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Abstract· 

The fottrula of Goldbetaer and Trei~ for the rate of 1f ~ }L..,. Y decay 

is derived in a mote convincina manner using the analytic property of some matrix 

element • It is sho1M1 that their fottwla is correct for a wide class of strana inte­

ractions incluc!J~ the usual pseudoscalatcoupllng theory of pions. A fottwla is 

obtained which can be used as an experimental test for the adopted assumptions. 

The Ieptonic decay of hyperons and K-mesons are treated in a similar way. 

1. INTRODUCTION 

The V-A .theory of Feynman and Gell-Maiih, Sudarshan and Mqrshak appears to be well established 
at the present time for ~ -decay and }'- -decaylll. The observeli ratio for the two decay modes of 

R or_, e +V) . 1C -meson R <1c-P.+ll) is also in good accordance with the theoretical value. This indicates strong-

ly that the universal V-A interaction extends also to the processes of }J- -capture. 

A quantitative study ~f TL ~ p. + V · decay has been given by GoldbP.rger and Treiman/2/ 

using the technique of dispersion theory. Although many approximations are involved ·and not justified, 

the numerical result of theit model agrees very well with experiment. 

Recently Feynman, Gell-Mann dnd Lev/3/in a very interesting paper have reconsidered this prob­

lem. They have shown that the result of Goldberger and Treiman can be obtained in a quite general way. 

. Let us write the Hamiltonian for the j3 .. decay and the f -capture in the form 

H = ,k ( ~ -t ~ JLc~... -r he~m; eo11.j. ( 1) 

where 

L~ = y ~ O+lo-Je + Y J;_(l-r¥5"1f 
Po( and Vae are the pseudovector and vector current for the weak interaction. F.G.L. have found three 

models for the strong interaction Lagrangian, for which the following equation holds 

dt>( ~(X.) = j_ Ji. Jl (~) ( 2 ) 

where a is a constant parameter and ']( ( x ) is the field operator for pions. Starting from ( 2 ) F .G.L. 

have deduced the result'of G.T. in a simple and elegant way. 
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It has been mentioned in/3/ that in a subsequent paper by Bernstein, Gell-Mann and Thirring this 

result can be generalized to any theory of strong interaction, in which the decay of pion is permitted; A 

general form factor <y ( S) appears in their new theory. The central . question is whether this general form 

factor is likely to be slowly varying. They concl~ded that in their models, in :which equation ( 2) holds, 

it is not unreasonable that ~(S) be slowly varying, while in the conventional theo-ry, where 9'( S) is 

something much more ?omplicated, the conclusion is much less plaus~ble. 

In the present paper the formula of Goldberger and Treiman are obtained under the following assump-

_tions. 

~ 
- 1. The matrix element <nl ;;).,cf?c<oJ/f)is an analytic function of the variable- S =---: (/p -f,).-

2. If the matrix element for the equal time commutator vanishes, we can write the dispersion rela­

tion without subtractions. 

3. In the dispersiqn relation without subtractions the main contribution is given by the nereby 

singularities. 

With these assumptions it is shown that the general form factor is indeed likely to be slowly va­

rying for a wide class of strong interactions including the· conventional pseudoscalar coupling theory of 

pions. 

In $ 2 and $ 3 a general derivation of the formula of Goldberger and Treiman is given. A relation 

between the axial vectorcoupling constant ~A for f -capture, ~A for J -decay emd the pseu­

doscalar coupling constant f for f-_ -capture, is established. Since these constants can be mQasured 

separately, this relation can be used as a test for the assumptions adopted .. 

· In$ 4 the leptonic decay modes of hype~ons and K-me~ons are treated in a similar-way. Compar­

ing the- rate of the decay K --+ f- :-1- y with that of Jf.--'> f + J), It is shown that the pseudovector coupl­

ing constant ~AY in the J3 -decay of hyperons is likely to be CIIJ order of magnitude smaller than the 

pseudovector coupling constant in the ~A -decay of_ neutron. 

II. The _!B~!Jl_t of G_oldberger and Treiman for . '}[ ~ f< -t-J} 

decay 

Let us denote the operator ide(~-_ by Q(x) , 'which is_ evidently a pseudoscal_ar 

i do~~ (x) == O<x) ( 3) 

Applying this identity to the decay of pion, we get 
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( 4 ) 

where ~ is the momentum vector of the pion. The matrix element. < o / f?c ( 0 ) /7l' > can be repre­

sented in the form 

( 5 ) 

where m is the mass of the pion, F is a constantparameter which can be determined by the rate 

W of the decay 7( ~ f +}.) %. ·. 

w = _J_ m..2. ( Jrl,u_ '2 t;1-~ ,!l. ;n~ F 2 (6) 
4'lf. -;n-J Jn I 

Substituting ( 5 ) into ( 4 ) we get 

(o{ Q(o)J7f>=- }11..~ F/~ ( 7) 

Now turn to consider the matrix element for the J3 decay and the f -capture. 

( 8 ) 

From invariance consideration the nuclear matrix element for the pseudovector current has the form 

-l 
where ~A and j are functions of the invariant variable S = - ( tf - f, } Substituting ( 9 ) 

into ( 8) and applying Dirac equation on the.nucleon spinor, we get 

( 10) 

The central problem is to find the relation between the matrix elements < o / 0 ( o) /7f) 

and <nJQ(oJif> This is achieved in next section using the technique of dispersion 

theory. The result is 

( 11 ) 

with 
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~ 

JTc;F)n. + y'(s) 
T(S) = - -5 -tin.~ 

( 12 ) 

where G is the renormalized 7[ - N coupling constant, T'(S) is function analytic in the re­
gion 

IS I< ']m.2 
( 13 ) 

It will be shown in the next section that 

tant both for the )A -capture and for the J -decay. Rewrite 
T'(s) ·can be approximately put equal to a single cons­

where 

' .1. 

T(S) = - t/2tiFJn (})(S) 
-S-rm;( J 

1(S) = 1 + o< s-m..~ 
'Jn.-

Comparing ( 10 ) with ( 11 ) and using ( 14 ), we get 

2MjA +fS 
2 

tfff;Fin jCsJ -s --r m 2. 

( 12 ) in the form 

An important point is that equation ( 16) holds for all S. Putting S==-0, we get 

F= 
I 

:JAf = :JA (o) 
4J . 

( 14 ) 

( IS ) 

( 16 ) 

( 17) 

This is the formula of Goldberger and Treiincin recently obtained by Feynman, Gell-mann and Levy. 
M Jn:c ~ 

For u_ -capture S =- ,M = -o~ From ( 15 ), ( 16) and ( 17) we get the ,- . H~~ ~ 
~~00 ~ 

:ZM3Ar + ~fr 
m~ 

2M~~~~ ( 18 ) -S+m-:z. 
I' 

which can be used as ~ test for the adopted assumptions of universality and analyticity* 

* Th!s relation is implicitly contamed.in the fonnula of Goldberger and Treiman on the fonn factor in JA capture amd f -decay/4/, 



We shall emphasize here that the relation ( 18 ) holds even when oL.. is a large number. 

However, unlike equation ( 18 ) the formula ( 17 ) of Goldberger and Treiman is valid only for small o( 

· Using the experimental value of the lifetime of charged pion, the pion-nucleon coupling constant and the 

axial vector coupling constant in r -decay, we get from ( 17 ) 

5'(o) = 0.8 ( 19 ) 

or 

( 20 ) 

As has been stressed by Feynman, Gell-Mann and Levy that formula of Goldberger and Treiman is 

valid only for those theories, for which the constant~ o{ can be ·proved to be small. The difference bet­

ween one theory and another merely lies in the fact whether j'CS) is likely to be slowly· varying. We 

shall discuss this problem in the next section. 

Ill .. Analytic Properties of the !\latrix Element <nl O(o) I e> .. 

Now return to the evolution of the matrix element < )t /0 (o) J f > 
dures, we write/51. 

Following standard proce-

<.nJO(oJif> = -i. Uh j oi.+:Z e -i./1,·~ (ofT( 7(Z.J0(oJJif> 

- u: }o(4z e -if,.z Scxo)<o/ [f,l~J 0(oJ] If) 
( 23) 

where ~(i}= i. SfSS/&'f;Cz) is the source current for the neutron field. We shall drop in the 

following the equal-time commutator term, which would have ultimately yielded a constant addition to our 

expression. Since we are now interested only in the analytic structure of the matrix element, i.e. the pla­

ces for the poles, their residues and the places for the cuts, e.t.c. it is unimportant for dropping this addi­
tional constant. 

We now observe that 

( 24 ) 

the second term makes no contribution to the matrix element. Therefore we have 
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It is easy to prove by the standard procedure of Bogoliubov/6/ that in the system of coordinates ~- 0, 

the function T (S ) has a pole at s = m2 and a continuous cut begining at s = 9 m2 . In other 

points T ( S ) is an analytic function provided that 

Where 

I 1m Pno f > J I1r1-~ f,.~ -»t-
2

} 

fno = 
s 

M- 2M 

( 26 ) 

Although the condition ( 26 ) can not be satisfied for real mass of nucleon, we shall assume that the ana­

lytic properties can be established by analytic continuation in the mass variable. 

The residue on the pole at s = m2 can easily be calculated. The result is 

T(SJ = #G <ol0Co>J7r>J2q + T'~'S) -S+Jn ,_ - yo '-
J2CT Fltt 2 

I ( 
27 ) 

=- s· .... +Tr.sJ - -t-m 
The Feynman diagram for the pole term is shown in Fig. I. 

n. 
1 

<oJ OloJIJr>./2fo 

1"' r 
Fig. 1. 

In ( 27) T'( S ) is -an analytic function with a cut begining at s = 9 m2 . 

For small S T' ( S ) can be expanded as a power series of S 

T'(S) =-Z::a.,S~t 

which has a radius of convergence _ 9 m2. 

It can be shown for large n that 

L }YI. 1 ah+J s; _,... 
)J-o4 an .:::":::-

/S} 
3)11;;1. 

( 28 ) 

( 29 ) 
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In the general case, it is reasonable to assume that one subtraction in the dispersion relation is 

enough for T'(S), In this case we can write 
~ sj T'CsJ = a + -. - fCs~ Js' 0 

, 7[ S/(S'-s) 
3m-a 

( 30) 

where' j ( S' ) is the spectral function. 

If the sign of the spectral function does not change in the region where the main contribution cf 

the integral is obtained, the inequality (29 ) holds also for small n. Expand the second tarm in ( 30 ) 

we get 
04 

Qn = -i J ,, f(S~ 
d.S/ ( 31 ) 

s'n+l 

It is easily verified that 
Jm~ 

t!O 

lah+•l = ,: I J j(Sj d51 S'ht-:1. 
9m1 

1 t! f(S') 

.Jsj /Q,/ 
~ 9nl7C s'nt-1 - ( 32) J 2. 

3m~ In 

It is noted that only the values of T' ( S ) at S = 0 and S =- 0.9 m2 are needed, which 

correspond to the physically interested cases for the J3 -decay and f- - capture. The distance 

between "these two points are very small in comparison with their distance from the cut. Therefore, It 

is reasonable to approximate T' ( S ) by a constant, i.e. Tt'o) =:::= T 1(-o •Jm;) The error is expec~ 
ted to be of the order 0.9 m2 /9m2 o::::a ~~0 

With these considerations we have 

( 33) 

where 

( 34) 

Now turn to the consideration of the magnitude o( . In the general case o( is proportional to 

the constant (t, , which as a subtraction constant may be very large. Therefore, we can not prove the 

validity of the formula of Goldberger and Treiman in the most general case ( see appendix ). 
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In the case when the mcitrix element for the equal time C'ommutator vanishes, subtractions in the 

dispersion relation are not necessary. It is resonable to expect that the nearby singularities give the 

main contribution. Since the two points S==O and S =- 0.9 m2 are very far from the cut, it is 

reasonable to conclude that the pole term will be dominant in the present case and thus the coefficient 

o!... will be small. 

Consider now the conventional pseudoscalar theory with Lagrangian density 

- l't. • _ __.. 

L p.s. = - t{ ( d + Mo - t ~o T. • 7i '/;) /( 

:z 2 _!!!ti[ 
:L 

2 
(d~7T) 

:t 
:;\o. x+ 

( 35) 

Following the method developed by F.G.L. in/3/, we take for our gauge transformation the following . 

/'{ ---7 
• ~ -'I> v' 

(/-t-LC:·Y,&-Jif 

---+ --4 1-Ho-t-~N~ 
7[ ~ T + 3(;fo V 

( 36 ) 

~ 

where V is the gauge function. We then obtain 

---+ 

~(X.)= - ~ • 1-Ho-t-~/f 
f( L ~Ys N- L .,,.. d..t'il: ( 37 ) 

and 
~ 

Ocx; • o ~ ~ •1_(H.-N) _ _,v .1 
1.. J"" ro<(;() = :l~o IV!{ IL +L 3 1/l: ds-Jr ( 38) 

fll 
1-Ho-t~H 2~ ~-~ 

+ 3 fio (Mo 71,--1- 4/lan 7T) 

The matrix ele~ent for the equal time commutator has the form 

T = <of 2.fq.or{7(' +i ~(.~-N) 7!¥;-N/!f'> 
From the consideration of symmetry we can write 

~ ~ 

I . = i II -c ~ U.,.v 
Multiplying both sides of ( 39 ) from left side by 7! ){, , we get 

\ 

£. :Jj} u"' =- -:2i (ofr;(oJ/N > 

( 39 ) 
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where 

is the source current for the nucleon field. It is well known that the matrix element ( o I 7 (o) 1 ;{). 
vanishes, we get, therefore, A=O. 

Thus, we have shown that the matrix element for the equal time commutator vanishes in the pre­

sent C?se and the dispersion relation without subtraction is e~pected to hold for the matrix element 

(n./ o (oJ 1 f > in the conventional pseudoscalar theory of meson nucleon inte;action. 

In the conventional theory of weak interaction P e( has the simple form N ~ ~ ~ K 
A similar analysis can be carried out for this case and is discussed in the appendix. Although the mat­

rix el~ment for the equal time commutator does not vanish in this case and the dispersion refati~n should 

be written with subtractions, it is still possible thgt the form factor J'CS) will be ;iowly varying 

( see appendix ). 

IV. The Leptonic Decay of K-lltesons and Hyperons 

The upper limit on the leptonic decay rate of 1\ and .L, hyperons is experimentally an or­

der of magnitude below the theoretical valtie expected if the effective coupling constants are the same as 

in the neutron . J -decay171, Many authors have expressed the idea that there may be no universality 

between strange particle decays and the decay of ordinary particles/8/, We shall assume in this section 

only a restricted universality between ( e J) ) and ( ~ v ) pairs in strange particle decay, 

(leptonic current in the form (1) ) whichseems to us to be very probable. Furthermore, we shall assume 

that the.interaction is of the V, A type and the K-meson is a pseudoscalar meson. 

The weak Hamiltonian still has the form ( 1 ). We can repite step by step the procedures outlined 

in II and ·m. For the conventional theory of strong interaction it is always possible to find suitable pseu­

dovector current such that the matrix element for the equal time commutator vanishes. 

In the case of hyperon decay the matrix element (/'1/ ~ (o)/ Y> has three terms 

<Nif?.c<o>/Y) = ii,., f ~AYic~ +t.'Jy[lli,-1};~ -~(fN-fyJ]'Is-
( 36 ) 

+ ifr- (,fr -~:tJo( ~ J ur 

Using ( 36 ), we get 

<fi!OCoJ/Y) ( 37) 
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where S =- Cfy-&/. 
The remaining steps are straight forward. The final result is. 

G-1<r FJ<Jn: + T.. '(s) 
-s-rm:z. r . . 

K 
(MN-rMy)gAY-t-fyS ... 

( 41 ) 

where ~ KY is the renorrnalized coupling constant for the K Y N interaction; Fk is a cons­

tant parameter related to the maU:ix element < o /QCo>J K) in the following way 

< o I O(o;f K > =- - m.~ F1< /.J:~.t;,. 
In ( 41 ) T y ( S ) is an analytic function with a cut begining at s = (.MK-2m) 

( 42 ) 

2 

Let us denote the kinetic energy of the recoiled nucleon in the rest system of the hyperon by TN, 

the quantity S for the hyperon decay is equal to 

S= (Mk- 2m )2 -2m. TN ( 43) 

In the present case the physical points are lying very near to each other and their common distance 

from the cut is very far. Therefore we can approximate T~ ( S) by a single constant ay. Formula 

( 41 ) can be regarded as· a generalized formula of Goldberger and Treiman in the case of strange particle 

decay. It is very interesting to verify ( 41 ) eJ{perimentcdly, which may serve as a test for the universality 

between ( e v ) and ( ,.. v ) pairs in the strange particle decay. 

Neglecting the term proportional to s and the cpnstant term . ay I we get 

(H1rtMy) ~Ay·= - G-KYFI< 

Comparing ( 44 ) with ( 17 ) we obtain approximentely 

( 1At ) :t =::: 
3Ap . 

.2. 
q~<r . r;; Fl<~ 

F~ . 
7r 

( 44 ) 

( 45 ) 

Since the lifetimes of K ~ }l+Y and Jr~ p+P have the same order of magnitude, while the 

phase volume for the K-decay is much greater than that for the 71: -decay, the matrix element F~ 

will be much less than ¥ . Therefore, even if G~y has the same order of magnitude as G~ , we can 

still conclude that 
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.2 2. 

3Ar << 3y ( 46) 

Therefore the observed rate of K ---;)> U.. i" 'II decay seems to require a smaller axial vector coupling cons• 
I I- I!J! 

tant for hyperon decay. This fact has been pointed out first by Sakita using the dispersiqn relation of 

Goldberger and Treiman. 

Our treatenent can easily be extended to the case of scalar K-meson. In this case we must consi­

der the divergence of the vector current •. The matrix element < 1'1 / ~ (o) I Y) has in general the 

following form 

(N/VotCoJIY>= U..V {3vr~ -rt' Jy[(fN-fy)~_-~c~-fyJ] 
' -! . . ( 47 ) 

-1- L J.y_(/fi -f,Jo(j Uy . 

It is easy to calculate from ( 47 ) 

The remaining steps are similar and the final result is 

( 49) 

where ay is a constant. Neglecting terms proportional to S and a.y we get 

( 50) 

Comparing ( 50 ) with ( 17 ) , · we obtain 

.2M# Ci-Ky Fi< ( 51 ) 
HN-My -G.,. Fit 

Since in this case Myf 1 therefore the small coupling constant ~vy observed in 

the hyperon p -decay requires that 

This is quite reasonablesincei the coupling constant for a scalar interaction is expected to be smaller 

than the coupling constant for the pseudoscalar interaction. The above considerations can be easily gene­

~alized to the case where A and Z. have opposite parities. 
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It is noted that ( 41 ) and ( 49 ) can be used for the detennination of the renonnalized coupl­

ing constant G-I<Y if the coupling constants ~A y and ;J y ( 'J VY and rJ y) are 
measured for all physical values of S. 

The ~uthor wishes to thank Profs. M.A. Markov, Y.A. Smorodinsky,Tzu Hung-yuan, Ho Tso-hsiu, 

V.I. Ogievesky for their helpful discussions. 

AppendiJ~~ 

In the conventional theory of weak interaction the axial vector current has the simple fonn 

Po:= NT~ i's-tf ( A.l ) 

The divergence of the axial vector current has been calculated ir/3/ and is equal to 

dee ~(X) = 2Ho ii r ~N- :Zit;-, tl II ii: ( A.2) 

Applying ( A.2 ) to the decay of meson, we get 

........, • ~ :tH. ~, 2Ho r :z z ~ · :z..;::.J 
Q(X) = L ;}~f?,(,X) -_. G-. J(X.) +G-o L(Jn.:~.J7T+1-Ao7TIIj(A.3 ) 

- --;> 
+ :l(i. N'N IL 

It is wellknown that 

-=t 

<oJj(oJ}7f) = 0 
( A.4 ). 

where 
~ -j (!f:) = • -~ ~ 2~ 

L ~o N' I: Ji t{ + ()It z._)tfo~) 7T + 4it, 7f 7{ 
( A.S) 

is the source current of 1[ -meson field. 

From ( A.4 ) and ( A.S) we get 

<o I Q(o) J ll) = ~o (Jn'Z._}'I0J,Jz3~ -t- ~0A0 <.o/7T~/7!/ ( A.G) 

+ 2fi-o<oi/YN7F/7T> 



,-'i 
15 I 

where Z 3 is the wave function renormalization constant for 1f. -meson. If the first term in ( A.6 ) 

gives the main contribution, we get approximately 

( A.7) 

or 

( A.S) 

Now turn to the evaluation of < n I 0 ( 0) If>. Rewrite ( A.2 ) in the following form 

~ .. - +H -t-:t/f ~ --:;., . 0 (X) = L dot Pot (X) 1:== 
3

ofro j (::<.) + C? (X) ( A.9) 

where Qt x) is given in ( 38 ). From ( A.9 ) we get 

4Ho+.2}L · 
<niO(oJif> ==: 3 G-o ;ti(i-d(S)T(.S)~· i {i, ~ Uf 

( A.lO ) 

+ <nl o'(o)} t> 
where d(s) and r(s) are form factors for the propagation function of 71: meson and the pion-nuc­
leon vertex part respectively. 

If the first term in ( A.lO) is small comparing with the pole term in < n J O,.(oJ/ f) we 

again get the result of Goldberger and Treiman. 

The coefficient in the first term can be expressed with the help of ( A.S ) in the form 

( A.ll ) 

In the theory of perturbation 
unreasonable that 

is quadratic divergent. It is not 

Therefore, it is quite plausible to expect that the first term in ( A.lO ) is indeed small cind the 
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pole term gives the main contribution. 

It· is interesting to note a second e~:ample, for which the axial vector current is taken to be 

L ~(.X) = do< /[(X.) 
( A.l2 ) 

It follows directly from ( A.l2 ) that the matrix element < 71./ ~ (o) If> for the f -decay 

vanishes. This means that in this case the pole term and the subtraction constant have the same order of 
magnitude and cancel each other. 

The matrix element < o J 0 (o)J7T) can be calculated and is equal to 

<oJ O(o)j?r) =- ln 2p;jj2f: 
( A.13) 

From the Lagranging ( 35 ) for the pseudoscalar theory we have 

~ . ~ ~~ ~ 
Q(X) = i do>.£(;;;() = }n. 7T(X.) J ~X} 

_, "';"" = Q(X)-J (X) 
Again the matrix element < · n ·1 0 ( o) /f) is easily calculated 

<ntocoJij>> = <n!o(oJif)-~~dlSJr(s}-
( A.l4 ) 

' ,.&; i. tln d's U.f 

The pole term in <11 / 0 'c 0 ) J f) has the .form 

~ 

-S~m~ fil;~ i Ui;Y,U, ( A.lS) 

Comparing the first term in ( A:l4) and the pole term ( A.lS ), it-is easily seen that they have the same 

order of magnitude. Therefore in the present case the subtraction constant will be large and is comparable 
with the pole term. 
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