


Jﬂzjbﬁg T

D 550

P.S.Isaev and M.Sewerynskil

APPROXIMATE EQUATIONS FOR PARTIAL =K -SCATTE-
RING. AMPLITUDES™) |

) Reported at All—Unioﬁ Interuniveréity Conference on

the quantum field and elementary particle theory
(Uzhgorod, May, 12-18, 1960).

#5CPHHEX HCCNenoravri

Fﬁxemwennuﬁ RHCTHTYT |
]
{ DHUBJIMOTEHKA




Abstract

Approximate integral equations for partial ﬂ-K-scattering amplitudes are

obtained with the help of the double Mandelqtam representation in the low eneryy
range. '



l.Introduction

Investigation of %-K —interaction is of interest not only from the purely theo-
retical point’of view, but also from the "*applied" point of view. In fact, T -Kr
interaction is inseparable from the study of elastic and inelastic processes of K-

meson-i}yperon 1nterac'tion, and in particular, of K-meson-nucleon scattering.

There are two types of ‘interaction considered in perturbation theory. First,

KaK - inttraction : -

which is plotted in fig.l. It was introduced by Schwingerl) and discussed in detall
by Minami 2) and Paisj) And, secondly,

K¥aw - interaction (2)

plotted in fig. 2 and discussed in detail by Barshay4).

It is not clear at present which of the above types of interaction is more pre-
ferable. One may addl;lce the following consideration in favour of the second type: if
the 1hte-ract10n of K-mesons and baryons is assum:ad to have the form qKI,the'n to make the
theory renormalizable it is necesséry to 1ntroduce the term '%HRKST‘ into the Hamil -
tonian of the interaction (in a way similar to that of introducing the term )ne

mesodynamics cr the term éA A'I in mesoelectrodynamics)

The analysis of the experimental data on K—K -scattering3_5? has shown that there
1s good agreement between gS:periment and theory in the low energy range (up to 200MeV)
1f one uses 1nteraction>2 and assumes that the 'coupling constant of T\'-K —~interaction

approximately equals 1-5.

Mention shculd also be made of Chou~Kuang-chao resultsG) about the possible sym—

metry of the- ‘3\~\(. -system. Proceeding from the Hamlltonian in the form

Me g+ Hy + QKoK ©)

where ““ 1s the Hamiltonian describing - ®% -interaction, H\C is the Hamiltonian
describing XK-meson interaction, and assuming Hamiltonian (3) to be invariant with res-

pect to rotations in 1sotopic W -meson vector and K~meson isospinor spaces he obtained



that all the amplitudes of n-K -scattering without charge exchange are equal to
each other that all the amplitudes of charge-exchange scattering equal zero, and that

the annihilation process K+k->wnd 1s golng only through the 1sosca1af state.

The present paper attempts to study SFK ~interaction by the method of Mandel-
stam's double representatioﬁs. At the first sfage of the‘invesfigation we have derived
approximated integral equations for pa:tial ﬂ-ﬁ -scattering amplitudes 1n the low
energy range. Investigation of EFK —-interaction by the method of double dispersion
relation was stimulated, first, by the importance of tpis interaction for the study
of K-N - scattering, and, secondly, by the work of Lfremov, Meshcheryakov and
Shirkdv7)‘who‘successfully avoided kinematics singularities by consfdering the corres—

ponding symmetrical and antisymmetrical expressions.

The logical sequence of processes for strong interacting particles in studying
SFK ~scattering is plotted in fig.3. A detailed study of 9-97 -scattering was
made by Chew and Mandelstamg) and by Chew, Mandelstam and Noyesg){ In our equations

for -k scattering the -7 =-scattering phase-éhifts are assumed to be given.

The W-K -scattering amplitude is considered in the complex plane of variable
Q} ( qlisﬂthe momentum in the centre~of-mass system of -T+K 2"+ K ‘ rgaction).
. . -l O L] ) :
A kinematic ‘cut along q{ in the interval -M sqré-}u. , where M and J¢  are
K-meson and 9 -meson masses respectively, is eliminated by the method proposed in
ref.7) The analyticity region of the 1még1nary part 6f a-K —-scattering amplitude
is determined from the Mandelstam,représentation and the .perturbation theory under

the assumption of interaction (2).

i

lA non-physical cut from ﬂ+ﬁ-ﬁl+ﬁ " reaction is eliminated by Muskhelishvili-
Omnes methodlo). Employing further the unitarity'condition we obtained a closed sét
of approximéte integral equafions for -WL-K/ —écattering amplitudes which involved
$-I - scattering phase-shifts. The approximaticvn consisted in taking into account
only nearest singularities while deriving the set of integral equétions. This, natu-
rally, led to a xe;sonable restriction on 5K —scgttéfing by the lowest parti%l
waves 5 - and E « Their set of 1nfeg;a1 equations was obtained by two mgfhods:
; l) for partial amplitudes averaged 6ver‘a11 scattering angles and 2) for pariial ampli-
tudes taken at the backward scattering angle.

2. 5 -K Scattering Amplitude and its Isotopic Structure

Matrix elements of the scattering process



I sk > T+ K
IT F+K — T+ K

and pair préduction of K~-mesons
111 T - KK

can be represented in the form
1y,

. ‘ ‘ ; 1
4{\$\L 9= 4{\4,-& LTlL): SL{. + S(I-fs) cam? ('16?40[’1@‘}4'0‘{,“, ) T

(4)
where pX P.‘, is the sum of four momenta of all particles, P, énd Rols the K-meson

energy , Q10 and qlm is the % -meson energy, T is the Green's function.

For the scattering precess I the differential cross-sectien 1is expressed by the

formula . e
de o4 &L A gy
aQ  am* L G\ AGp.p. (5)
In the centre—of-mass system \q;\':\q.\ » P20=f10 = E\( and relation (5) assu-

mes the form of a‘-\%: ‘—’%E T\z . Isotopic structure of the - K —seattering ampli-
. " .

tude has the form:
: ‘ i
Tep=Adsp + 2lmglB ®)
"where A and B are scalar functions dependent on the scalar product of the
four momenta fu , P2 ,qﬂ sy Qg -

The connection of A and B with isotopic states of the 'JT~K -system 1s

iven by:
g Y. » % 4
A - 2T 4T
= -1
, 3
Y %
B - T-T
% % 5 :
where T and T are states of isotopic spin 3/2 angi 1/2’ respectively.

Isotopic structure of process III coincldes with that of processes I and II,
. o 1 : :
while the connection of 'L and T (states of isotopic spins O and 1, respective-
1ly) with A anda B 1s quite simple:

T°.%A 5 T'-28 -



3. Kinematics of Reactions

We shall considé;‘ A ana B factors as functions of invariant variables Sy

s, and  $; determined by the usual method:
6= -(prad 3 sp=-(perg)t 5 5y == Cpuvpa)?
In the centre-of-mass system of reaction I these invariant variables take the form:
5= Mapt 232 + 2qopXgiem)
5= Mieplo 2 Ei:‘icos’sﬁ' 2 \ﬂ(a{:wtxgtyﬁ M)

) -2 (8)
53= —2(3‘(1(1 = C’os'ea)

. ‘ . )
where 31~ 1s the scattering angle of the incident meson. It follows from relations
(6) and (7) that the substitution of L =B corresponds to the substitution of

9 =9 and in -this case

A(sa,"’z)ss) = Acsz,-‘u, 53) .
B("nsz, 55\,\ = - B(Sz'$4|6,)

(9

Hence, 1t appears that 1in expanding A and B factors into partial waves of '
the third reaction only even waves will appear in the expahsion of A and‘ only odd

waves 1n the expansion of B .

4. Analytic Propertles of - \4 —s‘g‘attering Amplitude in the Centre-—of—Mass
System of the First Reactlon

In what follows we assume that the Mandelstam remresentation holds for the func—
tions ~ A(e'usz\"b\ and %(‘34-51#5). If we consider functions A and E) in the complex
. L
varilable plane ‘?}1. at a fixed scattering angle cws, = 2 =costit 1s possible to ob-

tain from the Mandelstam representation all the cuts over 'czf "3 from reaction I the

2
cut 1s in the interval [0,1-001 y from reaction II in the interval [‘Mr = ]
for 2,7“;"‘ angles and in the intetrval [—‘t,,- mz] for 2,¢ % angles, from
reaction III it is in the interval [— % 3= °°] . .
-

Apart from these cuts there is one more, a kinematic one, which lies ir; the in-

terval -m'L g?j'f < -),‘.,J' « The latter cut is eliminated_ by the method proposed in



ref.7) For this purpose, alongside with the variables s, and s, (see 8) we

shall introduce new variables

g = N"»()u. + ZC}L 2« c'q:i+)LXq:i+mz
= m? +}L2_ 2‘ EL‘ 2, +.V(q1+),,_n)(;i':*mz) v

(10)

If we now require that

*

9= 5. (in variables of ‘reaction II)
and

* , :

5,= 9, (4rf variables of reaction I1)
we shall obtain that A( ’«;, ";,_ y O ) is an amplitude of reaction II in 1its physical regi
on. Fig.4 represents the connection between the variableées of the first and second

reactions as expresses by relations (IO0) and (11).

Thus, side by side with functions A( $., S, , S, ) and B( s, , S, .53 ) we shall
o ¥ L
consider functions A( %, , % , 93 ) and B( gi y 8 , 53 ). Symmetrical and asymmet-

rical combinations of these functions will not depend irrationally on the root

K(-qﬁ:[@lﬁ)‘})@lf\*ml) - Thus, funct:llons -
&5 = E(Q:)ih fw(aln)) + § (afd 324 .K’
9 .

and

T - €312, +K) - B(@,2,,-60)
a" 2K

where § denotes elther function (A or B), will not contain a kinematic cut.

The cuts of @((']::,2.,—\4) function from reaction II are in the [0,+oo]

and [—\Y\z)—'t;} “intervals for 2.3 % ; from reaction III they are in the’inter-

. 2

val \-_—%,E.,-co] . There is no cut from reaction I. If we now write the usual Cauchy
-2, - 2

theorem in the complex plane 2{1 for functions ¥ 5 and -5‘\ and return again to

functions @ we obtain

2(g,4K) = Slagd*.* I @ K)L+M¥(aw KYF ()
) ° ' i -n (12)

Xd"" —-—-’i—’—& ek 5(&) + V(e }—i) S ‘11 ——.%(j'”‘:&—}@\é

SA A= -S'V“- a(q’;,*K)}(,) 1‘3’W1§C§1: K’)]((-
ay(4 - q.d.




where

) {—W k; ‘FOZ By ? -)Fil:

":(,a. =

q‘ ’ - ’c!t ;v_ 40?.‘ 2, 4 %
LM, Kigy

‘t’z‘-;m__ﬁd__;:__"'__ , '}( ) i \C(Q")

>
Fig.5 shows the domains of integration over C{‘ in eq.(12) depending on 2,4

It can be seen from fig.5 that at 2, =1 the only non-zero integration domains
will be Q"fao » It corresponds to the transition to the usual dispersion relations

for the forvcard scattering case. y

t .
At 24 = -1 contribution from the negative Q'i 1s made only by the cut from
reaction III.

Eq. (12) was derived from the Mandelstam representation without using any appro-
ximation. Restricting ourselves only to nearest singularities, namely, taking into

account only part of the cut from reaction III we shall further on consider such an

equation

N ) . 4 . ‘
" I B 10 ¢ I BG4 (L, &n%f,m)w)d&@’ ~1G)
-Cf(% 1K) = %36% " di-d. 'w SAI » -85 (13)

5. Elimination of Nonphysical Cut From Reaction III
Pta) . .

. , . _

In eq. (13) imaginary parts sm?.(@“rlq and —San @(Z}:‘:’,—K) in the interval
2 .

{-%.&1— y - !;-.La- ] : will be considered as analytic continuations of the correspon—
-2, -24 3
ding functions from the region . Sb}lim

Let us expand amplitude ?é(’a.ﬁ;. 55) into partial waves of reaction III in the
region of physical values of ?1; and wsas : ‘ z

§($L|S¢,$,) =2 F3Q,3 % (20—*4-) @;(-zi:) Peéf—os‘&s) (14)

As follows from eg. (9) the summation over even L is taken in relation ' (14) for
@ = A and thé summation ofer odd L is taken for ‘§= B. Let us also write uni-
tarity relation for reaction III:



bl * L] .
3m§(=«5z. 3) 323Tl ucq) SdQ & (Q)n (Q) (15)
* x)
here n denotes hermitian conjugated amplitude of reaction G +F->T+IT N

It follows from eqs.(7) and (15) that

) 325% V‘ S ( ) C )

v

] i L=
If in expanding 1\ ana [l into partial waves we restrict ourselves only to 3

and. P -waves respectively, we obtain
T Ag(3) = L LBl AT(F ) o 8,
8 Wy (16)
| S B2l = 35 B B ()  inbycondy

It is evident that the expansion of (16) over za-sooss; in the reactionT¥-»¥+¥ can be
analytically continued up to the first singularity at which the imaginary part of
reaction III amplitude discontinues. The boundary of the first discontinulty 1is found

in . a way similar to that of ref.ll)
The bounding curves for the spectral functions have the form
[y - 16,10 - Mg ][ - (] - é‘“«r =0
Q)

(asymptotes 51=(N*)~)2 and $3=46/u.l' ) |

.

and

fyIsotopic structure of reaction WX-»>%+F has the form (see, for instance, ref.e))z

o n 1Seplag + (1, S«egm +[133ey8sp

while the isotopic states of spin 0( [1°) and of spin I( []4) are related to the coeffi-
cientsﬂI, n 2,(13 in the following way

N°=530, + N, + 0,
n*=n,-o,
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[ sy- 1 [sg- (Me3p01] - 32,3 (Mep) = 0 s

(asymptotes o=(M+ 5)*)L and 5,.= Ll,u-" )

It follows from egs.(17) and (18) that the imaginary part of the amplitude of the
reaction III can be analytically continued over variable if: (at physical 2, )
up to -21.3 )1." .

The analyticity of the real part of reaction III amplitude is determined from

the Mandelstam representation with the help of Heine's theoremla).

o1

The boundary in varlables % and &, of the analytic continuation of the
third reaction amplitude is plotted in fig. 6.

Applying now Muskhelishvili-QOmnes methodlo) to the funotion

~w(@,e)
Te
h P/
where . » -5 q.(d-:) )
\A.(.C\' e) L S ) ( Z
1 gT L "’,i_ -"l.
-239)»‘ % ‘h

Sa is S T-f-scattering phase-shift, and again returning to function § we obtailn
the following set of equations for A:. ‘

oo
[0 <] 22
A vy A ] MA'!&',"»‘)
A(% 3,4) = igd"'z 'Sw-.l‘:(-di« ktt + Jir-,- d"’l‘ 'ﬁz:ql \2'; (19)
’- “ > q‘_ - %L Q A 4
where
( -1, ...,,_ u—(q‘, ) u—( el) -K_(L]
VZ u Dq,d = [_ : V;(q")
To eliminate non~-physical out in the equations for B funotion oonsider the funotions
B—- and E__@_g—j_
s 2 54~ 92 5.2
where SAn a2
1-31 S(_ 31‘(4_2‘> _ 1)
4 Sd-a,l 4 2 }"
= = - Y] ’
3T q“ . CV:,_ q“

o209t
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6: is P Ff-scattering phase-shift.
-p
Function EL&Q;. does not contain new singularities and the same Mandelstam

$4- 62

representation will hold for it as it did for ;§55

In a way analogous to that for the function A(*K) we obtain the following

system for B function:

oo . oo ~
0 - - X X A -SWI B(-'I:,EJ ‘K)
%U@,enﬂc): %Edq'l%ﬁg g, féﬁ’tﬁ% §‘; (20)

where ) ‘ it
[ep(q«;t‘)-ﬁ(%,é& . K@EY ]

§,= Z(gh)

tol~

6. Integral Equations for Partial Scattering Amplitudes

In order to pass from egs. (19) and (29 to. partial amplitude equations, we shall
Y
use expansion of ‘T and rr into Legendre polynomial seriles and the unitarity con-

dition
3 . 3
T (q{i'%h = 2(2&*4.)'1-"_(?1&) PQ(%A) .
3(4# 2,) = ):(2Q+A)T (‘i} Pe(ez) (21)

MTt@,) 33- u( \T C"')\

T & {{‘(‘t‘w\‘?“( |t

Restricting ourselves to S— and P -waves we obtain from eqs. (19)-(20) and

(22)

from the orthogénality condition of Legendre polynomials

1T, @) Tr b d“i‘u@a%m At molseg et

PURHOEATELD ‘@( O e LIT @ k]
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In eqs.(23),(24) the following noté.tions are introduced
u(&'@ = m\‘)l.l + 2%‘ 13 2 (q1f}‘9(qx+ m;)-
: 22 (e~ M }J :
,‘24 = T :
¥q 9,(A-2%)
TR

2+ 28 ep’ 73, - 2,( M, «2(40)
2 % 2h 2% e (4-23)

v = (Mgt - 2 My k) ¢ Gl Mt e (e k)

"Z [u(fr(q 2y, § {( a,))

g.'—' 5. [ %G(«%Z:EJ:ED) -ﬁ,:: "E(qt’l’%‘ﬂ
L@ a7, ) 2@
N Y
2 ' 5,(8) - 5.(3)
: -‘5 t g uw,anl -5 [{lqheN)

v %az‘%L T :Cch?)(q )

ot / ’_____\24-31 " M
fﬂ.( ED Sdix Po(—at) %z_q: 4(?1,&.) —q . :}

-4 » :ﬁ\
a1 4 z_ ﬁ(-"lé
NUP R PRy £

»

o8 Va2 e "i‘@ S |
v - ) ,

We shall further on proceed from the assumption that in eqs.(23) and (24) it is -
sufficient to perform one substraction. In the case under consideration there does.not
exist a convenient ;;&mmetrical point for substraction as 1t happens to be in the case
of &8 -scattering, sinbé the K-meson and T 4mésbh masses are different. We

)
shall, therefore, agree upon substracting at the point 2{1 = 0. In thls case, the



o}
[}

S—phmo—ﬂhji‘ts will be related to sc: attering lengths o.
% ¥

¥ B
and qﬁ‘ by the correspondir
isotopic states Tg and To which will appear in equations as parameters. -

As a result of simple calculations, we cobtain the following equations .

Re[z'T:‘uo CTIEN = Re [T, (0) + Ty « 1 P agt u(-u){[“a(”‘?)"( AR IT Y 17+
0
L@l ) -l 0)][21 T T @} (25)

Y A *zl |
Re LT (4{\) Te (?[] Ra[T’(o) T (0)]+ 5 ) W(q‘){[&a(“i‘
- 6 @ ON[TeRITEY) 3 [ena) watwm'\u@*)r- w:mr]?
QQT:&(O):RQVTT(OyO ) '

(26)

Ve shall now obtain a set of equations for partial amplitudes in the system of

2 1
reaction I for backward scattering. In this case. 9429, and Z£:2,=-4 . To derive

the set oi equations we shall proceed from egs. (19). and (20). The validity of the

expansion at the point "2, = -1 follows from the analytlcity properties of the func-

tions a and B at this point.

Thus, we have

3 2
T (Ge)=T(§2 1) + (442)%, T (Fa), | +-..

T 3(‘?’-’*’)21.[‘3(@:;," i) «(1+ e')%!:rj(-zz; 2‘)21”1 - (27‘)
G l)(lT @l e dalT i ) | -
B T o= UTc 2>ezrri<qr>\‘+-.. )

) ]
T 1)-T, (g ) 3T, (g2) .

Q T‘J(q\i l: = ?>T (q})

Employing expressions (27)-(29), expanding integrand in eqs. (19),(20) into

Taylor series, equating coefficients of identical Powers . 2 - and performing one

2 .
substraction at the point i,: 0 we shall obtain 2 different set of equati'ons for
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partial amplitudes (in all the eguations argument -1 denotes that the functlon 1s
taken at the point ii=t‘-7_=-i' ) ‘ v
P\,QUT:.(Q") a-TZl(Q’)] =9~e[2T’4(O +T:,Iz(0)l % %z qu», ﬁ(iq’_‘) {_%‘%—(ﬂﬂ [q‘( @')ﬁ‘)_\r(i{o))u‘_i’\/'(‘i{()):h
Y ) Y,
L\TLU?“‘\T (q' \ 3 o) 0 *,(320) ‘ (30)
3 e L3t (L@ L@ - Th? R
Koy ot 2 (el 2T rr“(*‘)l 2 70))« 3'Cl§a
Re[irn( )+T ( )1— T Sd% uqx) Tl((t q) [ ( C(‘{, O)) CL [‘l )]
\T-»,((qt,{)\ lTa( K- 2 Q(.?llzxqo‘)‘Q(q‘io))"?{lQ(ﬁ’lo)]g . (31)
e [T (8)- T, @1 v\m“‘w)-'r'”;ton*f Wp____,_un‘ggl AL [ofeg)-ecqio) 4%
T VT o - £l310) 03 Jl
3 qa 41 -o; {. ( (% ) q ] (32)
% . 3% ! P Kt 4',; l-a'\ lrr ( -lT ( ) o -5 -l H )
Re [T,.(8)-T, (Q)] F Sd% ﬁq@i( ‘T,z(‘l 3 Qi[‘?,( (%a%)‘G(‘l*o))*iG(‘i»o)_]Jf
v AT ‘;@, ",‘li)-{ (g -Hea) - R4 -
where é‘

LCERIT IR R IO TG M e

L(g )z -, T L03E5-0 (3-8 %-.t%-%i—‘;?f_%‘f L |

@t » @D LT

)
Q- 10 -+ AN [T 2EREEE L,
E(§3) = 4,00« 0%, + 20D 0+(g- *‘)5 [* 7:%‘;’3%]2 n

a7 ay ~ at 23 Br) 2ot
Pl = s, - TG AN (2 AN,
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GL§'q)- he, + G303 [R. R—%ﬁz]zpd

H(E8)= <%é e 460+ (3303 (2. 1)__1.;&4_@‘% Gy

2-_

It is observed that in eqs. (25),(26) integration in W and P was performed

from -2. 79,» to - -%Lz— while in eqs. (30)-(33) from -4 m 2 to P 2
-2, \ ‘

>
Conclusion

It can be seen from Egs. (26),(32)=~(33) that we have derived systems of approxi-

mated‘ non-linear integral equations which may have severavl solutions. -

: i co : Y 4 Co
One of the possible solutions of these equations is the: T = T solution,

which coincides with the results obtained in refs.6 13). However, this solution is to
%

be considered approximate, sinoe the substraction terms R«QT (0 and R T (0) must not,
generally speaking, be equal to each other, and, besides, the cross-section of the
charge—exchange K- N scattering 1is known to be non-zero.

Inequalilty of the substruction terms can be naturelly connected with a different

i

effect exersized by higher-energy baryon states on isotopic spin states T and

¥,
T of the T-K scattering amplitudes.

It 1s possible that due to the non-linearity of egqs. (26) anci (32)~(33) other solu
tions than the T%:T%‘ solution may exist even in the case when 2,2_"[‘ 1/1(0)= ReT%(O)

If one takes into account hyperon states in relations (22) and (28)', then egs.
(26) and (32)-(33) will involve additional terms which will even more affect the T1&=‘

T% -solution. However, due to the h'igh energy threshold of hyperon states their

role in contributing to egqs. (26), (32)~(33) remains so far unclear.

The authors express their gratitude to D.V.Shirkov, A.V.Efremov and V.A.Meshche-
rykov for making available the results of their work7) prior to publication, as well
as for helpful advice and discussions. We are also indebted to A.A. Anselm and

V.M.Schekhter for the discussion of the charge-exchange problem in 7-K ~scattering.
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