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Abstract’

The formula of Goldberger and Trelman for the rate of J| —~> }‘L"‘l) decay
. is derived in a more convincing manner using the analytic property of some matrix
element . It is shown that their formula is correct for a wide class of strong inte-
ractians including the usual pseudoscalar coupling theory of pions. A formula is
obtained which can be used as an experimental test for the adopted assumptions,
The leptonic decay of hyperms‘ and Kemesans are treated in a similar way.

L INTRODUCTION

The V~A .theory of Feynmcm and Gell-Mann, Sudarshan and Mqrshak appears to be well established
at the present time for 9 -decay and )L -deccy/ 1/, The observed ratio for the two decay modes of

JC -meson B—(-'J-T:’-—e—;—%,- is also in good accordance with the theoretical value. This indicates strong-

ly that the universal —A interaction extends also .to the processes of }L -capture.

A quantitative study of I —> /L +)) - decay has been glven by Goldberger and Treiman’/2/
using the technique of dispersion theory. Although many approximations are involved and not justified,
the numerical result of theit model agrees very well with experiment.

Recently Feynman, Gell-Mann and Levy/ ¥ ina very interesting paper have reconsidered this prob-
lem. They have shown that the result of Goldberger and Treiman can be obtained in a quite general way.

) Lét us write the Hamiltonian fbr the p ~decay and the }J. -capture in the form
H:%(Q-&K}L&,/-Aem;conj. ' (1)
where

L = VvX&di+ys)e + Fa;(/w';//u
B, and Vx are the pseudovector and vector current for the weak interaction. F.G.L. have found three

models for the strong interaction Lagrangian, for which the following equation holds

UP) = i T (2)

- where a s a constant parameter and J[{ x) is the fleld operator for pions. Starting from (2) F.G.L.
have deduced the result'of G.T. in a simple and elegant way.



It has been mentioned in/3/ that in a subsequent paper by Bernstein, Gell-Mann and Thirring this
result can be generalized to any theory of strong interaction, in which the decay of pion is permitted: A
general form factor g) (S) appears in their new theory. The cer_ltral . question is whether this general form
factor is likely to be slowly varying. They concluded that in their models, in :which equation(2) holds,
it is not unreasonable that SP (S) be slowly varying, while in the conventional theory, where 37(5 ) is
something much more. eomplicdted, the conclusion Is much less plausible.

In the present paper the formula of Goldberger and Treimdn are obtained under the following assump-

tions.

- 1. The matrix element {n| ng(o)//’) is an analytic function of the variable - § == — (ﬁa ~f )2 .
2. If the matrix element for the equal time commutator vanishes, we can write the dispersion rela~
tion without subtractions. - ) : »
3. In the dispersion relation without subtractions the main contribution is given by the nereby
singularities. o '

With these assumptions it s shown that the general form factor ts indeed likely to be slowly va-
rying for a wide class of strong Interactions including the conventional pseudoscalar coupling theory of

pions.

In$ 2 and $ 3 a general derivation of the formula of Goldberger and Treiman is glven. A relctibh
between the axial vector coupling constant 3 A for -capture, - 3 A for F ~decay and the pseu-
doscalar coupling constant f- . /-L _-capture, is established. Since these constants can be measu.red

separately, this relation can be used as a test for the assumptions adopted

- In$ 4 the leptonic decay modes of hyperons and K-mesons are treated in a similar way. Compar~
ing the rate of the decay K—* fL-f—)) with that of J7— }4+V, it is shown that the pseudovector coupl-
ing constant g Ay inthe P -decay of hyperons is likely to be an order of magnitude smaller thcm the -

pseudovector coupling constant in the 3/\ -decay of neutron.

I The result of Goldberger and Treiman for 7T —> A+

- decay '

Let us denote the 'o.peratorf : l u B by O(z) ‘ ;‘which is:ve\:lidentl_y a DS:'?‘UdbSCVG‘l‘f{? |

PP = Ox) | | -3

Applying this identity to the decay of pion, we get



(ol OGO |Tr> = —‘ix Kol R@7> (4)

where i“‘ is the momentum vector of the pion. The matrix element. o] R (o)) 7> canbe repre-

sented in the form

IR > = "L'F(m?/fz_g—: . (5)

where m is the mass of the pion, F is a constant parameter which can be determined by the rate
W of the decay 7[——-)}(4-)1 ) ' o -

: N
2,y Mu o 2 2
u)“‘,—_/;_‘m. [—&7' 1 A m*F (6)

Substituting (5) into (4} we get
. ) 2 " . - :
Lol Q)T = —Mm F/A/zz, o
Now turn to consider the matrix element for the ﬂ decay qnd the /«L -capture.

<ﬂIOc0)lf’>=—(1} Tn ), <nlRcorlp> : (8)

From invariance consideration the nuclear matrix element for the pseudovector current has the form »

niR (o)l/">——' Mn{% /;thf( ﬂ)agjur' (9)

where gA and f are functlons of the invariant varigble S == — ( f/’a f } Substituting ( 9)
into ( 8 ) and applying Dirac equation on the .nucleon spinor, we get '

(nlO@Ip> = i (2Mfy+$5) Gl (o)

The central problem is to find the relation between the matrix elements o [Q(0)[ 77>

and - < n [ O (o) / /7) ’Th'is is achieved in next section using the technique of dispersion
theory. The result is '

<nIO(o)/Ib> = 1 Enb?“,o T(s) | | (1)

with



—~S+m?* o (12)

T(s) = —

where G is the rehofmclizéd 7[ - N ‘cioupling constdnt, T/(S) is function cmalyfic in the re-
gion '
2
1SI<§m* | (13)

It will be shown in the next sectién that T!(s) * can be approx1mc1te1y put equal to a single cons-
tant both for the }L -capture and for the P -decay. Rewrite ( 12 ) in the form

T(S) = —-VE—CLF}L?(S)

=S+m? e

where

S—m?
2

$(s) = | + ,(15)

Comparing ( 10) with (11 ) and usintj (14), weget -

¢ — _ ZRGFm’ -
2Ma 5= — ~S+mr TS o (16)

An 1mportcmt point is that equatlon ( 16 ) holds for all S. Puttmg S=0, we get

- ZMgAQ ‘
F = T Ree |, =G o

»|

This is the formula of Goldberger and Treiman recently obtcuned by Feynman, Gell-mann and Levy.

For -capture S == — ’l;i)ﬂ .._.-oj)n From ( 15),(16) and (17) we get the
relation ' +m/‘
—_— m '
2/‘43,;,/4 f = Tszj/'/B o (18)
o

which can be used as a test for the adopted assumptions of universality and analyticity*

* This relatton is lmpl!cltly contatned In the formula of Goldberger and Tretman on the form factor in /IA. capture and
F ~decay/4/, -



We shall emphasize here that the relation ( 18 ) holds even when ol is a large number.
However, unlike equation ( 18) the formula ( 17 ) of Goldberger and Treiman is valid only for small &,
" Using the experimental value of the lifetime of charged pion, the pion-nucleon coupling constant and the

axial vector eoupling constant in 53 -decay, we get from ( 17)

$o) = 0.8 o)

or

ol == 0.2 : - (20)

As has been stressed by Feynman, Gell-Mann' and Levy that formula of Goldberger and Treiman is
valid only for those theories, for which the constant™ o can be proved to be small, The difference bet-
ween one theory and another merely lies in the fact whether y( S) is likely to be slowly varying., We
shall discuss this problem in the next section.

IIL. _Analytic Properties of the Matrix- Element. <2 / 0,(0)/)9}‘ S

Now return to the evalutlon of the matrix element < n /O (o) //’) Following standard proce-
dures, we write/d/, '

<n/0(o)lf> = -iﬁ;,j,,{‘*z e’ "'2{0/ 7( 7(2)0(0))//0)
- u, j o2 eQL/""ZSczvo) <of (21 0C] %

where )Z(f ) == LS {.S S / S E(z ) is the source current for the neutron field. We  shall drop in the
following the equal-time commutator term, which would have ultimately yielded a constant addition to our
expression. Since we are now interested only in the analytic structure of the matrix element, l.e. the pla-

ces for the poles, their residues and the places for the cuts, e.t.c. it is unimportant for dropping this addi-
tional constant.

We now observe that

T(@)0e) = 062 [ 0C), J2)] +70@) (24)

the second term makes no contribution to the matrix element. Therefore we have

<”/O(°”/>>”‘ 'L“]i"fe o 9-2<01 [ 00} 7(2“‘)]//9 (25)



——)
It is easy to prove by the standard procedure of Bogoliubov/ 6/ that in the system of coordinates P =0,
the function T (S) hasapoleat s= m2 and a continuous cut beginingat s==9 m2 . In other
points T (S) is an analytic function provided that -

| Im Poo | > | ImA P2 —1m* | | | (26)

Where L S
Pro = M~ M
_ Although the condition ( 26 ) can not be satisfied for real mass of nucleon, we shall assume that the ana-

+ lytle properties can be established by analytic continuation in the mass variable.

The residue on the pole at = m2 can easily be calculated. The result is
T(s) == fggf’;‘ lO@ITPE], + T(s) ,
NZGFm’ (27)

—_ N2 /
The Feynman diagram for the pole term is shown in Fig. I.

Sloermyz

Fig. L.

In (27) TXS) isan analytic function with a cut beginingat s==9 m2.
For small S T!' (S ) can be expanded as a power series of S

! n
T(S)="2ZAnS (28)
which has a radius of convergence . 9 m2-

It can be shc'>wn for large n  that

. am/S/ /5/_ (29)
,,Ll',ﬁ l Qn S “gm »



In the general case, it is reasonable to assume that one subtraction in the dispersion relation is
enough for ~ TY(S), In this case we can write
)
S [ _Sesy ,
Q, + ds’ - (30)

T ) Sissy
_g_
G (s’-s)

where f (S') is the spectral function.

If the sign of the spectral function does not change in the region where the main contribution of

the integral is obtained, the inequality (29 ) holds also for small n. Expand the second term in  ( 30 )

we get oo
1 ., Ss) , :
An = =f - grnt ds (31)
Im*

It is easily verified that

| = =L | L2 us)

9m?

(32)

£y /a /
_ . g 3)"17[ /3 n”-/ 0(5/ “

It is noted that 6n1y the valuesof. T'(S) at S==0 and S=- 0.9 mé  are needed, which

correspond to the physically interested cases for the F -decay and - capture. The distance

between these two points are very small in comparison with their distance from the cut. Therefore, it

is reasonable to approximate T’ (S ) by a constnnt, i.e. T"(o) = T'(-o Jm ;: ) The error is expec~
ted to be of the order 0.9m2 /9 m2==l4q

With these considerations we have

T) =— — “FGFM (s) (33)

where

- 5__fﬂ 34
Ps) = f+«=3 (34)

Now turn to the consideration of the magnitude o . In the general case o{
the constant @, , which as a subtraction constant may be very large. Therefore, we can not prove the

validity of the formula of Goldberger and Treiman in the most general case ( see appendix ).

is proportional to
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In the case when the matrix element for the equal time commutator vanishes, subtractions in the
dispersion relation are not necessary. It is resonable to expect that the nearby singularities give the
main contribution. Since the two points S=0 and S=— 0.9 m2 are very far from the cut, it is

reasonable to conclude that the pole term will be dominant in the present case and thus the coefficient
ol will be small.

Consider now the conventional pseudoscalar theory with Lagrangian density
—_ A S — —> ’
Lps. = —N(2+Ms— ‘G‘ot'ry:;-)/(

_m? . o)’ — a7t
2 | 2 o/

(35)
Following the method developed by F.G.L. in/3/ . we take for our gauge transformation the following.

N —> |+ LTV HIN

(36)
— s Mot
n— 5 + 36 v
— . S
where V is the gauge function. We then obtain
-y — = s M2l
R = ¥Txny—i = o (37)

36,

and

O(.X) = (..94 B((K) _ 2G-OIVA[7ZT>+1: 2;H0~”);/‘Z’):-M (38)

Pl

>

FMot+2M — —
36, (M T +22T°T)

The matrix element for the equal time commutator has the form

L 4 —> . M~ :
T = <ol 2GNT +¢ 3‘3\"9 PHNIND
From the consideration of symmetry Qe can write

—

. - :
I = (AT U (39)
Multiplying both sides of (39 ) from: left sid_\e by T )é- , we get

C3A Uy = —2.<0] 17/ N >
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where ’2(0)—-—- LC-;-O j(){-/\/‘-f' (M—Ms )N

i{s the source current for the nucleon field. It is well known that the matrix element < OI 7(o )/ NN
vanishes, we get, therefore, A=0. '

Thus, we have shown that the matrix element for the equal time commutator vanishes in the pre-
sent case and the dispersion relation without subtraction is expected to hold for the matrix element

{nlo@] r} in the conventional pseudoscalar theory of meson nucleon inte:action.

In the conventional theory of wedk interaction P_( has the simple form /V ?)} 3; ff
A slmilar analysis can be carried out for this case and is discussed in the appendix. Although the mat-
rix element for the equal time commutator does not vanish in this case and the disperslon relation should
be written with subtractions, it is still poSsible that the form factor T( s) will be slowly varying
( see appendix ).

IV. The Leptonic Decay of K-Mesons and ilyperons

The upper limit on the leptonic decay rate of A “and X, hyperons is experimentally an or-
der of magnitude below the theoretical value expected if the effective coupling constants are the same as
in the neutron P -decay/ 7/, Many authors have expressed the idea that there may be no universality
between strange particle decays and the decay of ordinary particles/ 8/, 1 We shall assume in this section
only a restricted universality between e )/ ’ and /LL vV ) _pairs in strange particle decay,

' (leptonic cu.rrent in the form (l) ) which seems to us to be very probable F urthermore, we shall assume

that the interaction is of the vV, A type and the K-meson is a pseudoscalar meson.

The weak Hamiltonian still has the form ( 1). Wecan repite step by step the procedures outlined
in Il and TII. For the conventional theory of strong interaction it is always possible to find suitable pseu-

dovector current such that the matrix element for the equal time commutator vamshes.

In the case of hyperon decay the matrix element <N / (o >/ Y’> has three terms

(MR@IYD> = iy § 9., i +e5 L Pk ~ %Rl
. : (36)
+ify B~hkd fuy

Using (36), we get

N0y = & [Coyrty) oy + §y ST Rdsy  (a7)

b
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where S = '_(fY—/i,)z

~ The remaining steps are straight forward. The final result is

Gy FK )”x

(MytMy) Gay "'JCYS = — (41)

where GKY is the renormalized coupling constant for the K Y N interaction, [—‘k is a cons-
" tont parameter related to the matrix element (o ! O(o)/ K> in the following way

2 ,
<°lO(0)/K>——=—~M,< FK/Q/,z?o‘ (4?)
2
‘In (41) T} (S) is an analytic function with a cut beginingat ~ § == (Mg —-2m)
Let us denote the kinetic energy of the recoiled nucleon in the rest system of the hyperon by TN,
the quantity S for the hyperon decay is equal to ) .
S= (M -—2m)? -2m Ty )
In the present case the physical points are lying very near to each other and their common distance
from the cut is very far, Therefore we can approximate TY (S) by a single constant aY Formula
(41 ) can be regarded as a generalized formula of Goldberger and Treiman in the case of strange part1cle

decay. It is very interesting to verify (41) experimentally, which may serve as a test for the universality
between ( @ V) and ( jL V) pairs in the strange particle decay. "

Neglecting the term proportional'to S and the constant term ’a)’ . weaet 7 :
(My+My) Iay = — Gy Fi (44)
Comparing " ( 44’) with (17 ) we obtain approximentely

2 | '
( 3Ar)’- ~ G'KY R (45)
z
Since the lifetimes of K —> g +)/ cmd T /L( +» have the same order of magnitude, while the
phase volume for the K-decay is much greater than that for the “7T° -decay, the matrix element FKZ

‘will be much less than - l;g . Therefore, even if » Gf), has the same order of magnitude as Ggr , We can
still conclude that
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i << g

Therefore, the observed rate of K *)}‘:Hl decay seems to require a 7‘;n/aller axial vector coupling cons~
tant for hyperon decay; This fact has been p@inted out first by Sakita ~ using the dispersion relation of
Goldberger and Treiman. ‘

Qur treatenent can easily be extended to the case of scalar K-meson. In this case we must consi-

der the divergence of the vector current. The matrix element <L N [ VikcCo>/ Y has in general the
following form D ' :

VIV > = U { Gup & + ¢ 3 [CR R4 R
- S S > ' 47
 HidyBRASuy S
It is ea\Syk td:éélculate from ( 47) ‘ .
NI0@IY> = L[ My-Mp)Gy +olys] W lly ()
The remaining stepé are sim_ilar cmd‘ the final result is

e GerFrme R (49)
(MN"'Mr)jvr"”’l?’S_ T samp U@ |

where ay is a constant. Neglecting terms proportiond to S and ay we get

(M =MpGyy = — GorFx (s0)
Compming (50) with (17 ), - we obtain , . )
; i\_fr _ My Gy Fe

 3np MMy - Gr Fr

Since in this case My >>IM N~ Mr, ; therefore the small coupling constant 3 vy observed in
the hyperon P ~decay requires that

2 2
G-KY‘. << G']r

This is quite rec:soncxble,sivncei the coupling cbnstcmt:for a scalar interaction is expected to be smaller
than the coupling constant for the pseudoscalar interaction.: The above COrisiderations can be easlily gene-
ralized to the case where /\ " and >, have opposite parities.

(1)
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It is noted that (41 ) and (49 ) can be used for the determination of the renormalized coupl-

ing constant G'KY if the coupling constants gA y and jY ( j vy asnd d | ) e
measured for all physical values of S.

The author wishes to thank Profs. M.A. Markov, Y.A. Smoroélinsky,szu Hung-yuan, Ho Tso-hsly,
V.1, Ogievesky for their helpful discussions.

Appendix

I_n the conventional theory of weak interaction the axial vector current has the simple form

R= NT&kVN (A)
The divergence of the axial vector current has been calculated in/3/ and 1s equal to
. SN ' N
NR(x) = AM N THN — UG NNT (A.2)

Applying ( A.2) to the decdy of meson, we get

R~ - - "“MO‘-‘ 2”0 o2
Ox) =t %uRx) = —é_*ﬁx) + -G-"[(mz;%z) 7-r-)+4-2,7r/7‘7(

A.3)
S
+2G VNT
It is wellknown that ' ‘
> I ’ A4).
ol j(or ) 7> =0 A

where P

JE) == LG NTYUN + o) T +4AWT T (AS)

is the source current of - 7 -meson field.
From { A.4) and ( A.5) we get

0@ ) T> = 3—4_‘/4(,,,2_,,,0&),]?3@; _,.__8@?’_"./"0<o/727;/7;>(A.6)

+ 26, Lol NV T/ T>
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where Z 3 is the wave function renormalization constant for JL -meson. If the first term In (A.B)
glves the main contribution, we get approximately ‘

<°IO(0)I/T>~ 2“ m~ ) NZs /«/72‘, " (A7)
- 2Ho z“ 2
F = ?(m;)n),f;;/mz (A8)

Now turn to the evaluation of {2 1O¢e>) />>_Rewrite ( A.2) inthe following form

4-Ho+zf/ y

6(1): iDdE,’CX)f* 36, j(X)+O(1) (A9)

where ?(x ) Isgivenin (38). From ( A.9) we get

Mo ' |
nlo@Ip> = i—ﬁ”z‘&d(s)/“(s)r N7 A 5 Up
S (A.10)
+ <’ll O (o)l/’>

where - d(s) and ]— (s) are form fcctors for the propagation function of 7r meson and the pion-nuc-
leon vertex part respectively.

If the first term in ( A.10) is small comparing with the pole term in <nj O (o ) /] />) we
again get the fesult of Goldberger and Treiman. -

The coefﬁcient in the first term can be expressed with the help of ( A.8) in the form

| 2”01.” m’.- : - » (A.ll)
M, i AT (EGF [ dn X tlp)

In the theory of perturbation A m2 =m20 - m? is quadratic divergent. It is not
unreasonable that '
: 2
AMotM
3;4 Py des)res) << 1
[] [ "

Therefore, it is quite plausible to expect that the first term in ’( A.10) is indeed small and the
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pole term gives the main contribution,

It is interesting to note a second example, for which the axial vector current is taken to be
R (X) == W Wx) (A12)
2 o)/ f) for the /3 -decay

This means thcxt 1n this case the pole term and the subtraction constant have the same order of
magnitude and cancel each other.

It follows dlrectly from ( A.12) that the matrix element < 7‘L[
vanishes.

The matrix element < o] O(e)]7r> can be calculated and is equal to

elow))m> = m* 2;/4/3;,

( AJ13)
From the Lagranging ( 35 ) _fof the pSeﬁdoscalar theory we have
Ot = L LR ) = m*T(x) —j(x)
— R
=0w—jw
Again the matrix element <n / o) (é ) /f> is easily calculated
' / = l‘ /e L — (s .
<n{oc» />> <nlOtp - 4/264( 1) Als)
The pole term in '<)1 / 0’&0 )//;)hcxsk the form
- m*
—S+m féfzs ll(,, /> | | (A.15)

Comparing the first term in (A.14) aﬁd the pole term (

A.15), it-is easily seen that they have the same
order of magnitude, Therefore in the present case the subtraction constant will be lar

ge and is comparable
with the pole term;
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