$$
\frac{10}{s-70} 515
$$

joint institute Laboratory of Theoretical Physics
V.G. Soloviev

$$
\text { D }-515
$$

ON A SUPERFLUID MODEL OF A NUCLEUS CAth ever, 1960, T133, 62, е 325-328.

V.G. Soloviev

$$
D-515
$$

6

ON A SUPERFLUTD MODEL OF A NUCLEUS

The mathematical procedure developed by N.N. Bogolubov in constructing the theory of superfluidity and superconductivity is very general. It allows to take into account the residual nucleon interactions which lead to the pairing correlations in the shell and unified nuclear models as a many-body problem. It has been proved in a number of investigations that the residual interactions between nucleons near the Fermi surface energy are attractive. Therefore, the ground state of any medium or heavy nucleus is the superfluid nuclear state which is energetically more favourable as compared to the state with subsequently filled levels.

We shall call superfluid such a model which is based upon the shell and unified models and takes into account the residual nucleon interactions near the Fermi surface energy of a nucleus under the following assumptions:

1) the residual interactions between nucleons both in the neutron and the proton shells are described by a Hamiltonian of the form

$$
\begin{equation*}
H=\sum_{s, \sigma}\{E(s)-\lambda\} a_{s \sigma}^{+} a_{s \sigma}-G \sum_{s, s^{\prime}} a_{s+}^{+} \alpha_{s-}^{+} \alpha_{s--} \alpha_{s^{\prime}+} \tag{1}
\end{equation*}
$$

2) the calculations are being made for each definite nucleus neglecting a certain averaging due to the conservation of the number of paticles on the average. The nucleon state is described by a set of quantum numbers $(\$ \sigma)$ determined by the shape of a self-consistent field, $\sigma= \pm 1$ characterizes e.g., the sign of the projection of the angular momentum of each nuclean along the nuclear symmetry axis. A certain simpllification of the physical pleture is that the interaction G is assumed to be constant. The chemical potential λ may be determined from the condition

$$
\begin{equation*}
n=\sum_{s \sigma}\left\langle a_{s \sigma}^{+} a_{s \sigma}\right\rangle \tag{2}
\end{equation*}
$$

where n is the number of nucleons. Hamiltonian (1) should be regaded as a part of a complete Hamiltonian containing, eg., collective interactions. Note, that the effects to which the residual interactions (1) lead cannot be obtained by any modifications of a self-consistent field.

As a first stage in the investigation of a nuclear superfluid model let us consider here the strongly deformed nuclei among the rare-earth elements on the basis of the Nilsson potential under the assumption of the adiabatic approximation.

By means of the Bogolubov variational principle $/ 1 /$ the energy of the ground state of the even shell Is obtained as follows

$$
\begin{equation*}
\varepsilon=\sum_{s} E(s)\left\{1-\frac{E(s)-\lambda}{\sqrt{c^{2}+\{E(s)-\lambda\}^{2}}}\right\}-c^{2} / G, \tag{3}
\end{equation*}
$$

provided C and λ are determined from the Eqs./2,3/

$$
\begin{align*}
& \frac{2}{G}=\sum_{s} \frac{1}{\sqrt{c^{2}+\{E(s)-\lambda\}^{2}}} \tag{4}\\
& n=\sum_{s}\left\{1-\frac{E(s)-1}{\sqrt{c^{2}+\left\{E(s)-\lambda \xi^{2}\right.}}\right\} \tag{5}
\end{align*}
$$

In the case of the odd shell if the odd nucleon is in the state $\mathcal{S}_{i} \sigma_{i}$, the energy of the system

$$
\begin{equation*}
\mathcal{E}\left(s_{i}\right)=E\left(s_{i}\right)+\sum_{s \neq s_{i}} E(s)\left\{1-\frac{E(s)-1}{\sqrt{c^{2}+\{E(s)-\lambda\}^{2}}}\right\} \tag{6}
\end{equation*}
$$

whereas C and λ may be found from the equations

$$
\begin{align*}
& \frac{2}{G}=\sum_{s \neq s_{i}} \frac{1}{\sqrt{C^{2}+\{E(s)-\lambda\}^{2}}} \tag{7}\\
& n=1+\sum_{s \neq s_{i}}\left\{1-\frac{E(s)-\lambda}{\sqrt{c^{2}+\{E(s)-\lambda\}^{2}}}\right\} \tag{8}
\end{align*}
$$

The equations for C and λ excited states of the even shell have a similar form. Thus, to find C and λ it is necessary to solve the corresponding equation system. Note that the values of C and λ change appreciably in the passage both from the even shell to the odd one and from the ground state to the excited one. This may be illustrated in Table 1 for the case of a neutron shell with $\mathrm{N}=107$, $N=108$, the deformation $\delta=0.26$, provided $E_{F}=6.406 \hbar \dot{\omega}_{a}\left(\hbar \dot{\omega}_{0}=41 \mathrm{~A}^{-1 / 3} \mathrm{MeV}\right)$. Since the interaction constant G is unknown, the calculations were made for five values of G over the range ($0.016-0.032$) \hbar_{∞}° ($0.12 \mathrm{MeV}-0.24 \mathrm{MeV}$) The behaviour of λ characterizes the change in the propertles of the many-body system, and, as seen from Table 1, these changes should not be neglected.

It is known that Nilsson scheme $/ 4 /$ does not give an exact order and the difference of energies of the excited states. This is likely to be connected with the shortcomings of the Nilsson scheme itself and with the necessity of taking into account the residual interactions. The calculation of the single-particle levels of the odd nuclei made on the basis of a superfluid model shows that l) the obtained energy levels describe the excitation spectra more correctly if compared with the levels of the Nilsson scheme what is seen from Table II; 2) the behaviour of the levels is strongly dependent upon G, with increasing G, as is seen from Table III, the excitation energy decreases 3) the residual interactions do not lead, as a rule, to the change in the ground state presented by Nilsson scheme, 4) hole and particle levels behave
differently with increasing G. However, the residual interactions fail to lead to the change in the sequence of the hole (particle) levels with respect to each other.

The spectrum of the excited states of the even-even nuclei calculated on the basis of a superfluid nuclear model shows, at least, what values of spins and parities of the excited states are most probable. So, one can see from the calculated levels of the energy - Dhy $^{\prime 60}$ given in Table IV, that among the lower levels there must be states $\mathrm{O}+$ and that with increasing G the excitation energies grow.

Let us calculate the pairing energy by the formula

$$
\begin{equation*}
P_{n}(Z, N)=2 \xi(Z, N-1)-\&(Z, N)-\xi(Z, N-2) \tag{g}
\end{equation*}
$$

The neutron pairing energy $Y b^{174}$ is found to be $0,39 \mu k V$ for $G=0.016 \hbar \omega_{0}^{\circ} ; 1.38 \mathrm{MeV}$ for $\mathrm{G}=0.020$, and 3.38 MeV for $\mathrm{G}=0.028$. As for the proton pairing energy Hf^{176} it turned out to be 0.11 MeV for $\mathrm{G}=0.016 ; 0.26 \mathrm{MeV}$ for $\mathrm{G}=0.020 ; 0.60 \mathrm{MeV}$ for $\mathrm{G}=0.024 ; 1.32 \mathrm{MeV}$ for $\mathrm{G}=0.028$ and 2.07 MeV for $\mathrm{G}=0.032 \hbar \omega_{0}$ Note, that in calculating the pairing energy it is necessary to take into account the energy due to the change in the deformation of nuclei.

The calculated values for the pairing energy and for the excitation spectra of a number of nuclei are most close to the experimental values at $G=(0.018-0.024) \hbar \omega_{0}^{\circ}=(0.13-0.18) \mathrm{MeV}$ for the neutron ($93<\mathrm{N}<115$) shell and at $\mathrm{G}=(0.022-0.028) \hbar \omega_{0}^{\circ}=(0.15-0.20) \mathrm{MeV}$ for the proton ($63<\mathrm{Z}<76$) shell.

The obtained values for G and λ make it possible to calculate the corrections to the β and γ transition probabilities which are due to the superfluidity of the ground and the excited states. The corrections enter as factors less than unity. For instance, for a β-decay of the odd nuclei they assume the form

$$
\begin{equation*}
\frac{1}{4}\left\{1 \mp \frac{E\left(s_{i}\right)-\lambda_{i}}{\sqrt{c_{i}^{2}+\left\{E\left(s_{i}\right)-\lambda_{i}\right\}^{2}}}\right\} \cdot\left\{1 \mp \frac{E\left(s_{k}\right)-\lambda_{k}}{\sqrt{c_{k}^{2}+\left\{E\left(s_{k}\right)-\lambda_{k}\right\}^{2}}}\right\} \tag{10}
\end{equation*}
$$

The corrections to a β-decay \mathcal{L}^{163} are equal to 0.45 for $G=0.020 \hbar \omega_{0}^{\circ}, 0.14$ for $G=0.028$; for $a \beta$ decay $\partial_{y}{ }^{165} 0.3$ for $G=0.016$ and 0.5 for $G=0.024$; for $a \beta$ - decay H_{Θ}^{167} 0.17 for $G=0.016$ and 0.02 for $G 0.024 \hbar \dot{\omega}_{0}$ etc. The corrections e.g., for the El-transition with on energy 0.026 MeV in $\mathcal{D}^{16 /}$ are equal to 0.36 for $G=0.020 ; 0.12$ for $G=0.024$ and 0.04 for $G=0.028 \hbar \omega_{0}^{\circ}$ etc.

The given examples show that there is a real possibillty of making the calculations of a number of properties of the strongly-deformed nuclel associated with their intrinsic structure, With this aim it is
necessary tc improve the scheme of Nilsson levels so that the single-particle levels of the odd nuclei calculated on the basis of superfluid model satisfy the experimental-values. This will enable to calculate the excitation spectrum of the even-even nuclei, the pairing energy, of the inertia moments of the ground and excitation states, the corrections to the probablities of β and γ-transitlons etc.

In conclusion the author expresses his deep gratitude to N.N. Bogolubov for very interesting discussions and to I.N. Silin for making up the program and performing numerical calculations.

References

1. Н.Н. Боголюбов. ДАН, 119, 224, 1958.
2. В.Г.Соловьев. Nucl. Phys. 9 , 655 /1958/1959/. ЖЭТФ, 36, 1868 /1959/.
3. С.T. Беляев. Kong. Danske Vidensk. Selsk. Mat.-fys. Medd. 31, N. 11 (1959).
4. S.G. Nilsson. Kong. Danske Vidensk. Selsk. Mat.-fys. Medd. 29,N. 16 (1955).
B. Mottelson, S.G. Nılsson. Mat.Fys.Skr. Den. Vid. Selsk. 1, N. 8, (1959).

Table 1

$\begin{aligned} & G \\ & \left(\hbar \dot{\omega}_{0}\right) \end{aligned}$	Even shell $\mathrm{N}=108$ ground state				s h e $111 \mathrm{l}=107$				
			0 d dGroundstate...................$g+[62 t]$	Excited d.............atates					
				icle			/2-		
		λ		c	λ	c	λ	c	λ
0.016	0.075	6.458	0.019	6.430	0.055	6.406	0.063	6.458	
0.020	0.137	6.446	0.106	6.423	0.115	6.405	0.118	6.444	
0.024	0.204	6.440	0.175	6.415	0.180	6.403	0.181	6.431	
0.028	0.271	6.435	0.242	6.409	0.246	6.399	0.246	6.422	
0.032	0.338	6.432	0.311	6.405	0.313	6.396	0.312	6.415	

Table 11
Energies of excited states in MeV

	Neutron shell		Proton shell	
	$\begin{aligned} & N=101 ; \delta=0.26 \\ & G=0.020 \hbar \omega_{a} \end{aligned}$	$\begin{aligned} & N=105 ; \delta=0.27 \\ & G=0.016 \text { } \%=0 \end{aligned}$	$\begin{aligned} & Z=67, \delta=0.30 \\ & \mathrm{G}=0.024 \quad \text { 范 } \end{aligned}$	$\begin{aligned} & Z=69 \delta=0.28 \\ & G=0.028 \text { 万 } \dot{e}_{0} \end{aligned}$
Ground state	$01 / 2-[521]$	01/2-[514]	07/2-[523]	$01 / 2+[411]$
Particle levels	$\begin{aligned} & 0.105 / 2-[512] \\ & 0.427 / 2-[514] \\ & 0.67 / 2+[551] \end{aligned}$	$\begin{aligned} & 0.329 / 2+[624] \\ & 0.461 / 2+[651] \\ & 1,181 / 2-[510] \end{aligned}$	$\begin{aligned} & 0.161 / 2+[411] \\ & 1.307 / 2+[104] \\ & 1.595 / 2+[402] \end{aligned}$	$\begin{aligned} & 0.557 / 2+[404] \\ & 0.735 / 2+[402] \\ & 1.009 / 2-[514] \end{aligned}$
Hole levels	$\begin{aligned} & 0.087 / 2+[633] \\ & 0.2711 / 2-[505] \\ & 0.845 / 2-[523] \end{aligned}$	$\begin{aligned} & 0.255 / 2-[512] \\ & 0.801 / 2-[521] \\ & 0.937 / 2+[633] \end{aligned}$	$\begin{aligned} & 0.453 / 2+[411] \\ & 0.525 / 2+[413] \\ & 1.225 / 2-[532] \end{aligned}$	$\begin{aligned} & 0.137 / 2-[523] \\ & 0.803 / 2+[411] \\ & 0.865 / 2+[413] \end{aligned}$

Table III
Energy (In MeV) of the excited states of odd nuclei ($\mathrm{N}=107, \delta=0.23$); the ground state
$9 / 2+[624]$

Level Characteristics	G (j_{0})					
	0	0.016	0.020	0.024	0.028	0.032
1/2-[510]- particle	0.821	0.652	0.391	0.288	0.225	0.183
$3 / 2-[512]-\cdots$	0.930	0.718	0.449	0.326	0.261	0.212
7/2-[503]- - -	0.964	0.791	0.507	0.377	0.297	241
7/2-[514]-hole	0.547	0.484	0.178	0.080	0.043	0.024
5/2-[512] - -	0.907	0.848	0.455	0.275	0.181°	0.133

Table IV

