11·11-,...f 

_ \' \"1 (-tJ"
1
C-0

1 p { x .. , ... • x,.~~.). d~ ..... d~:s d"i~ ... dt.; '"t' {x ...... ,K,_,.-' ~:~. .... , ~:rJ • 
'-.J ~ :S. X,.l(,.t. , .•. ,x., 
K•1. 1•0 

/10/ 

*HK 
d.(•} t c:l((•} I ) ,/.... ( t I ) 

·ll (lrl.r.) ... u ('t.~-l:1 '+" ~.c .... ,l1 ,X"_".i' ... ,x, 

and with some prescriptio~ given for the growth indices, this system stifficies to find all the functions cf>"(x ~ 

Let us show that this is really the case at least in the perturbation theory- all the ¢ -function can be found 

up to a finite number of constants. ~ 

4. We assume now all the 'I> -functions to be expanded in power of some parameter A. 

04 

cp "(/(.c, ... ,/(,) :;:: 8,0 + ..[ >., cp:, (J(oJl,, ... , xn) ' /11/ 
.... :£ 

the small f. being taking account ~£ the weakness of the interaction. Let us suppose that in this expansion 

"the coefficients of ~ M satisfying eqs. /9/,/10/ are already determined for all m < M . Then, we shall 
. ~n ~M 

show we can always find the functions "'t'"' ( x~,, ... -, X, .) satisfying (up to " ) both the eqs •. /9/ and the 

conditions /10/ and shall establish the ambiguity arising. 

Let us look for the funcqon cp_: ( x~.. , ... -, x, ). Cari its arguments be split into two sets provided by 

eq. /7a/, the eqs. /9/ hold and we may pick out of them all the terms of the M-th order - then one comes just . 
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to the expression of the function considered in terms of the ~ -functions with other numbers of arguments · 
0 . 

but alwais of the lower. orders. Indeed, the expansion /11/ begins for all cp 11 

except the cp with the 

first order term (if there is no interaction, -~ = ·~ t "'- i ,). Hence,Jhe M-th order term in theright-~and-side 
of eq, /9/ cannot--include cp -functions 6f the order higher than (M-1). Thus the values of the functions 

for the arguments allowing any s~littin9 /7a/ may be found from eq, /9/ in terms of the cp .:.functions of lowet 

orders, that are already known by supposition. The unitarity condition eq. /10/ may be shown to be satisfied 
,/... ... n ther~at automatically. So, it wants only to determine the functions '+/., for the arguments not allowing the 

splittings /7a/. · 

Now, the set of arguments {x:t. , .. :.i x.,} does not allow any splitting /7a/ if and only if all these 
" ,~,nr 

arguments coincide. In other words, the set of equations /9/ determines the· ¢,., by given 't'm , m < N , 

up to a function, different from zero only for all the arguments coinciding. Such a function must be built up as 

a linear combination of Jl -function and their derivatives and its Fourier transform has therefore to be a 

polynomial in p~ , .. :., p, , symmetrical in these variables. By virtue of the assumption on the degrees of 

growth the power of this polynomial cannot exceed the corresponding growth index ..Q. ( n ) and, hence, a 

finite number of constants suffices to specify it. For each of these constants either real or imaginary part 

will be determined by the M-th order unitarity condition, the other remaining arbitrary in our will. · 

Now, since in a renormalizable theory we canintroduce but a finite number of nonnegative growth indices 

(otherwise no arbitrary polynomial arises), then the whole number of constants needed to get the M-th ap

proximation, the lower being known;· has to be finite, too. Finally, taking advantage of the fact the growth 

index does not depend in our assumptions on the approximation order, we can, just as in the usual renorrrializa; 

tion speculations, get together all the constants springing out in each approximation, thus reducing the multi

tude of constants needed to determine the theory uniquely to a finite number. 

The last reasoning referred to the hypothetic convergence of the series /11! can be avoided without any. 

trouble.' Namely, instead of orAscribing the values of the constants arising in each approximation, we may fixe 
-~ . 

the values of the functions cp ( f' ) in so many points, how many c~efficients the corresponding polynomial 

has, doing this for every 11 with a nonnegative Jl ( n ) and requiring thereafter to preser"e this condi-

tion in any perturbation theory order. Such a possibility would be in line with the dealing with the renormalizoo! 

quantities in the usual approach. · 

For instance , if we demand the growth indices to be equal to 2 for n :=. 2, to be zero for n = 3 and 
n -;::;: ·4, and to be negat~ve otherwlse, we come then at the self-interaCting scalar field theory with the three· 

.fold and four-fould interaction without derivatives. :This theory involves four arbitrary constants • Two of 

them ( corresponding to n = 2 )'will be determined by requiring, there are no mass and wave function renor-

malizations. To specify the. others (corresponding to r1 = 3 and to n = 4), we can fix the values of the 

3 -fold and of the 4 -fold •charges' for some fixed momentum sets.-
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