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Abstract 

Approximate integral equations for partial 'IT-\( -seat tering amplitudes are 

obtained with the help of the double Mandelstam representation in the low enerp,y 
range. 

~,, 



l.Introduction 

Investigation of ~-~-interaction is of interest not only from the purely thee-

retical point of view, but also from the "applied" point of view. In fact, 

interaction is inseparable from the study of elastic and inelastic processes of K

meson-hyperon interaction, anft in particular, of K-rneson-nucleon scattering. 

There are two types of interaction considered in perturbation theory. First, 

- int~raction (1) 

which is plotted in fig.l. It was introduced by Schwinger1) and discussed in detail 
..v 

by Minami2) and PaisJ). And, secondly, 

- interaction (2) 

plotted in fig. 2 and discussed in detail by Barshay4). 

It is not clear at present which of the above types of interaction is more pre

ferable. 9ne may add~ce the following consideration in favour of the second type: if 

the interaction of K-mesons and baryons is assumed to have the form 'iK 'i,then to make the 
. - t 

theory renormalizable it is necessary to introduce the term <awa~K~ into th.e Hamil-

tonian of the interaction (in a way similar to that of introducing the· term ) 'e ~ in 

mesodynamics or the term e, ~l"~,.'~t' in mesoelectrodynamics). 

The analysis of the experimental data on ~-i\ -scatteringJ-5) has shown that there 

is good agreement between experiment and theory in the low energy range (up to 200MeV) 
' 

if one uses interaction 2 and assumes that the coupling constant of rr-~-interaction 

approximately equals 1-5. 

Mention should also be made of Chou-Kuang-chao results6) about the possible sym-

metry of the ~-~-system. Proceeding. from the Hamiltonian in the form 

(J) 

where \-\'It is the Hamiltonian describing · '5t-'3l -interaction, \-\ ~ is the Hamiltonian 

describing K-meson interaction, and assuming Hamiltonian (J) to be invariant with res

pect to rotations in isotopic ~ -meson. vector and K-meson isospinor spaces he obtained 
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that all the amplitudes of n-K -scattering without charge exchange are equal to 

each other that all the amplitudes of charge-exchange scattering equal zero, and that 

the annihilation process ~~~~~~ is going only through the isoscalar state. 

The present paper attempts to study ~-K -interaction by the method of Mandel-

stam•s double representations. At the first stage of the investigation we have derived 

approximated integral equations for partial '3f-~ -scattering amplitudes in the low 

energy ranr,e. Investigation of ~-~-interaction by the method of double dispersion 

relation was stimulated, first, by the importance of tpis interaction for the study 

of ~-N - scattering, and, secondly, by the work of Efremov, Meshcheryakov and 

Shirkov7) who successfully avoided kinematics singularities by considering the corres

ponding symmetrical and antisymmetrical expressions. 

The logical sequence of processes for strong interacting particles in studying 

~-~-scattering is plotted in fig.). A detailed study of ~-~ -scattering.was 

made by Chew and Mandelstam8) and by Chew, Mandelstam and Noyes9). In our equations 

for 'lt-~ scattering the "Jf-'3i -scattering phase-shifts are assumed to be given. 

The ~-~ -scattering amplitude is considered in the complex plane of variable 
,.~, ( ~t q_. '\ is ·the momentum in 

A kinematic·cut along ~1 

the centre-of-mass system of .Sf'o~-1(-<lffi'+~' 

in the interval -W ~tf6 -r-1 . where P1 
r~action). 

and r are 

K-meson and ~-meson masses respectively, is eliminated by the method proposed in 

ref.7) The analyticity region of the imaginary part of ~-~-scattering amplitude 

is determined from the Mandelstam.representation and the .perturbation theory under 

the assumption of interaction (2). 

- ""~ A non-physical cut from 'lit'3i~ IC+II. " reaction is eliminated by Muskhelishvili-

Omnes method10). Employing further the unitarity condition we obtained a closed set 

of approximate integral equations for ~-K -~cattering amplitudes which involved 

~-~ - scattering phase-shifts. The approximati~n consisted in taking into account 

only nearest singularities while deriving the set of integral equations. This, natu

rally, led to a ~easonable restriction on ~-~ -scattering by the lowest partial 

waves ~ - and p • Their set of integral equations· was obtained by two methods: 

1) for partial amplitudes averaged over all scattering arigles and 2) for partial ampli

tudes taken at the backward scattering angle. 

2. ~ - K Scattering Amplitude and it~ Isotopic Structure 

Matrix elements of the scattering process 
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II 

and pair production of K-mesons 

III 

can be represented in the form 

5 

err+\(, ~ 5TI -t \';I 

en'-+ It:; _, ~+ ~~ 

. . 1. 1/2. 

4f\$\~?.:.c.f\1.+~TI~>=~~t +3("If•)c~~)~ (1~p,0 p~o~,oq • .,) T (4) 

where 1: ?~ is the sum of four momenta of all particles' P•o ~d rzois the K-meson 

energ , ~ 10 and G.,~o is the ~ -meson energ, T is the Green• s fu.Rction. 

For the scattering !'recess I the differential cross-sectiea is expressed by the 
~ 

formula 
d~ 1 I £t1l 1 \T\.t -":> 

(jJ1)1 dSl \ qt \ 1\ "r·o P~o 
In the centre-of-mass system \ ~:.\-=- t Cf,.\ 

a~ \ -~ T\.t mea the. form of - = -;:;;:. • Isotopic 
dO. irnl::.k 

tude has the form: 

' P:c =- P1o -= £1.( 
structure of the 

(5) 

and relation (5) assu-

31"- K -scattering ampli-

(6) 

where A and B are scalar iunctions dependent on the scalar product of the 

four momenta f~ , fz. , 't-1 ' <t, 2 • 

'!'he connection of A and B with isotopic states of the '!!i-\<: -system is 

given by: 

wherE: T% and are states of jsotopic spin J/2 an~ 1/2 respectively. 

Isotopic structure of process III coincides with that of processes I and II, 
0 i 

while the connection of T and T (states of isotopic s~ins 0 and 1, respecti•e-

ly) with A and (; is quite simple: 

(7) 
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J, Kinematics of neactions 

1'/e shall consider A and B factors as functions of invariant variables 'i> 1 , 

~:z. and ~ 3 determined by the usual method: 

b~ = -(p1+q,)t I ).t 
<;,.2.:-\..~1 .. q.t ) ""~ =- (p. + p~):. 

In the centre-of-mass system· of reaction I these invariant variables take the form: 

~i.= W-tfz+.2q; ~ ~~(c(.~J'-t_X<t~-+1'1~· 

~.2.= M\.~t.~- 2~1~o&~~- ~ V(~~+r-'Xct1 -~- W)
1 

S~=- -~~;(1.- c..c!>~~) 

) 

(8) 

where ~1 - is the scattering angle of the incident meson. It follows from relations 

(6) and (7) that the substitution of ~ ~ ~ corresponds to the substitution of 

...,,+=~.z and in this case 

AC'-'1:> ~.z.>~~) "'A(~J/:.~,sa) 

~ lsl,~.t) 5~) =·- B(s.z,~.,s~) 

• 

(9) 

Hence, it appears that in expanding A and B factors into partial waves of 

the third reaction only even waves will appear in the expansion of A and only odd 

waves in the expansion of B 

4. Analytic Properties of "ri- \(. -Scattering Amplitude in the Centre-of-Mass 
- f'~ 

System of the 'First Reaction 

In what follows we assume that the Mandelstam representation holds for the func-

tions . 1\(.s.,S:.~~~ and '2,(c,,,~J.~;). If we consider functions A and B in the complex 

~' ~ variable plane £t. 1 . at a fixed scattering angle c..osv:L= c1 :.~.it is possible to ob-

tain from the Mandelstam representation all the cuts over ~~ ·; from reaction I the 

cut is tn ~he interval [ 0, + oo J , from reaction II in the interval [- M ~- oo ] 

for l ,.1:. angles and in the interval [-1:t-,- 1111
] 

' M t 

reaction III it is in the interval [- !!±- , - oo] 
' ~~ 

fo:r; a1 ~ ~ angles·, from 

Apart from these cuts there is one more, a kinematic one, which lies i~ the in-
t .... t .z 

terval - tr\ ~ .q. 4 ~ - f"' • The latter cut is eliminated_ by the method proposed in 



7 

ref. 7) For this purpose, alongside with the variables 5~ and s~ (see 8) we 

shall introduce new variables 

If we now 

and 

~i.= Mt+r-l-~- ~~\ -~~c~~+""L~~!+w)' 

~.z= ~z+r-~- 2 ~~e1 +2VC~~+,..·)C~:~w5' 

require that 

" ~i "'- ~1. (in variables of reaction II) 

'I: 
~.2 ... ~.2. (irr variables of reaction II) 

(10) 

~ 'It 
we shall obtain that A( ~u ~.2. ' 

~~ ) is an amplitude of reaction II in its physical regi . · 

on. F1g.4 represents the connection between the variables of the first and second 

reactions as expresses by relations (IO) and (11), 

•rhus, side by side with functions A( ~.s., ':1~ , :,3 ) and B( ~.t.. , 'il:. , ~!>) we shall 
~ ~ ~ ~ 

consider functions A( <;,
1 

, ':11 , ':1~ ) and B( ~1 , ~2 , ~!> ) • Symm,etrical and asymmet-

rical combinations of these functions will not depend irrationally on the root 

u~~ .. l~~-tr-•Xct~ ... tl\1) • Thus' functions 

-r ~(it~,~" t-(C.ct~)) + ~ c~.t"~,,~ ~e;) 
'!.c;, = ~ 

and 

"f -= "fl.~~)c,,t~)- ~~!,t1.-'l 
a. ~ ~ 

where ~ denotes either function (A or B), will not contain a kinematic cut. 

The cuts of l(~11,~,,-\C) function from reaction II are in the [O,t C>C:lJ 

and (- M \- 't~ 1 intervals for 'l1 } ~ ; from reaction III they are in the· inter-

r t 1 val L- !4£, ,- 0()} • There is no cut from reaction I. If we now write the usual cauchy 
1.-!t . ~1 "r "I: 

theorem in the complex plane ~t for functions ~ ~ and ~~ and return again to 

functions ~ we obtain 

(12) 



where 
-l'l.l 

~~(~.):: {_ 'ta~ 

8 

)<. , .fot i!1 ?- M 

1 ~ot i!, ~ ~ 

'?: = llt\)42-1~a. 
l, -1.- e 2. 

J(t) = 1 + ~(tj:t) - ~(~~) 
1 

...;,t 
Fig.5 shows the domains of integration over ~ 1 in eq.(l2) depending on c

1 

It can be seen from fig.5 that at r 1 =1 the only non-zero integration domains 

will be ~z 

~~~0 • It corresponds to the transition to the usual dispersion relations 

fpr the forward scattering case. 

At ~i = -1 contribution from the negative _.., t ' 
't.~ is made only by the cut from 

reaction III. 

Eq. (12) was derived from the Mandelstam representation without using any appro

ximation. Restricting ourselves only to nearest singularities, namely, taking into 

account only part of the cut from reaction III we shall further on consider such an 

equation 

~ t 
- !:.J::_ 

oo l: cq;' ) t l. -'·t, ~(~' 'f.) " \d , )w.. if~:.+~):f(t) +- 'k 't ~~,-~ 1 + t l ta .. l·~~w..t~)J(i)+~~cct:.-ll)1(~) 
~,,1 = i ~ ~ ~i- q.t1 ~ J ~~·i 'f!- 't~ (lJ) 

- !t!:--
1..-i, 

5. Elimination of Nonphysical Cut From Reaction III 
!-k:'\ 

In eq. (lJ) imaginary parts ~ J.(~~,t-\C) and ~ ~(~;,- K) in the interval 

[-~ 1 - ~ ) will be considered as analytic continuations of the correspon--1.-i, 1.- i!i ~ 
ding functions from the region 5

3
'?- Y. .M. 

Let us expand amplitude ~ (&1 ,~.i., <:,;) into partial waves of reaction III in the 

region of 1Jhysical values of "tt; and c...o~ ~11 : 

l(&s.,~J,~)) = ~ r~'h t (~e.+1.) Cf~(qD Pe(c.o&.&~) (14) 

As follows from eq. (9) the summation over even t 
~ = A and the summation over odd 

tarity relation for reaction III: 

t is taken for 

is taken in relation 1 (14) for 

~=B. Let us also write uni-
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(15) 

here l\lf" denotQs hermitian conjugated amplitude of reaction '3i-t'jj~'fi"+'IT 
x) 

'It follows from eqs.(7) and (15) that 
* 

't 11., ..L ill_<.Jn'A(D.')\1°Cn') 
JWl. 1"\ ~%Jl"' \-1 ) 

' ~ 

~ £, = -~ ~ ( J.Q I BC Q') rr'V"2 ") 
3.2Jl1 \-1~ J 

qp 
If in expanding no and n l into partial waves we restrict ourse~ves only to ~ 

and f' -waves respectively,· we obtain_ 

(16) 

It is evident that the expansion of (16) over i!'~,. C..O!.~) in the reaction~~'3i~J.(+iZ can be 

analytically continued up to the first singularity at which the imaginary part of 

reaction III amplitude discontinues. The boundary of the first discontinuity is found 

in a way similar to that of ref.ll) 

The bounding curves for the spectral functions. have the form 

(17) 

) 

and 

x)Isotopic structure of reaction~~~~~~~ has the form (see, for instance, ref.
8
)): 

n~-r~~' n C' 0 3 
.l.l = ll~O.c~O'Tf.. + n.:. o(,!~r! + D,S.qS.!~ 

while the isotopic states of spin 0( D 0 
) and of spin I( Oi) are related to the coeffi-

cients n I' n 2 ,GJ in the following way 

f1 ° = ~ n 1. ~ n1 • n~ 

n ~ = n.z.- n; 

.·, 
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[~~-~/][~1-(Mt?>J.fJ. 32r-~(!Yl+~)=O 
(18) 

(asymptotes ~1 :(M+or)~ and ~t= 4
1
"'-.t ) 

It follows from eqs.(l7) and (18) that the imaginary part of the amplitude of the 

reaction III can be analytically continued over variable ~: (at physical e1 ) 

1 up to -21.) )"'- • 

The analyticity of the real part of reaction III amplitude is determined from 
12) the Mandelstam representation wit~ the help of Heine's theorem • 

_.1 
The boundary in variables 't. and a1 of the analytic continuation of the 

third reaction amplitude is plotted in fig. 6. 

Applying now Muskhel1shv1li-Omnes method10) to the function 

"",h - \.1..(~1. 't.) 
r~e 

where .JL 
~--ti __ , 

( 

... J \ \ <' { q. (~-!.) ) 
u. G,.-.~J" ~ ) a~~ oo\~ -:r -J-

1 

'Ot1 .... , 

-2,~9r-' ~·- <t.:L 

So is S ~-~-scattering phase-shift, and again returning to function P. we obtain 

the following set of equations for A:. 

oo ACt o<) 

f\(;r~ i ~) - !. L ~·,_ ~ t ~t,) Ia ~ i. ~\. da'l 
1-' "'- • ~ )q ~ if·'- a' ·Lt Jr J ~:1 

Q l,-:1. ifL Q 

1m A .(4'~ ~.) I(-
~!-9.~ -1-

(19) 

where 

?+(u.)~~~)" L [eu.(~,t,)-~(ct~.~.) ~ ~Ci!)] 
- z ~cq.~n 

To eliminate non~physical out in the equations for B function consider the functions 
,.. 1!, 
P,::-

~1-~Z 

':t: -~ 
and 'X:,& e. 

~"- ~.t 
where 
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[l. is P )..!-scattering phase-shift. 
"¥ -P 

Function ~ does not contain new singularities and the same Mandelstam s,- "z 
representation will hold for 1t as 1t dirl for ~5B 

In a way analogous to that for the function ACUC) we obtain the following 

syste~ for B function: 

(20) 

where 

6. Integral Equations for Partial Scattering Amplitudes 

In order to pass from eqs. (19) and (2~ to. partial amplitude equations, we shall 

T ~ T~ . 
use expansion of and into Legendre polynomial series and the unitarity con-
dition 

3 
T 

3

(q,! I i,) :: t (2tt1.) T t (~~) p e.(~.) 

T-s(£ll,i2.) :. i[ C~~t-t)T:C£t:H'e(t!:) 
k 1'~('t~)= i.. _!iL \T:s(..,t)\1 

·. s~ UC9,:) e. "'' 

k 1' J (...,1) 1 l if,_l \tTl:! (...,1 \t 
e. q,L = vr 'H(q,~ 1 e 9.J 

(22.) 

Restricting ourselves to s- and p -waves we obtain from eqs. (19)-(!0) and 

from the orthogOnality condition of Legendre polynomials 

IX) 

n ,\ '\) •l ~ C.'t)~J. ~<~if /&;\" ,lif, '!'\[ ~ 1 r:t~~~ <1 r!C<rl~ .3f,(i!! <Ott\'!' !I!!~~ 1'1' :Y>t~'l ~ ,., , 
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In eqs.(2J),(24) the following notations are introduced 

U(q;) = ~ Nt~r-' + 2 ~1 ~ .t vc~~tj<-~C.ft w)' I 

t(~i~ = tt: + 2~.('t't~)~ Mt- f<t 

.t(1.-eJ 

~ ( ;t' .f,) =- 1 - f(g~ e.L U- i?,) 
2. ,. ) '"'>l q, 

1;(""'t !) _ u:~zrt\,.....2 . 't~. _ i!,CM2-~-,..~ 4-2ot~IQ 
'\.) - 2. '~;; 't.( 1-l~} 

or. -= ~ CW-r1)~- 'i ~1LMz"r1)('l_'-r~)., lf~: M~t + '-H'l>" ")t 

12:- = ~- [u.( tl~1,iJ,a,), 't\ {C1'
2

, ~.)} 

"' 3.= 5_ [ ~lH.~·~c~,e,), "9:, +Ccf,i,)] 

eL ±(.G.:~'{,\ i,) ,;: ~ + ~1l~ ")- ';1:,(~1) 
- ~1 ( ~11) - s .1 ( 4;2

) 

"' -- ~i(1') - ~%(~') 
J.... - ·!', t 

- . - 5i tH9:',i!,)1- s!! Lftt~i!,)l 
d. 

ntl(\;',q:)= )ch
1

ee.Ll,)L ... ~· , -r ~-!:l(j:~.~.) 1 
-1 . cc-'t tl~~a.)-~1 

J 
~ i . 

~Q.lf,'t;)= ~d~1 Pe-li!,)L ~;~1., + ~- 1.tCq;,l;,)1lC~·
1

,e,)J 
-i ~ - <t~ .f(~~i!,) -1' . 

~J. 

G Q. (~\ ~j = ~ ~~l. Qe.C~.) L ~ --
-1 

+-L 

. "'t (~', <t1 ~ -~ .... M ... ) L ~~·q. 

i.- :D (li·'. w. J 
+ Tc~~ i!,) : q_· 

.,. ]- llq·~i!J flCq·Z, t,) J 
f( ... ,l ' "''l . 
'-tt;li!,,-.~ ' 

We shall furtller on proceed from.the assumption that in eqs.(2J) and (24) i't is 

sufficient to perform one substraction. In the case under consideration there does not 

exist a convenient symmetrical point for substraction as it happens to be in the case 

of ~-'31 -scattering, since the K-meson and 'TI -meson masses are different. We 

shall, therefore, agree upon substracting at the point ~: = Q, In this case, the 



, ~ 
.1..) 

S -phaRc-shjfts will be relateri to scattering lengths o...'~ and a)Ct by the correspondir. 
1/z l"l1 l.'z 

tsotopic states '1' 0 and I o wh:!.ch will appear in equations as parameters. 

As a result of simple calculations, we obtain the following equations 

()C) 

Re [l'T t!t\Q) + 1':2(.~')}" Re U T:\o) ~ T ~\o)J '" 1~J[1 P)ci~t ~>l[ l'lr.(~~~j- 11tcq;z,o]f.21To~t~·~\ 1'1' :~(~·~121 + 
0 

t ~ (. 'e2.cq;~ <t1) -'fe.Ct o)] [ 11 T3~ Ci\':'W + 1 rr ;· cq:1W1 j C25) 

We shall now obtain a set of equations for partial amplitudes in the system of 
....,z ~z reaction I for backward scattering. In this case. ~1 =~: and 

• To derive 

the set of equations we shall proceed f:rom eqs. (19) and (20). The validity of the 

expansion. at the point ::1. = -1 follows from the analyticity properties of the func

tions fl and B at thi::. point. 

Thus, we have 

1'(~~,-1),. 1:c~·.) ~ ?>rr:c~~) 

co£ T\~',~) 'i=-1-= ~~:cq,l) 

(27) 

(~8) 

·(29) 

Employing expressions (27)-(29), expanding integrand in eqs. (19),(20) into. 

Taylor series, equating coefficients of identical powers i! 

substraction at the point ~~ = 0 we shall obtain ~ different set of equa.ti'ons for 

· and performing one 
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partial amplitudes (in all the equations argument -1 denotes that the function is 

taken at the point 1 1 =~z.=-i· ). 

o [QT ~.( .. ') T'''tif''] _ o [~T34 L·o + 1' '''(O)} ~ g_ t .. ,: I~\ ( ~ l T ~Ut'l~ l'f~(§")l
1

[a,zfVi(o·'o''.'frq,'oJ'.-a2V'(alO)l + 
!'-,€..;. o '\. .r o ..,1 -J.e. '- o a B'Jl'' )o~ W(~~l 't\~'-Cf) ~l •''' t·~, V ~ ~· J 

. 0 

~ ! \ T~~~\>~t'( ~ry \' [ ~· ( Lc r.'\1-L[f. Q) • 't'L( '1:~ o) 11 (Jo l 

"" I ~., ''\2 IT 'h( '"'')\' 
n [qT~'-41) T'\-.. )}-.L \.~ .. ,d.91{~1'o~~; ~ · o 9' [o•'(C(o·'o')-C(C'·'o')+a'C(~'o)l+ 
l'fe.. "· 1. \9, t- 1.\q_ - s~· t~ ~(~'>1 fCf-ct') L- f>v ~·I ~ ) ~ 

~ 1 IT].~~~~~:~::·u~:·)lt~ £t:2(QCf,~~-~c~~a))-.~~·QC£t~on~ (Jl) 

o r T •tzr .... \ T 3'•r .... )1- o r lf'\0)-T31'l0)} ... g_ 'tna·11S:L 1 l~v'(q:'JI~-_11'~(q.r91\l,z(((1i·'~''-EC''·'0)\3'f(o·:oJ} 
r..e L o·l9,1- 0 \~ · 1\e. L l o o ~nt 6 ~ WC~')l 'tl('t;z-q.•) l!v 1-•'V ~· 'J 1- ~ 

),< 

?> \'i' :'lo/)\l- 11\' (g,r')\l r o''l Fl't',~). f c··· ()~ + t!lF(Q'·I o)l ~ 
~\~J- q;•) l ~ 't, IJ ~ ~' 'Jj (J2) 

0 [tr' 1't(...,·•' _ IT' ltz(fl'\} ~ _!_ ( dei·L lli_ i I 1' :·c~·)l:- l T :·(if)L[cs·~(G- (""'•' .. '' _ Gr-,.~ 0,\ ... azG (-'·' Q)l 
l'.e L ~ q;; 11. -..1 SJT2 6 ~ t~c~·J·l ct·c~·-ct·) ~ ~Jtt; '--'t' ~; 1- ~) ·~ + 

+ 1 1rr~L~·)1l- lr~·cs·•)\1 [iPL\-\(n·'il')-\1(~1 o)) +Q
1 \-tlo,•,o)}l 

J ~,1.('1/.,Z ~·' ~ "'\,>"'\, ) \.- ~ 5 (JJ) 

where 'f~ 

1r(-·,.,) r ) "' N 1 )1'1("'1 ') ( .. ' •')' r - ':h(g',l,) 1 · 
V ~ ~~: 'u··i. t ~.,I(T -t ~-\.-i. ell 'tJ·'1 + q:-G.. Oa1L (- ~(~~%,}'~1 !,,. 1 

L' ..... ')- _ o \') _ ~· (-t)t('O·l. -i) + (~.a~n lii 1JC~
1

.:,l.tsC~t·:t.l1 
\<l; .~- l, (t ~- -v' 'l. ~ 1

• l" tl~~i!.l-'t,1 J?,•-1 

C( .. , ~•) 1 (""'a .. ,) ~ ["" l(q;t,a,) ] 
'Vl. = l,~T -t. Q,;-'t l, ~- t(~:i!,)-q t,•·i 

r\. 'cr··~·\_ r_i) _ 0 0 (a•l.o')'d [v; ll~'.i,)£.(§·~.d) 
't'lr,.,l- ~~'-: a,~.~+ -., ~ a, l.- fC.~'.z,)-<t,' e,•·i 

E(~~~)" ~J-i) + 'Oi!,"-4 + ,C:_(-1-)~(~'J-1.)+(~1-ct)\ [Z_ ~~f,t~J ' '(<i:~~,)-'l,. c,•·i 

F(a·1 a')-::.") .;. - Z-C--i)~(o·'-i.) ~ C.il·'-o')ll [i. ~c~~ •. ) i!.aLQ•~t.lJ 
~I ~ t, + -~I ~~ V !, - ( ("'•1 ) .... .> _l 1- 't I!, ' 't c;l" :L 

\ 
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It is observed that in eqs.(25),(26) inteeration in u. 
1~<- l 

-2.79,.... 2 to - -"'--- while in eqs. (JO)-(JJ) from 
1-li 

~ 
\.;"? 

Conclusion 

and ~ .was performed 

-4 t'- 2 to - r- 2 • 

It can be seen from Eqs. (26),(J2)-(JJ) that we have derived systems of approxi-

mated non-linear integral equations which may have several solutions. 

One of the possible solutions of these equations is the 
"1: 31 

T = T solution, 
. .. 6 lJ) 

which coincides with the results obtained in refs. ' • However, this solution is to 

be considered approximate, since the substraction terms n '4( n T% 
t<.e. l 0) and !\ e lO) must not~ 

generally speaking, be equal to each other, and, besides, the cross-section of the 

charge-exchange \C.-['[ scattering is known to be non-zero. 

Inequality of .the substruction terms can be naturally connected with a different 

T ift 
effect exersized by higher-energy baryon states on isotopic spin states and 

1!11 
of the "li-K scattering amplitudes. 

It is possible that due to the non-linearity of eqs. (26) and (J2)-(JJ) other solu 

.tions than the 'r
11
t-= 1' ~It solution may exist even in the case .when R.e rp 

1
i( 0) = Re 1' ~\ 0) , 

If one takes into account hyperon states in relations (22) and (28), then eqs. 

(26) and (J2)-(JJ) will involve additional terms which will even more a~fect the T~~· 
T¥t. 

-solution. However, due to t~e high energy threshold of hyperon states their 

role in contributing to eqs. (26), (J2)-(JJ) remains so far unclear. 
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