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Abstract 

Approximate integral equations for partial 'IT-\( -seat tering amplitudes are 

obtained with the help of the double Mandelstam representation in the low enerp,y 
range. 

~,, 



l.Introduction 

Investigation of ~-~-interaction is of interest not only from the purely thee-

retical point of view, but also from the "applied" point of view. In fact, 

interaction is inseparable from the study of elastic and inelastic processes of K­

meson-hyperon interaction, anft in particular, of K-rneson-nucleon scattering. 

There are two types of interaction considered in perturbation theory. First, 

- int~raction (1) 

which is plotted in fig.l. It was introduced by Schwinger1) and discussed in detail 
..v 

by Minami2) and PaisJ). And, secondly, 

- interaction (2) 

plotted in fig. 2 and discussed in detail by Barshay4). 

It is not clear at present which of the above types of interaction is more pre­

ferable. 9ne may add~ce the following consideration in favour of the second type: if 

the interaction of K-mesons and baryons is assumed to have the form 'iK 'i,then to make the 
. - t 

theory renormalizable it is necessary to introduce the term <awa~K~ into th.e Hamil-

tonian of the interaction (in a way similar to that of introducing the· term ) 'e ~ in 

mesodynamics or the term e, ~l"~,.'~t' in mesoelectrodynamics). 

The analysis of the experimental data on ~-i\ -scatteringJ-5) has shown that there 

is good agreement between experiment and theory in the low energy range (up to 200MeV) 
' 

if one uses interaction 2 and assumes that the coupling constant of rr-~-interaction 

approximately equals 1-5. 

Mention should also be made of Chou-Kuang-chao results6) about the possible sym-

metry of the ~-~-system. Proceeding. from the Hamiltonian in the form 

(J) 

where \-\'It is the Hamiltonian describing · '5t-'3l -interaction, \-\ ~ is the Hamiltonian 

describing K-meson interaction, and assuming Hamiltonian (J) to be invariant with res­

pect to rotations in isotopic ~ -meson. vector and K-meson isospinor spaces he obtained 
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that all the amplitudes of n-K -scattering without charge exchange are equal to 

each other that all the amplitudes of charge-exchange scattering equal zero, and that 

the annihilation process ~~~~~~ is going only through the isoscalar state. 

The present paper attempts to study ~-K -interaction by the method of Mandel-

stam•s double representations. At the first stage of the investigation we have derived 

approximated integral equations for partial '3f-~ -scattering amplitudes in the low 

energy ranr,e. Investigation of ~-~-interaction by the method of double dispersion 

relation was stimulated, first, by the importance of tpis interaction for the study 

of ~-N - scattering, and, secondly, by the work of Efremov, Meshcheryakov and 

Shirkov7) who successfully avoided kinematics singularities by considering the corres­

ponding symmetrical and antisymmetrical expressions. 

The logical sequence of processes for strong interacting particles in studying 

~-~-scattering is plotted in fig.). A detailed study of ~-~ -scattering.was 

made by Chew and Mandelstam8) and by Chew, Mandelstam and Noyes9). In our equations 

for 'lt-~ scattering the "Jf-'3i -scattering phase-shifts are assumed to be given. 

The ~-~ -scattering amplitude is considered in the complex plane of variable 
,.~, ( ~t q_. '\ is ·the momentum in 

A kinematic·cut along ~1 

the centre-of-mass system of .Sf'o~-1(-<lffi'+~' 

in the interval -W ~tf6 -r-1 . where P1 
r~action). 

and r are 

K-meson and ~-meson masses respectively, is eliminated by the method proposed in 

ref.7) The analyticity region of the imaginary part of ~-~-scattering amplitude 

is determined from the Mandelstam.representation and the .perturbation theory under 

the assumption of interaction (2). 

- ""~ A non-physical cut from 'lit'3i~ IC+II. " reaction is eliminated by Muskhelishvili-

Omnes method10). Employing further the unitarity condition we obtained a closed set 

of approximate integral equations for ~-K -~cattering amplitudes which involved 

~-~ - scattering phase-shifts. The approximati~n consisted in taking into account 

only nearest singularities while deriving the set of integral equations. This, natu­

rally, led to a ~easonable restriction on ~-~ -scattering by the lowest partial 

waves ~ - and p • Their set of integral equations· was obtained by two methods: 

1) for partial amplitudes averaged over all scattering arigles and 2) for partial ampli­

tudes taken at the backward scattering angle. 

2. ~ - K Scattering Amplitude and it~ Isotopic Structure 

Matrix elements of the scattering process 
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II 

and pair production of K-mesons 

III 

can be represented in the form 

5 

err+\(, ~ 5TI -t \';I 

en'-+ It:; _, ~+ ~~ 

. . 1. 1/2. 

4f\$\~?.:.c.f\1.+~TI~>=~~t +3("If•)c~~)~ (1~p,0 p~o~,oq • .,) T (4) 

where 1: ?~ is the sum of four momenta of all particles' P•o ~d rzois the K-meson 

energ , ~ 10 and G.,~o is the ~ -meson energ, T is the Green• s fu.Rction. 

For the scattering !'recess I the differential cross-sectiea is expressed by the 
~ 

formula 
d~ 1 I £t1l 1 \T\.t -":> 

(jJ1)1 dSl \ qt \ 1\ "r·o P~o 
In the centre-of-mass system \ ~:.\-=- t Cf,.\ 

a~ \ -~ T\.t mea the. form of - = -;:;;:. • Isotopic 
dO. irnl::.k 

tude has the form: 

' P:c =- P1o -= £1.( 
structure of the 

(5) 

and relation (5) assu-

31"- K -scattering ampli-

(6) 

where A and B are scalar iunctions dependent on the scalar product of the 

four momenta f~ , fz. , 't-1 ' <t, 2 • 

'!'he connection of A and B with isotopic states of the '!!i-\<: -system is 

given by: 

wherE: T% and are states of jsotopic spin J/2 an~ 1/2 respectively. 

Isotopic structure of process III coincides with that of processes I and II, 
0 i 

while the connection of T and T (states of isotopic s~ins 0 and 1, respecti•e-

ly) with A and (; is quite simple: 

(7) 
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J, Kinematics of neactions 

1'/e shall consider A and B factors as functions of invariant variables 'i> 1 , 

~:z. and ~ 3 determined by the usual method: 

b~ = -(p1+q,)t I ).t 
<;,.2.:-\..~1 .. q.t ) ""~ =- (p. + p~):. 

In the centre-of-mass system· of reaction I these invariant variables take the form: 

~i.= W-tfz+.2q; ~ ~~(c(.~J'-t_X<t~-+1'1~· 

~.2.= M\.~t.~- 2~1~o&~~- ~ V(~~+r-'Xct1 -~- W)
1 

S~=- -~~;(1.- c..c!>~~) 

) 

(8) 

where ~1 - is the scattering angle of the incident meson. It follows from relations 

(6) and (7) that the substitution of ~ ~ ~ corresponds to the substitution of 

...,,+=~.z and in this case 

AC'-'1:> ~.z.>~~) "'A(~J/:.~,sa) 

~ lsl,~.t) 5~) =·- B(s.z,~.,s~) 

• 

(9) 

Hence, it appears that in expanding A and B factors into partial waves of 

the third reaction only even waves will appear in the expansion of A and only odd 

waves in the expansion of B 

4. Analytic Properties of "ri- \(. -Scattering Amplitude in the Centre-of-Mass 
- f'~ 

System of the 'First Reaction 

In what follows we assume that the Mandelstam representation holds for the func-

tions . 1\(.s.,S:.~~~ and '2,(c,,,~J.~;). If we consider functions A and B in the complex 

~' ~ variable plane £t. 1 . at a fixed scattering angle c..osv:L= c1 :.~.it is possible to ob-

tain from the Mandelstam representation all the cuts over ~~ ·; from reaction I the 

cut is tn ~he interval [ 0, + oo J , from reaction II in the interval [- M ~- oo ] 

for l ,.1:. angles and in the interval [-1:t-,- 1111
] 

' M t 

reaction III it is in the interval [- !!±- , - oo] 
' ~~ 

fo:r; a1 ~ ~ angles·, from 

Apart from these cuts there is one more, a kinematic one, which lies i~ the in-
t .... t .z 

terval - tr\ ~ .q. 4 ~ - f"' • The latter cut is eliminated_ by the method proposed in 
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ref. 7) For this purpose, alongside with the variables 5~ and s~ (see 8) we 

shall introduce new variables 

If we now 

and 

~i.= Mt+r-l-~- ~~\ -~~c~~+""L~~!+w)' 

~.z= ~z+r-~- 2 ~~e1 +2VC~~+,..·)C~:~w5' 

require that 

" ~i "'- ~1. (in variables of reaction II) 

'I: 
~.2 ... ~.2. (irr variables of reaction II) 

(10) 

~ 'It 
we shall obtain that A( ~u ~.2. ' 

~~ ) is an amplitude of reaction II in its physical regi . · 

on. F1g.4 represents the connection between the variables of the first and second 

reactions as expresses by relations (IO) and (11), 

•rhus, side by side with functions A( ~.s., ':1~ , :,3 ) and B( ~.t.. , 'il:. , ~!>) we shall 
~ ~ ~ ~ 

consider functions A( <;,
1 

, ':11 , ':1~ ) and B( ~1 , ~2 , ~!> ) • Symm,etrical and asymmet-

rical combinations of these functions will not depend irrationally on the root 

u~~ .. l~~-tr-•Xct~ ... tl\1) • Thus' functions 

-r ~(it~,~" t-(C.ct~)) + ~ c~.t"~,,~ ~e;) 
'!.c;, = ~ 

and 

"f -= "fl.~~)c,,t~)- ~~!,t1.-'l 
a. ~ ~ 

where ~ denotes either function (A or B), will not contain a kinematic cut. 

The cuts of l(~11,~,,-\C) function from reaction II are in the [O,t C>C:lJ 

and (- M \- 't~ 1 intervals for 'l1 } ~ ; from reaction III they are in the· inter-

r t 1 val L- !4£, ,- 0()} • There is no cut from reaction I. If we now write the usual cauchy 
1.-!t . ~1 "r "I: 

theorem in the complex plane ~t for functions ~ ~ and ~~ and return again to 

functions ~ we obtain 

(12) 



where 
-l'l.l 

~~(~.):: {_ 'ta~ 

8 

)<. , .fot i!1 ?- M 

1 ~ot i!, ~ ~ 

'?: = llt\)42-1~a. 
l, -1.- e 2. 

J(t) = 1 + ~(tj:t) - ~(~~) 
1 

...;,t 
Fig.5 shows the domains of integration over ~ 1 in eq.(l2) depending on c

1 

It can be seen from fig.5 that at r 1 =1 the only non-zero integration domains 

will be ~z 

~~~0 • It corresponds to the transition to the usual dispersion relations 

fpr the forward scattering case. 

At ~i = -1 contribution from the negative _.., t ' 
't.~ is made only by the cut from 

reaction III. 

Eq. (12) was derived from the Mandelstam representation without using any appro­

ximation. Restricting ourselves only to nearest singularities, namely, taking into 

account only part of the cut from reaction III we shall further on consider such an 

equation 

~ t 
- !:.J::_ 

oo l: cq;' ) t l. -'·t, ~(~' 'f.) " \d , )w.. if~:.+~):f(t) +- 'k 't ~~,-~ 1 + t l ta .. l·~~w..t~)J(i)+~~cct:.-ll)1(~) 
~,,1 = i ~ ~ ~i- q.t1 ~ J ~~·i 'f!- 't~ (lJ) 

- !t!:--
1..-i, 

5. Elimination of Nonphysical Cut From Reaction III 
!-k:'\ 

In eq. (lJ) imaginary parts ~ J.(~~,t-\C) and ~ ~(~;,- K) in the interval 

[-~ 1 - ~ ) will be considered as analytic continuations of the correspon--1.-i, 1.- i!i ~ 
ding functions from the region 5

3
'?- Y. .M. 

Let us expand amplitude ~ (&1 ,~.i., <:,;) into partial waves of reaction III in the 

region of 1Jhysical values of "tt; and c...o~ ~11 : 

l(&s.,~J,~)) = ~ r~'h t (~e.+1.) Cf~(qD Pe(c.o&.&~) (14) 

As follows from eq. (9) the summation over even t 
~ = A and the summation over odd 

tarity relation for reaction III: 

t is taken for 

is taken in relation 1 (14) for 

~=B. Let us also write uni-
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(15) 

here l\lf" denotQs hermitian conjugated amplitude of reaction '3i-t'jj~'fi"+'IT 
x) 

'It follows from eqs.(7) and (15) that 
* 

't 11., ..L ill_<.Jn'A(D.')\1°Cn') 
JWl. 1"\ ~%Jl"' \-1 ) 

' ~ 

~ £, = -~ ~ ( J.Q I BC Q') rr'V"2 ") 
3.2Jl1 \-1~ J 

qp 
If in expanding no and n l into partial waves we restrict ourse~ves only to ~ 

and f' -waves respectively,· we obtain_ 

(16) 

It is evident that the expansion of (16) over i!'~,. C..O!.~) in the reaction~~'3i~J.(+iZ can be 

analytically continued up to the first singularity at which the imaginary part of 

reaction III amplitude discontinues. The boundary of the first discontinuity is found 

in a way similar to that of ref.ll) 

The bounding curves for the spectral functions. have the form 

(17) 

) 

and 

x)Isotopic structure of reaction~~~~~~~ has the form (see, for instance, ref.
8
)): 

n~-r~~' n C' 0 3 
.l.l = ll~O.c~O'Tf.. + n.:. o(,!~r! + D,S.qS.!~ 

while the isotopic states of spin 0( D 0 
) and of spin I( Oi) are related to the coeffi-

cients n I' n 2 ,GJ in the following way 

f1 ° = ~ n 1. ~ n1 • n~ 

n ~ = n.z.- n; 

.·, 
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[~~-~/][~1-(Mt?>J.fJ. 32r-~(!Yl+~)=O 
(18) 

(asymptotes ~1 :(M+or)~ and ~t= 4
1
"'-.t ) 

It follows from eqs.(l7) and (18) that the imaginary part of the amplitude of the 

reaction III can be analytically continued over variable ~: (at physical e1 ) 

1 up to -21.) )"'- • 

The analyticity of the real part of reaction III amplitude is determined from 
12) the Mandelstam representation wit~ the help of Heine's theorem • 

_.1 
The boundary in variables 't. and a1 of the analytic continuation of the 

third reaction amplitude is plotted in fig. 6. 

Applying now Muskhel1shv1li-Omnes method10) to the function 

"",h - \.1..(~1. 't.) 
r~e 

where .JL 
~--ti __ , 

( 

... J \ \ <' { q. (~-!.) ) 
u. G,.-.~J" ~ ) a~~ oo\~ -:r -J-

1 

'Ot1 .... , 

-2,~9r-' ~·- <t.:L 

So is S ~-~-scattering phase-shift, and again returning to function P. we obtain 

the following set of equations for A:. 

oo ACt o<) 

f\(;r~ i ~) - !. L ~·,_ ~ t ~t,) Ia ~ i. ~\. da'l 
1-' "'- • ~ )q ~ if·'- a' ·Lt Jr J ~:1 

Q l,-:1. ifL Q 

1m A .(4'~ ~.) I(-
~!-9.~ -1-

(19) 

where 

?+(u.)~~~)" L [eu.(~,t,)-~(ct~.~.) ~ ~Ci!)] 
- z ~cq.~n 

To eliminate non~physical out in the equations for B function consider the functions 
,.. 1!, 
P,::-

~1-~Z 

':t: -~ 
and 'X:,& e. 

~"- ~.t 
where 
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[l. is P )..!-scattering phase-shift. 
"¥ -P 

Function ~ does not contain new singularities and the same Mandelstam s,- "z 
representation will hold for 1t as 1t dirl for ~5B 

In a way analogous to that for the function ACUC) we obtain the following 

syste~ for B function: 

(20) 

where 

6. Integral Equations for Partial Scattering Amplitudes 

In order to pass from eqs. (19) and (2~ to. partial amplitude equations, we shall 

T ~ T~ . 
use expansion of and into Legendre polynomial series and the unitarity con-
dition 

3 
T 

3

(q,! I i,) :: t (2tt1.) T t (~~) p e.(~.) 

T-s(£ll,i2.) :. i[ C~~t-t)T:C£t:H'e(t!:) 
k 1'~('t~)= i.. _!iL \T:s(..,t)\1 

·. s~ UC9,:) e. "'' 

k 1' J (...,1) 1 l if,_l \tTl:! (...,1 \t 
e. q,L = vr 'H(q,~ 1 e 9.J 

(22.) 

Restricting ourselves to s- and p -waves we obtain from eqs. (19)-(!0) and 

from the orthogOnality condition of Legendre polynomials 

IX) 

n ,\ '\) •l ~ C.'t)~J. ~<~if /&;\" ,lif, '!'\[ ~ 1 r:t~~~ <1 r!C<rl~ .3f,(i!! <Ott\'!' !I!!~~ 1'1' :Y>t~'l ~ ,., , 
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In eqs.(2J),(24) the following notations are introduced 

U(q;) = ~ Nt~r-' + 2 ~1 ~ .t vc~~tj<-~C.ft w)' I 

t(~i~ = tt: + 2~.('t't~)~ Mt- f<t 

.t(1.-eJ 

~ ( ;t' .f,) =- 1 - f(g~ e.L U- i?,) 
2. ,. ) '"'>l q, 

1;(""'t !) _ u:~zrt\,.....2 . 't~. _ i!,CM2-~-,..~ 4-2ot~IQ 
'\.) - 2. '~;; 't.( 1-l~} 

or. -= ~ CW-r1)~- 'i ~1LMz"r1)('l_'-r~)., lf~: M~t + '-H'l>" ")t 

12:- = ~- [u.( tl~1,iJ,a,), 't\ {C1'
2

, ~.)} 

"' 3.= 5_ [ ~lH.~·~c~,e,), "9:, +Ccf,i,)] 

eL ±(.G.:~'{,\ i,) ,;: ~ + ~1l~ ")- ';1:,(~1) 
- ~1 ( ~11) - s .1 ( 4;2

) 

"' -- ~i(1') - ~%(~') 
J.... - ·!', t 

- . - 5i tH9:',i!,)1- s!! Lftt~i!,)l 
d. 

ntl(\;',q:)= )ch
1

ee.Ll,)L ... ~· , -r ~-!:l(j:~.~.) 1 
-1 . cc-'t tl~~a.)-~1 

J 
~ i . 

~Q.lf,'t;)= ~d~1 Pe-li!,)L ~;~1., + ~- 1.tCq;,l;,)1lC~·
1

,e,)J 
-i ~ - <t~ .f(~~i!,) -1' . 

~J. 

G Q. (~\ ~j = ~ ~~l. Qe.C~.) L ~ --
-1 

+-L 

. "'t (~', <t1 ~ -~ .... M ... ) L ~~·q. 

i.- :D (li·'. w. J 
+ Tc~~ i!,) : q_· 

.,. ]- llq·~i!J flCq·Z, t,) J 
f( ... ,l ' "''l . 
'-tt;li!,,-.~ ' 

We shall furtller on proceed from.the assumption that in eqs.(2J) and (24) i't is 

sufficient to perform one substraction. In the case under consideration there does not 

exist a convenient symmetrical point for substraction as it happens to be in the case 

of ~-'31 -scattering, since the K-meson and 'TI -meson masses are different. We 

shall, therefore, agree upon substracting at the point ~: = Q, In this case, the 



, ~ 
.1..) 

S -phaRc-shjfts will be relateri to scattering lengths o...'~ and a)Ct by the correspondir. 
1/z l"l1 l.'z 

tsotopic states '1' 0 and I o wh:!.ch will appear in equations as parameters. 

As a result of simple calculations, we obtain the following equations 

()C) 

Re [l'T t!t\Q) + 1':2(.~')}" Re U T:\o) ~ T ~\o)J '" 1~J[1 P)ci~t ~>l[ l'lr.(~~~j- 11tcq;z,o]f.21To~t~·~\ 1'1' :~(~·~121 + 
0 

t ~ (. 'e2.cq;~ <t1) -'fe.Ct o)] [ 11 T3~ Ci\':'W + 1 rr ;· cq:1W1 j C25) 

We shall now obtain a set of equations for partial amplitudes in the system of 
....,z ~z reaction I for backward scattering. In this case. ~1 =~: and 

• To derive 

the set of equations we shall proceed f:rom eqs. (19) and (20). The validity of the 

expansion. at the point ::1. = -1 follows from the analyticity properties of the func­

tions fl and B at thi::. point. 

Thus, we have 

1'(~~,-1),. 1:c~·.) ~ ?>rr:c~~) 

co£ T\~',~) 'i=-1-= ~~:cq,l) 

(27) 

(~8) 

·(29) 

Employing expressions (27)-(29), expanding integrand in eqs. (19),(20) into. 

Taylor series, equating coefficients of identical powers i! 

substraction at the point ~~ = 0 we shall obtain ~ different set of equa.ti'ons for 

· and performing one 
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partial amplitudes (in all the equations argument -1 denotes that the function is 

taken at the point 1 1 =~z.=-i· ). 

o [QT ~.( .. ') T'''tif''] _ o [~T34 L·o + 1' '''(O)} ~ g_ t .. ,: I~\ ( ~ l T ~Ut'l~ l'f~(§")l
1

[a,zfVi(o·'o''.'frq,'oJ'.-a2V'(alO)l + 
!'-,€..;. o '\. .r o ..,1 -J.e. '- o a B'Jl'' )o~ W(~~l 't\~'-Cf) ~l •''' t·~, V ~ ~· J 

. 0 

~ ! \ T~~~\>~t'( ~ry \' [ ~· ( Lc r.'\1-L[f. Q) • 't'L( '1:~ o) 11 (Jo l 

"" I ~., ''\2 IT 'h( '"'')\' 
n [qT~'-41) T'\-.. )}-.L \.~ .. ,d.91{~1'o~~; ~ · o 9' [o•'(C(o·'o')-C(C'·'o')+a'C(~'o)l+ 
l'fe.. "· 1. \9, t- 1.\q_ - s~· t~ ~(~'>1 fCf-ct') L- f>v ~·I ~ ) ~ 

~ 1 IT].~~~~~:~::·u~:·)lt~ £t:2(QCf,~~-~c~~a))-.~~·QC£t~on~ (Jl) 

o r T •tzr .... \ T 3'•r .... )1- o r lf'\0)-T31'l0)} ... g_ 'tna·11S:L 1 l~v'(q:'JI~-_11'~(q.r91\l,z(((1i·'~''-EC''·'0)\3'f(o·:oJ} 
r..e L o·l9,1- 0 \~ · 1\e. L l o o ~nt 6 ~ WC~')l 'tl('t;z-q.•) l!v 1-•'V ~· 'J 1- ~ 

),< 

?> \'i' :'lo/)\l- 11\' (g,r')\l r o''l Fl't',~). f c··· ()~ + t!lF(Q'·I o)l ~ 
~\~J- q;•) l ~ 't, IJ ~ ~' 'Jj (J2) 

0 [tr' 1't(...,·•' _ IT' ltz(fl'\} ~ _!_ ( dei·L lli_ i I 1' :·c~·)l:- l T :·(if)L[cs·~(G- (""'•' .. '' _ Gr-,.~ 0,\ ... azG (-'·' Q)l 
l'.e L ~ q;; 11. -..1 SJT2 6 ~ t~c~·J·l ct·c~·-ct·) ~ ~Jtt; '--'t' ~; 1- ~) ·~ + 

+ 1 1rr~L~·)1l- lr~·cs·•)\1 [iPL\-\(n·'il')-\1(~1 o)) +Q
1 \-tlo,•,o)}l 

J ~,1.('1/.,Z ~·' ~ "'\,>"'\, ) \.- ~ 5 (JJ) 

where 'f~ 

1r(-·,.,) r ) "' N 1 )1'1("'1 ') ( .. ' •')' r - ':h(g',l,) 1 · 
V ~ ~~: 'u··i. t ~.,I(T -t ~-\.-i. ell 'tJ·'1 + q:-G.. Oa1L (- ~(~~%,}'~1 !,,. 1 

L' ..... ')- _ o \') _ ~· (-t)t('O·l. -i) + (~.a~n lii 1JC~
1

.:,l.tsC~t·:t.l1 
\<l; .~- l, (t ~- -v' 'l. ~ 1

• l" tl~~i!.l-'t,1 J?,•-1 

C( .. , ~•) 1 (""'a .. ,) ~ ["" l(q;t,a,) ] 
'Vl. = l,~T -t. Q,;-'t l, ~- t(~:i!,)-q t,•·i 

r\. 'cr··~·\_ r_i) _ 0 0 (a•l.o')'d [v; ll~'.i,)£.(§·~.d) 
't'lr,.,l- ~~'-: a,~.~+ -., ~ a, l.- fC.~'.z,)-<t,' e,•·i 

E(~~~)" ~J-i) + 'Oi!,"-4 + ,C:_(-1-)~(~'J-1.)+(~1-ct)\ [Z_ ~~f,t~J ' '(<i:~~,)-'l,. c,•·i 

F(a·1 a')-::.") .;. - Z-C--i)~(o·'-i.) ~ C.il·'-o')ll [i. ~c~~ •. ) i!.aLQ•~t.lJ 
~I ~ t, + -~I ~~ V !, - ( ("'•1 ) .... .> _l 1- 't I!, ' 't c;l" :L 

\ 
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It is observed that in eqs.(25),(26) inteeration in u. 
1~<- l 

-2.79,.... 2 to - -"'--- while in eqs. (JO)-(JJ) from 
1-li 

~ 
\.;"? 

Conclusion 

and ~ .was performed 

-4 t'- 2 to - r- 2 • 

It can be seen from Eqs. (26),(J2)-(JJ) that we have derived systems of approxi-

mated non-linear integral equations which may have several solutions. 

One of the possible solutions of these equations is the 
"1: 31 

T = T solution, 
. .. 6 lJ) 

which coincides with the results obtained in refs. ' • However, this solution is to 

be considered approximate, since the substraction terms n '4( n T% 
t<.e. l 0) and !\ e lO) must not~ 

generally speaking, be equal to each other, and, besides, the cross-section of the 

charge-exchange \C.-['[ scattering is known to be non-zero. 

Inequality of .the substruction terms can be naturally connected with a different 

T ift 
effect exersized by higher-energy baryon states on isotopic spin states and 

1!11 
of the "li-K scattering amplitudes. 

It is possible that due to the non-linearity of eqs. (26) and (J2)-(JJ) other solu 

.tions than the 'r
11
t-= 1' ~It solution may exist even in the case .when R.e rp 

1
i( 0) = Re 1' ~\ 0) , 

If one takes into account hyperon states in relations (22) and (28), then eqs. 

(26) and (J2)-(JJ) will involve additional terms which will even more a~fect the T~~· 
T¥t. 

-solution. However, due to t~e high energy threshold of hyperon states their 

role in contributing to eqs. (26), (J2)-(JJ) remains so far unclear. 
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V.M.Schekhter for the discussion of the charge-exchange problem in ':1£-Y-: -scattering. 



16 

!:eferences 

1) J.Schwinger, Phys.Hev. 104 (1956) ll!i4.. 

2) S.Minami, Progr.Theor.Phys, v.lV, ~OS (1957). 

3) A.l'ais, I'hys.Hev. 112 (1959) 624. 

4) S.Barshay, Phys.Rev. 109 (1958) 2160; 110 (1958) 743. 

5) W.Krolikowski, Bull.Acad.Pol.Sc. YIII, 63 (1960). 

6) Chou Kuang-chao, JETP 38 (1960) 1015. 

7) A.V.Efremov, V.A.l':Ieshcheryakov and D.V.Shirkov, Preprint of the Joint Institute 

for Nuclear Research, D- 503 (see the same published in JETP, in print). 

~:~ 

/ 

.J. 

8) C.F.Chew and S.Mandelstam, preprint "Theory of Low Energy Pion-Pion Interaction", 

UCRL 

. 9) G.F.Chew, s.Mandelstam and II.P.Noye:;, Preprint 11 8-wave-dominant solutions of the 

pion-pion integral equations", UCRL-9001 • 

lO)N.N.Muskhelishvili "Singular Integral Equations", Moscow (1946); 

R.Qmnes, Nuovo Cimento 8 (1958) 316. 

11) S.Mandelstam, Phys.Rev. 115 (1959) 1752. 

·' 

12)' E .Gobbson, "Theory of Spherical and Ellipsoidal }'unctions", Moscow, 1952, chapter II 

13) S.Okubo, preprint NYO- 2627, 1959. 
~~ 

Received by Publishing Department on June 8, 1960. 



~ 

~ 
~ 

~ 

TI 
' ' ' ' 

17 

Fig.l 

' ..,;w 

_:rr ---

Fig.2 

K 

Fig.J 

06'bC)!KHellllhl'\ IIIICHITYT I 

>~JJ.Cl.JHHl:: ncc.1e)l,onannU I 
G~15JWIOTEKA 1 

K 

' ' ' 'vjf 



81 



19 

It\ 
• I 

tlO 

'" I 
~ 

I 
I 

I I 
I I 
I I 
I 

I I 

8 I I 
I I I 
I 
I 
I I 
I I 

ol -J- ___ - :E 

-
"' ~~- I' t..J 

I I 

g 
' 



I 

~ ,.. 

• 0\ 

0~ 


