

E.O. Okonov

D-534
s

Abstzact

Abstract

If the matrix of the analhilation transition strongly depends upon the lsotopic and spln state of the entiproton-proton eyster, thls may essentially affeot the result of the annihllation.

In partioular, the predominance of the S_{0} - state in the annihliation may lead to an inorease of the average multiplloity of J mesons, whereas the preferential annihilation in the alnglet state may suppress of the twomeson annihilation. The experiments are suggested to clear up as to whether there really ocours an abovementioned dependence. The poselbillty is also Indioated of checking experimentally whether the capture of the stapped antiproton oocurs from the S-orbit in accordanoe with the estimates made by Day, 'now and Sucherifor a K" meson.

It has been shown $/ 1 /$ that an investigation of the annihilation into 2π mesons may give some information on the intrinsic spatial and 'charge' pority of the antiproton-proton system (pp). In particular, it was pointed out, that if the charge parity of the system ($\widetilde{P} P$) is opposite to that following from the Dirac equation, then the two-meson mnihilation will be forbidden. So for more than 300 events of the antiproton annihilation on a proton have been recorded, while no annihilations into π^{+}and π^{-}have been foundi among them $/ 2 /$.

Taking into account the small statistical weight of the two-meson annihilation, it is too early to drow any conclusions basing upon this experimental material.*

Nevertheless, as was pointed out by Segre $/ 2 /$, this fact is worth while noting.

In this connection it should be noted that a similar experimental situation may be also accounted for under less fundamental assumptions which do not go beyond the framework of the Dirac equation. As it has been already mentioned in discussing the available experimental data, the suppression of the reaction $\quad \widetilde{\rho}+\boldsymbol{\rho} \rightarrow \pi^{+}+\pi^{-}$may be caused by the fact that the annihilation occurs predominontly in the singlet state of the system ($\overline{\mathrm{p} p}$)/4/. In this case the emission of two $\boldsymbol{\pi}$ mesons turns out to be forbldden (at any rate for the incident $\overline{\mathrm{S}}$-and P - \mid waves) due to parity conservation and charge cont jugation invarionce. There is nothing unnatural in such an assumption. It is very likely, that the matrix of the omnihilation transition strongly depends upon the spin and isotopic state of the system ($\overline{\mathrm{p}} \mathrm{p}$)**.

[^0]In this connection it is of interest to study the relative probability of the omihilation from different states of the system $\hat{\mathrm{pp}}$), esspecially, in the simplest case $\tilde{\mathcal{P}}$ - from the S - state, in which this dependence may d splay itse in the most explicit form. These investigations become considerably easier, if the estimate; of Day et al are found to be valid. These estimates have shown that the capture of the stopped K^{-}reeson (or an antiproton) by a proton occurs mainly from the S - orbit $/ 5 /$. The validity of thi; assertion, if applied to an antiproton, may be checked experimentally by studing the annihilation into two \mathcal{J}°-mesons. As the analysis of the selection rules shows in case of an antiproton capture from the S-state the annihilation into two π° mesons turn out to be forbidden. Thus, the emission two nesons in the annihilation may indicate to the admixture of higher orbital states.

In the Tab.e are listed possible types of the annihilation transitions for the system ($\bar{p} p$) in the S state, in cccordance with the well-known selection rules

It is seen flom the Table that the system,$\widetilde{P} P$ may transform into π^{+}and π^{-}only from the Sistate , so that the absence of such events in the annihilation of stopped antiprotons may imply \therefore the suppresion of this channel. The investigation of the annihilation into 3π mesons allows to determine the relative piobability of the annihilation from the ${ }_{3}^{1} S_{0}$ and ${ }_{2}^{3} S_{1}$ states possessing different iso-. tople and space spans (for other two S-states the three-meson annihilation is forbidden). If the annihilation followed the chomel with $I=1$ (i.e. from the ${ }_{3} S_{0}$-state), then a definite isotopic reiation would take place

$$
\begin{equation*}
\left.\frac{20(p+\rho-\pi+\pi+\pi}{20(p+p-3 \pi}\right)=2 \tag{1}
\end{equation*}
$$

Since the transtion into 3 from the state ${ }_{2} S_{5}$ is forbdaden by the law of charce' parity conserva-. tion, then the contributon of the amhulation from this state must lead to mincrease of relaticn (1) the measurement of which allows to make guactitative estimates. The isotopic functions describing the system ($\mathscr{T}^{+} \pi^{T} \tilde{H}^{\circ}$) as a result of the annlbilation from the states ${ }_{3}^{i} S_{0}$ and ${ }_{2}^{3} S_{1}$ will be symmatical and antisymmetrical with respect to the cinage contugation. This circumstance tmposes definter limflations on the form of the space symmetry, stnce the totil wave function expressed as bilinear combinctions of the isotopte and cocrdinate functions must be symmetrical since it descilbes the Boze particle system. As a result, the systom $\left(\pi^{+} \pi^{-} \pi^{c}\right)$ in the state with $Z=1$ will be gymatricat, whereas in the state

 of the annthitiotion into $3 \pi^{\circ}$-mesons what is difficult to observe.

In the first case for the half of all the conihilation events acts the momentum of $\pi^{+1}\left(\pi^{-}\right.$; meson must exceed the monentum of $\pi^{-}\left(\pi^{t}\right)$ meson. The violation of this 'symmetry' must point to the admixture of the anithlations from the ${ }^{3} \mathrm{~S}$, state.

If different states of the system ($\bar{\rho} \beta$) behave differently with respect to its 'decay' into
J-mesons, this may essentilly affect the magntude of the average multiplicity of J-mesons
 to an increase of \tilde{N}_{π} since from this state the system ($\bar{p} p$) may decay into not less thom $4 \bar{\pi}$ mesons.

It is possible (though very unikely) that this is the couse : of a large multiplicity of mesons in the arnihilction.

If it is realiy $s 0_{\text {, }}$ when we tum to higher orbital states of the system ($\overline{\mathrm{D}} \mathrm{p}$) (omihilation at high Energles of $\overline{\mathrm{p}}$) $N_{\hat{\pi}}$ must decrecte.

An investigation of the annihilation at high energies will also enable us to clear up whether the forbideness of the two meson onndhilation (if my) has an absolute chacracter oft there occurs only the suppreston of this type of rection for S (and may be for P) state, which may be accounted for whthout golng beyond the linits of Dirac equation.

The author takes the opportuntty to express his gratitude to V.S. Barashenkov, S.M. Bilenky and V.I. Ogleveteky for discussions and critical remerks.

Leforonces

1. М.И. Широков и Э.О. Оконов ЖЭТФ /в печати/.
2. Э. Сегре, Доклад на Киевскон коиференпии по физпке высоких энергий / в печати/.
3. E. Eberle, Nuov. Cim. 8 (610) 1958.
4. Э.О. Охонов, Замедание по докладу, Сегре на Киевскоम конферендии по фиэике высоких энергий 1059г./в печати\%.
5. I. Day, G. Snow, J. Sucher, Phys.Rev. Let 3 (61) 1959.
6. T. Lee, C. Yang, Nuov. Clm. 3; 749 (1956).

[^0]: ${ }^{*}$ Aocording to different varlants of the statistical theary (which give a satisfactory agreement with the expepimental value of the everage nultipllolty
 of π mesons. the amount of the two-meson annihilation must amount to (3-5) \%. (See e.g., 3/).
 ** Thus, for instance, the exlstance of a meson withln the framework of the struotural model of Fermi-Y ang yoints to the strong coupling between the nucleon and antiaucieon in the singlet state with the leotopic spin $I=I$. At the same time. similar states, with spin $\sigma=1$ aro very likely to be abeent, qe well as the state with $\mathbf{\sigma}=\mathbf{0} \boldsymbol{I}=0$ (theso-oalled; JLomeson').

