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.<\hstract 

A n~w method is suggest~td for solving the problems of the quantum 
field theory with a fixed source. The formalism is independent of th~ mag
nitude of the coupling constant. It Is based on the matrix methods for solv
ing the lintJOr differential equations develop<td by I.A. Loppo-Donll~vsky. 
The solutions ore ol,tained in the form of series for which a concrete 

form of the n-th order term is known. The S-matrices have been obtained 
for o sea/or charged and scalar symmetri col theory with o fixed source, 
as well as for the model advanced l,y Blalynicl<l·3irulo. The renormaliro
tion constants hove been treated. In passing to a point interaction the re· 
normal/red charge in these models does not contain the logarithmic 
div ergencies. 

Introduction 

TIH, assumption atx>ut a weak coup/in'] anJ the application of the perturbation theory to t.tre equa

tions of mesoJynamics leaJ to the results inconsistent wit.~ experiment. Tl1erefore, it would be useful to • 
worf< out o method wf,ic/, would in no way he Josed upon the coupling constant as o parameter for itero· 

tion, onJ in which the approximations cou/J he assessed on other grounds. As for Tamm-Jonkoff methoJ, 

it turneJ out, to be unsatisfactory Jue to the difficulties .:~ssociated with the renormalizations •• ~ecently o 

met!,ocl of dispersion relations l•os ~een given considerable attention and proved to be successful. Jut 

srnce this methoJ is joseJ upon the most general principles of covariance, causality, unitority and spec

trality, it may ']ive poorer information than the :Jomiltonian of the interacting fields. In view of great ma· 

thematical r/i((;culties we encounter in investigating t l1 e equation s for thequantumfield theory, a study of 

various models of tl1e t!reory become rather popular. 

Special attention is focused on a class of models witlr a 'fixed source', i.e., w!1on tiH1 fermion field 

is characterized only by spin and isotopic coordinates. Since the experimental Jato on pion-nucleon inte

raction at low energies hove been accounted for by Chew-Low model/ l l , referreJ to this class, one may 

tf,inl< tl1ot t!1e given model describes to some extent the real interaction. Therefore, it should be expected 

tlrot under these simplifying assumptions there remain a number of problems of tire exact field tl1eory. In 

tl1is connection, a knowleJge ol t!1e exact solutions of sucf, models will ena!l/e us to understand the ori· 

']in of the Jifficulties in the tlteory. ' lowcver, even for a class of models under consideration (with the 

exception of a trivial case of the interaction ~etween the scalar neutral mesons oncl the fixed nucleon/ 21) 

there exist no solutions unlif<e to tlrose mentioned above. 

This paper describes o new met/,od for solving the mesodynamics equations for this class of mo-

Jef s taf<in'] as an example an interacting system of cf1ar']ed scalar mesons with a fixcJ source. Tl1o for

malism su'}gested is inclepenclent of the magnitude of the coupling constant, but is based on the matrix 
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methods lor solving tlte linear differential equations developed t>y 1.>. . Lappo-'Janilevsk/ 31. To use the 

language generally acceptecl, a new lormalism is equivalent to the perturbation theory when the :lamilto

nlan ol a system ol neutral mesons one/ a lixec/ nucleon is chosen as an unperturbed llamiltonian. :fowever, 

the advantage is that the n-th orcler term ol the approximation is written clown in a closecl lorm wherea~ 

in the perturbation theory one can only lincl any concrete term ol a series t>ut not the n-th one. This circum 

s tance makes it, in principle, possible to investigate the convergence ol series. 

A method lor solving the equation lor the S-matrix ol the scalar chargeJ theory is set lorth in Sec

tions 1-3. Section 4 is concerned with the Jiscussion ol the renormalization constants in this model. 

Section 5 is clevotecl to the description o_l the extent/on ol the methoJ to the scalar symmetrical theory. 

In Section 6, the method is applied to the model suggested by !3ialynicki-3irulaf41. All the calcula

tions are given in the Appendix. 

1. Re~esentation of the S-l\latrtx !'S a Functtonal = 

Integral 

ConsiJer a system of scalar charged mesons interacting with the tixeJ extenJecl nucleon. In this 

moJel the nucl&on ltas only two Isotopic states (proton ancl neutron). The system is clescribecl by a Hamil· 

toni an: 
a 

H = mo('f+lf)...,. t ~ J~x:[~i2(x)+{V~(~ .. J}2 +rz~·'(KJj,· T ,., . 
z 

+ 1?: f ()('x ('1-'""'r,·v--}ff,·(x/ prx) 
l•f 

( 7.1 ) 

where (// ::: ~('I' .,. v;, C, is the operator ol the nucleon lielc/, eN ( N.:c: I'-' n) is the ope

rator ol the nucleon annihilation, ~ is the spinor describing the nucleon { V.P ~{:} ~=(f) j, 
7!j (~} anri SP,· (;!) are the operators ol the meson lielri, f :;-~ V(i')e'~J is the nucleon 

lorm-lactor, T;. are the matrices ol isotopic spin ~. 

In the interaction representation the S-matrlx satisfies the lollowing equation: 

1' 2 $(tit,) = H.r(-f}S(t1 t.) 1t 

,Sft~ t.) I ·=- 1 It z:t. 

( 1.2) 
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where 

In the symbolic form the solution of ~q. ( 1.2) is 
-t 

s (t,t,} = 7; Tr rM<p 1-f."'.r Hr (f 1 
( 1.3) 

The main pro!Jicm of the th•ry-the representation of the S-matrix as normal proJucts • may be 

partially solved in a general form/5,6 / , nom~tly, the expression for the S-motrix may be tronsformec/ so 

"" as it wouiJ be ordered in the meson operators Cf' . At the some time, .~owever, the nucleon operators 

f.// onJ if+ remain ontong/eel (i.e. under the T-product ). Such a partial orclering is accomplish· 

eJ by reprosenting the S-matrix as a functional integral. 

Following Feynman/5/ we suppote that any functional t]"'{ 11} determined over the set of 

scalar function s ;1 (S} set ilf the interval { tD, f} , may be representee/ as a superposition of 

the exponential functionals (by analogy with the i-ourier integral lor usual functions): 

t 

'7" [ t1} = r s />fs) eAtf{'[t~ul{s) </>(s)j? [ 1>] ( 1.4 J 

where 'J""(¢} is o new functional which is a fun ctional Fourier transform of 7"[ 11]. [3f .. is the 

functional integrct:on over the space of real scalar functions ifJ(s} . 1/eglec:ting the mathematical 

clilfic:ulties in the determination of this operation ( e. g. the determination of measure in the space of 

functions t/>(s)} we shall mean by J d if' (J [ ~} the limit 
....,. -, ~ I d ~~ ... ! «' t/>s,. G ( ~~ ~ ... ) if>s .. ) 

-~ --
[to, t 1. where n 

:T[cp] 
is the number of points clivi cling the interval II T { 11} is set, then 

may be determined from the reverse transformation: 

( 1.5 J 

where C is the normalization constant. 

Then the operator T { tf} is c/eterminec/ as 
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t 

T!r?J = f S l/ ~f{i/«s ¢rs;;(J;J 7[¢} 
'to 

where T { /> J is set by ( 1.4 ) and ( 1.5) , and by the operator 
A t 

G (t,i~) = ~f{i/ds ifJO)tf(sJj 
f. 

we mean the solution of the operator differential equation 
""' 

'77 G (-t, f.} = 1' r1(t) P(f) C (f) t,) 
'It T 

tJ. (f, t,) It •to = /. 
On tho basis o( these results, the S-matrix o( :=q. ( 1.2) may be put as 

-t s (t,t~)= rr~~: cf~ e-'Xf {ift~~ cf,. (S)~{s)J X 
-t, J J 

( 1.6 ) 

( 1.7) 

z of - ( 1.8 ) 
)( C /[ i'11,i';12 lWf{-ifJs~·(s)<fJfsJj S {t, t,/ t11,Az), 

1, 

~ I ere S {-I> to/ .t1, 1 Az) has the meaning o( the S-matrix o( the system of the classical charged 

meson field 11, {f), ;12 (t) and the quantized nuc:leon field 1.{/ {-f) , Cf <~-(t} , and obeys the 

equation 
.IJ- 2 + -

1 "1- S(t, t,jA,,I11 } = q ~ (fl/ T,·if)A,· (t) S (t, t#/A,, 112 ) 
vt a,.{ 

S {t, fo/A,, At} It •t. =: 1. ( 1.?) 
t 

Since the operator exp { t' f ti.J cff.1) t/>(1.)} satisfies Eq. ( 1.7) by the definition, it must be 

considered as time-ordered ( 
1

~ usual T ·product). According to Wick's theorem/7 I the T-procluct of 

the meson operators may be expressed in terms of the normal product 

't f ,« .Z t A 

7:; g,xf{i/tls~($) ~(s1 =::II; Uf/ ff/t1T"7~(J-?J " r.. I Uf{1'ft1s ~f.c)'IJ· (-'l} = 
'f t. i.-t. f~(T)I'f_,•('J} -t. . ( 1. 10) 

tt t 

= uf(-f ff"r"?.d(f-?J ~ltJijr,;J: ~!{t/d"..r~rsJP·fsJl: 
,,~. 'f. J ") j 

where the causality (unction A{/-?} is determined by the relation 

.. ... . d. A 1 . r ~ 'V'(ilJ -1'c.J IF-'ll 
<o!T(rt'i(FJ~·('J}]/o) = 1 ij £_j,rl-?} = 1 Otj· T 2it.J e . ( 1. 11 ) 

fin. 
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Finall y the S-motrix, di sentangloc/ in the moson operators Y1 fq, may be written as 
. -tf t 

$ (t, r") = //4/:t/j ~p{-J. flt1ft17~(f-?J~(I)Ijf7)}:ul'{t/a/.fg.r.rJP(sJj; :( 
"· -t. t., J ( 1.12 ' 

)( ciZ If !"!1,SIIz ~/)r-Jlel's1(~J~(s) l S ( t)f,/A,_.Az). 
I t, J J 

Thus, the problom ollincling the S-matrix ol Namil tonian ( 1.1 J is Ji viJed into : 1) the problem of 

finJing tl1o classical S-motrix a s a solution of ::Iq. ( 1.? J with arbitrary functions Jtf (t) , lf2 {f) onJ 

2) the pro!Jiem of the functional integration of this matrix by ( 7. J 2 ). 

2. The Finding ot the 'Classical' s-:•1atrix 
- --- - == ~ = .~ 

Since the nucleon lield has onl y t wo degree s o f freedom and the operators ol this field onticommute 

between each other, then the operator S (t, t,/A,,AJ) may be represented as the followin g expans ion 

over the nucleon operators 'f' and If+- , which, as con bo easily shown, is most general 

S{t, tD /A,JAz} = f +{2(if~tf) - {lf~tf)Zj j ( t, t.j.AfJIIz) + 
3 

1- L (l//+"]1/1}/; (t,t,/AIJtlz} 
j=1 ':J 

( 2. J ) 

where f one/ ~· ore the us ual scalar /unction s. This folfows immedia tel y (om the relations 

easily veriliecl. 

(<f+r;· CfJ(~ '#' Tj· Cf) = ·iEzj·" {~+'lf tf) -r ~·[2(tf' +tf) - ( tt+'f/j 

('f'f'~· 'f)[2 ('!'+'1') - (~rtf} = { Cf+ r;. '1). 

After subs tituting ( 2. J ) into Eq. ( 1.9 ) and equatin g the coellicients ol identical structures, we 

obtain the equation system lor f one/ I,. whicl1 may be put in the matrix lorm 
J z. 

z· 1~ Y{~ttJjA,,t1,) = 9 J; Tf A1·(t) !/(t/ t6 /A~,Az} 
0 l •f 

( 2.2) 
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The solution ol ( 2.2) is very clillicult os it recluces to the solution of the llnHr cliflerentlal equa· 

tlon of the secane/ orc/er with two arbitrary functions. As usual such equations ore solved by the method 

ol the perturbation theory, i.e., by expanding over the parameter f which Is assumecl to be small. 

II the parameter j is large, :Eq. ( 2.2) may be approximately so/vee/ using the 'quasi-classical' me

thod. However, in this case the expressions obtained cannot be lunctionally integrated. 

Lappo-Danilevsky cleve/opec/ a method solving the c/illerentiol equation systems employing the theo-

ry ollunctions ol matrices. The methoc/ Is that the /unction ol matrices may be representee/ as a finite sum 

ol the main compositions ol matrices with the coefficients which may be expandec/ in series by certain 

characteristic parameters of matrices. Thus, It Is not the constant 1 but some Invariants ol the matrices 

entering the equation turn out to be the expansion parameters . We will not be concernec/ here with the 

procedure of obtaining the solution, all the c/etails are given in the monograph by I.A. Lappo-Danilevsk/'l/. 

Omitting very complicated and long transformations of the recurrent relations of Lappo-Danilevsky for 

Eq. ( 2.2 ), we give at once the final expression 

<>0 { 1f 't t-

Y(t~t~~/A,~A,) = L r~''j, Jt~.r, ... Jt~rz, A,r.~,; ... A((l;1J )( 
f= () 1 . <~. "· 

f t 

)({CX {t;f!s ~{s-Jt) ... E(.t-J.,)A1 fsl)- Tz Jt(tift!.tE!S-TJ .. , 1"(-s·p,)AzfsJ) j 
t. t~ 

t t 
( j)Zf~l ( f 1 

J' J "lf . ., a!Ji.r~' A, (J;) . ., A,(-'1,:() x 
2f+(, t 

• t. 

( 2.3) 

t t 

If { 1f Clf1£ft1s£(.t·!,} ... f(s-l,,.,,}lf1 (sJ) +t'Z3 J#{t£ft1sl(J·J,}. .. E(S-J;,#)A1(s))}j 
t, t. 

where 

f09== { +{, 
-1 

' 

X>O 

X <O • 

One may see by a direct substitution that the solution ( 2.3) satisfies Eq. ( 2.2) with there

quired Initial condition. 

The functions ;1# ancl /12 enter the solution ( 2.3 ) quite symmetrically since by expanding the 

hyperbolic cosine and sine in series anJ by changing the sequence ol summation, one obtains another 

expression lor Yft~ f.), where A, and l1z , '?; ancl Tz change their ploces 

a! 

t• 

g 

a. 

( 

e 
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For series ( 2.3) one/ ( 2.4 ), a majorating lunctional may be easily written clown because cosine 

ancl sine are not greater than unity ( /1
1 

ancl 11.t are rea/ ) ancl the remaining series are easy 

to be summec/up. 

( 2.5) 

Thus, the solution ol Eq. ( 2.2) is representee/ as series ( 2.3) ancl ( 2.4) which are c onver
-t 

gent unilormly one/ absolutely lor the. interval { f 0 , t} , il, at least, one ol the integrals {tl.s/A,(sJ/ 

ancl ,f~.J/ti,(S)/ islimiteclover r~.)-t]. -to 
• 

The relationship between the Loppo-:Janilevsky method ancl the perturbation theory lor equations of 

( 2.2) type is shown in Appendix A. 

Being aware ol Y (i, t oJ , one con easily write an express/on foro 'classical' S:matrix 

expressed by equality ( 2.1 ): 

( 2.6) 
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The formula is symmetrical with respect to the commutation of inc/ices I one/ 2 

No te, that the criterion thus obtainec/ of the uniform one/ absolute convergence is not sufficient for 

performing the functional integration since in integrating there may always be foun d s uch functions 1\1 

ancl A .l which c/o not satisfy the obtai noel criterion. Neverthesess, we put asiclo the problem of the 

correctness of the functional integration procec/ure, the more as so lor the existence of tho functionaf in· 

tegrals has been provec/ only for a very narrow cla'ss offunctionals. Suppose that a series may be info· 

gratecl by a te rm. Thi s operation which has not yet been pro vee/ may be justiliecl :,y the circumstance that 

the S-matrix obtainecl as a result of integration satisfies the original equation ( 1.2 ). Tl1is Is confirmecl 

by a clirect substitution 

3. ~Jte Finding of the Quantum S.l\latrix 

The functional integration of the 'clossicaf' S-matrix may be performecl without any clilliculty as 

the solution ol the classical equation has a 'Gaussian' form . A methocl for calcufatlng similar functional 

integrals has become known since Wiener's paper/81 one/ in the applications to the quantum problems 

it was c/evelopec/ !Jy Feynman/5/. let us give the linal form of the S-matrix. (See Appenc/ix !J). 

S (tJ {o} 1 (2(rr+ff) - (t~-"tf)2) + (3. 1) 

e>O 'I { . 21 . ,., t f 
{t!) Z " ~ A A L L rz -2 J' z'"' ' f r, ... f llr LJ(t;-;;). .. ~(l; ... ~'fz,..): fit(~.,) .. J(1frlf): )C 

f=o ,..,=o 'I ,., . m. -1., i, 

~ f 

v{(t(~tf)-{fl-+'1-f}: Cf{']_/,/s!'ts·];) ... E{JI-Ji,J~(sJ}:- {1/-+t,tlj:Ji(tJ ]/sl'(.f·r,). .. f(s-r,1) ~ (s} ):j " 
~o fo 

tt 

>' Uf (- f:Zfje~s, -'sz E(s,-r,) ... E(s,-JZ,) LJ(s,-Sz) ErSz-1;) ... ((.!1 -Tz1) j 
•.t. 

( fi) lf+l i 101 

~ -1 

f "'lf ... /"JZ,,, j(J;-li) .. . ~r?; ... ,-rz .. ;:~rrv..HJ ... c({rlift~): I( 

f, i, 
{2~+1-2'").'2'"/tf.' 

~ 

corr 

~otl-

=q. 

ol v 

cum 

tant 

hav 

baH 

oft/ 

9• 

:: q. 
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~ 

-. [ (tf'+z; ~): Cl(ijjclsc(s-lf) ... l'(s-r'lf.,,)f1rs;); + 
0 

t 
-t z'{flf"'f;tf) .' Jj(~(/s E(S'-T,). .. t'(s-J

21
.11)1J (.rJ};jx 

ff 

" (/1)(/'{-z'ff/.f. d.t,.lrz ,f(s,-T,).. Efs.-J;,,.,)LJ(s,-I,) .!(S.-1<) ... E(JZ -J;,,.,) j } 

Sxpres ion ( 3.1) is symmetrical wrth respect to the commutation of indices one anJ two , that 

correspon.Js to the symmetry in tl1e classical function Y(f, t,jA
1
,;/

2
) expressed in (2.3) anJ (2.4). 

The obtomeJ expression for ti1e S-matrix of 'fomiltonion ( 1. 7 ) rs written .)owi1 in the normal form 

hoth in the nucleon anJ meson operators. One con see by a direct suhstitution tfrat the S-motrix satisfies 

';q. ( 1.2) with the initial condition. 

Thus, the operation of tho functional inte'}rotion, although not grounded from a matlrcmaticc.l ,•oint 

of view, leads in t.L,e '}iven case to a correct result, tlrat is confirmed by a direct s ubstitution. T!•is ,:,. 

cumotonce points out that the met/rod proposed hy i-eynman is correct. In expanding hy thu co...tplrng cons

tant g tlte series of the usual perturbation theory are obtained with the odvonta'}e tl,ot l.erc we 

have an explicit form of the n-th orJer term of this series while the existing apparatus of •,~ pertur

bation theory permits to obtain any conc fett term of the series hut not the n-th one. This shortcoming 

of the perturbation theory, in our opinion, is the main Jifficutly in stucling the problem of series conver-

gence in the perturbation theory. 

To dear up the p.~ysicol meaning ol the iterations in the S-:natrix ( 3. 1) let us return again to 

:Eq. ( 1.2) 

( J. 2' 
"" ""' ;1\ ..... 

Tho expressions YJ, ±t" fz. ore the operators of chorgedmesons, while tho operators Y:: anJ ~ 
loocl to the creation or annihilation of a definite combination of/ositive onJ negative masons. :=or itts· 

tance, the operator ~ corresponJs to the combination z { JT- + p+} . tfow instead of the 

moinnudeonstates ~one/ Z{, ,lotusintroJuce ~ =d(tJp+1J;.) and ?J::::~(tfo-tl;,}, 
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This transformation means the transition to new orts in the i sotopic space. In t f1ese new orts ::q.(3 .2) 

is wriHen as 

1·~: S = J {(lf'f>r, lfl~ (t-J- (cr ' ~'ti ~1~ f·o} S. ( 3. 3 ) 

I 
ffere 'f/ = ~ (',. -#- ~ c_. £tis the particle annihilation operator, 

...... 
The operator sq enters :Iq. ( ].3) logetl1er witl1 tl1e Jiagonal matrix '2:; an.{ l1ence, it is 

responsitJ/e for tiH~ emission and a:,sorption ol such combination ol negative anJ positive mesons whic/1 

does not give rise to the transition of a nucleon from the state ~ ,., ~ and conversely. II in t!-.e 

right-hone/ side of ( 3.3 ) tl1e second term haJ been o!>sent we would have had a neutral theory accord

ing to w.~ich the emission and absorption of a meson Joes not change the isotopic coordinates ol a nuc

leon. The solution ( 3. 1 ) is equivalent to the solution by the perturbation theory when tl1e expression 

{!fi'"''C,t~~'J~(f) giving rise to t•~e transitions between the states ~ onJ ZJ: i s assu-

med to be a perturbation. tlote, tl1at it is possible to c/iogonolize the matrix "z enotering into 

( 3. 2 ) with 0 ~y another rotation ~ = .i { ~ ± i 1l;,} in the isotopic space. 

The 'perturbing' term will be then (fl/' + fi tf'} ~ (tj • This situation corresponds to the 

abovementioned s ymmetry ol the S- rnatrix wit!1 respect to the operators 

~ one/ (/, . :lowever, il one restricts onese/1 to the finite number of terms in series ( 3. 1 ), 

tl1en the symmetry will be violatecl ( one operator is in the c/egree of the exponent in expanJing of .. 
which any Jegree ol tl1is operator appear, whereas the other will enter this expression in tl1e finite 

c/egree. In Jeoling with the cut oU series for the S-matrix there may arise the processes violating the law 

ol cl1orge conservation. This will toke plocP il for the processes involving more than 2n mesons one restricts 

onesell to the n terms ol a series. Therefore, it is necessary to calculate the matrix element of 

the complete series of tl1e S-matrix and only in the series of the matrix element one may restrict one· 

seU to this or that number of terms. In the language of the perturbation theory a separate term of series 

( 3.1 ) involves such graphs lor which the law of charge conservation does not fullilleJ, ( for instance 

/1. -. f'+ ,.~). For the complete S-matrix tl1e low ol charge conservation is fullille ./ exactly anJ 

when the matrix elements are calculated correctly, as was pointec/ out above, there is no violation ol 

this low. Therefore, in the framework of the formalizm developed one may speak that the low of charge 

conservation is not fulfilleJ in virtual processes like in t:1e perturbation theory the law of energy con

servation is not fulfilled for virtual processes. 
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4. RenormaUzatton Constants 

To obtain the eigenfunctions and eigenvafuo.s of flomiltonion* ( 1.1) we make us e of the hypothesis 

ol the adiabatic .switching on of the interoction/ 10/ which may be formulated a.s follows : 

Let t/>,.., be the eigenfunction of the free Hamiltonian ,'10 • If, further, the solution of the equa-

tion lor the S-matrix with the adiabatic ally increasing interaction IS known 

7J e( - ot/i/ o( 

·l at s (i) t,) = Hr (t)e s (t. f,) ( 4. J } 

I 

then the eigen functions of the operator :1 = :10 + liz are 

c,.. v:.. (:t) S~(o, ± oo J ¢_ 
( 4.2 ) 

where Cm is the normalization con.stont, whereas the signs (±) correspond to t l1e 'outgoing' 

and 'incoming' -w-... (~J d d h I waves. The eigenvalue of the energy in the state z _ is etcrmino by t e equa i-

ty 

E,.. = ~ 
o/-+0 

( ¢,.., H So~(o, roe)¢._) 

( cp 1M I s o/ ( {)J ;to<}) ¢... ) ( !3) 

The limiting transition allows to determine correctly the quotient, since tlte numerator and Jcnomino

tor are not determined duo to the presence of the infinite phase factor Mf ( i :;'} . 

The 'aJiabatic' S .(-matrix which i5. the solution of ~q. ( 4. 1 ) con he easily ohtoineJ form (.3. I ) 
/ ·ei/T,·/ J -.//S·/ 

by substituting there off the c/ifferentiols "f;) a'-5· lor the expression tlJj e ) ) pt~· e :J. 

Note, that tho introduction of counter terms into the Namiltonion leocls to the automatic switdt-

ing out of infinite phases. Although such on introduction of counter terms is consiclerecl to be a more cor· 

reef procedure, in calculating the matrix elements it would be more convenient lor us to use theorems 

( 4.2 )-( 4.3) of the adiabatic hypotheses. 

* The Oreen ILinctlon of Hamiltonian (II) haa been obtttlned In 1 91 . 

• 
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o( 

Since the S-motrix is set as o series, then the matrix elements will be roprosentoc/ as o limit of the 

ratio of two series when oi.- 0. It appears, that il we Jivicle one series into onothor one/ collect the 

forms by the equal Jegrees ol the coupling constant stoncling belore the exponent, then in the terms thus 

obtained the phose rec/uces, one/, there/ore, one may poss to the limit o{ - 0 in each term soporote

ly. In Appendix C this procec/ure is i//ustroetecl by tho calculations ol the renormalizecl coupling cons· 

font. For other matrix elements the calculations ore being perlormocl analogously. 

The expressions obtained provecl to be rather complicotecl. Although the n-th orcler term could be 

written down we have not yet succeeJoclln investigating it to the encl. There/oro, we write out only the se

cond ancl the thircl approximation. The calculation ol the integrals is consiclerobly simplifieJ in the limit. 

ing case ol the point interaction when the lorm-loctor ?/{H) is tencling to unity. We choose tf1e form

factor as lollows 

?t{l<) Uf{- w-r; 
'2L 

w/1ere L has the meaning ol the cut-ofl momentum. The transition to the point interaction will ~e 

performed when L is ton cling to inlinity . 

Consic/er first of all the eigenvalues ol energy ol tl1e one-nucleon state .Accorcling to theorem 

( 4.3 ) we obtain 

£IV = ~ (o/CNH Sfll(~-o(})('; fo) 

ot-+O (.O/C,vSo<(tJ,-ct>)C;to> = Mo + Sm 
( 4.4 ) 

whore 

d'm == ~ 
<of C,vHJ S-'(tJ/-oo) c: jo) 

o~-.c <()I eN s tJ(~ ·-t!J()) c: fo> 

o ~ .1.. (-f4!J fA« 0 

( eltf L...f' z I , { I}"V''M{; J"t./flll e:_ J'ltrf 232LJ(G) fC: · =-q2Lv~·J+2t~1 fd~4~)UIJ -Jf.. e.>3Lf-e Jj-~· 
~"''!. oO L ~(-it.)' a.c (} ;: (..) ~ £, 'j • 

1•D 1· % 1 

( 4.5) 
~ 0 , 

A fJ f' .lo({fit: .. •/i,) f :::: lf··· lit A(f,-'f;). .. A(~f-,-Tz,)E((J"-J;). .. E(5-Tz1)" -- --
! t' l (; J Aoi(J,~>$l} j 

~ Uf -2; .!.!.."l,dz <- E(s,-J,) .. I'(St-~1)4(5,-Sz) l'ts,-'f,). .. l'(.S,-}if) 

',Y 

is 

A 

in 

L 

( 0 

c/e· 

' .52. 

3 

roc 

ge: 
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Wi tl1in t l1e l imits of the point interaction the mass renormaliz.ation is written down as 

( 4.6 ) 1 ] + + 
2(f +.1!.) .. , 

2iF1 , 

In accordance with its probability meaning the .. renormaliz.ation constant of the fermion field Zz, 
/s Jetermined by 

+ I' I ~ ~ ( . l)q ~ ,2 Zz=(<ojC,vSoi(~-ob)C,v/0) = f=';q! -!f a1 == 

,·.tt 
A series standing inside straight brackets contains an indefinite phase factor t -" which disappears 

in raising this series by a module to the second power . . 7estricting to the first two terms in tl1e l imit, when 

L ~ oo , we hove 

+ 
1 1~ tT' 

t, L -r .. .; ( 4.8 ) 

The most interesting from t/1e point ol view physical is the connection between the renormaliz.ecl 

(observed) coupling constant j,. ancl the unrenormaliz.ed constant d 
determined by 

This connection Is 

..., 
To make o further ono/ysis more convenient, we will assume that the lielcl ~ unters the into-

roction .'iamiltonlan with the coupling constant ~( , whereas the fie/cl ~Z with the constan:tz , 

After making some calculations ( see Appendix 3 ), and restricting to several terms o f a series, we 

get 
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oO 

.Jf~• = f + !/ 1.1'1: K(£; ~R-.·.,~~f'[-2lf.77[1-e''"1] -
~ co-O oO 

- jt V ja-t:, j.tK, pr, ( ~ +>'•{~!?/'"/(!; "}" r"wx, JerfZJt'r::fr-f'"":.t""i 
(1 o o • .. I . Jf' 

• [ur { -z,: f ~t;' [ {'"n<.···~ i''"'r•.•K.V_ i'..,r,,·""'"-['"'r.] J - f j- r 4.10 ) 

f::/'0 (>10 00 -l ~'" / Jr, fi r
1 

{ 'MI(,J { ( l;. ::,'f·~-•....,.r.+>•) vz:. ~y''*•""i/J :'f-J/"W•,••;J )( 
0 (} (/ 1(. !l~.. /{f.. • • 

.,/~ Jt!:2 _,i.Jx, '~oAip{-2~z \' 'll'l") ~2_0-•"'"'_ -lux, -lwt-..,.KJJ -t"I.J(K,+tv -tlJtt,•lfi#¥JJ -/wK:Jij 
lL.. we I r/1' zL... u , L4 t i +e .,.e -e -e + 
r · 1 ··· 

Note, that we may change the places ol the_.const.nts .. it ancl /l . Th is is the consequence ol 

the S-matrix symmetry by the operators ~ ancl ~ as has been alreacly pointed out. 

Formula ( 4.10) is remarkable because there exists a linlte limit when L - c:>O 

( see Appendix 3 ). 

~= 1 q,f, 
J,' 1 
1T' f.(/11' ~ ' - ~~ . ,. 

~ 00 - _.::> l:;r 
fl. · f' feJ. (X,+Xz.} f.J {ft!+'I,.~)(J){I~~+XJ)) -t}-

- ...£.!- 11 x, txX1 , , ~ t.1 
2.1T"' 

0 0 
{f+ 'tf,/+f,"/y~{1+){zf+/''IP f1 l+lt,+'ia+K:J){f+1,) ( 4. 11 ) 

j. (1+'X,~ l'J){I+ll. +K1) 1 
f c::.o ..... - ~ rf.ra· 1 J 

- -
1 /11, Jr, /KJ{'!,+)(j), + l 

2 -p" f f 
11

f (l+tt,Xt+r,J(ttr,+r,+'XJ){N·r1) {!" y,+rJ}'(t~Kl+'J(J)' {t+.t,n,+~1)'{t+rJ) .. 

Consicler in more cletail the llrst term ol ( 4. JO J 

,. 

,, 
t~; 

'' 
Cll 

~ cc 

~ th 

~ gc 

~ d} 
\..; or 

sor 

for 

exp 

Tl 

a 

th 
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sic 

a b. 

fir. 

i l 
i 
hat 

in!i 
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( 4. 12 ) 

It is easy to notice tl1at in oxpanJing the integrand l>y fz. there is o!>totilc,! a sorics contointn <J t!1o 

terms logarithn.: cafly divergent by L . The main divergent part of this s ofles 15 of t!w form 

( 4.11 ) 

in completP accorJanr<~ witf1 the result ol the pertur~ation theory At tl1e same time ( 4.12) has the limit 

of L _,. OC equal to 

1 

2 
Therefore, intcf)ral ( 4.12) as a function of jz , l1as thf. pole tn the point '1z = 0 cnJ, l1ence, 

cannot be expanded in a Taylor series in tl1e noi']h!x>Url1ood of Oz = (J Such a situat1on also occurs in 
• ~ d' 

the further terms of a series, JJut tl1e r~utric.tions upon jz .-:-'71 at wluch tl e ;ntegrals appl'ar to be conver-

gent c!1anr;c 1n tl1e transition from one order to another. The tf1 ird integral in ( 4.10 ) is convergent a/reo 
oz ' 

dy when <>'tf,rl > 1, whtle in t.~e n-th order tf1e integrd s are convergem fo r f 'l'l ~ 11.-f . i~erc:fore, in 

order all thu terms of series ( 4.9) to he finite when tho cut-off is taken away ( L-~ ) it is nece s-

sary to assume j 2 to he a ~nfinitely lorJe quantity These restr~ctions on the con~tan fjz .:i ffer~·11f 

for in eacfr term of a series seem to &e rat!1er mcanin')less. To account lor this fact, I t u < r••.:.a/1 t at t f1c cf<

expression for tl1e renormalizeJ constant ( 4.9) is s ymmetrical with respect to tf1e sutJs titution !;'. :;;!:. .PA. • 
" Thus, all the conclusions concerning j 2 are also true for f, ( siuce ( 4?) m y be ~ Jrt:osN·t e' ~ 

a series in jz. , wl1ereas J'1 will enter only 1n t.'Je index of tl1e exponent})ther('IOt ~. th '! aH • rtion 

tl1ot there is a singularity '" zero also :,y 91 IS correct f. e., jr = f { j 1 ) :/z. } cannot JJe re 

presented by an expansion in tho neigh!>ourhooJ off, • ()or ft =0 . . 'Jut series ( 4. 1 J ) is the cxpan·

sion just in the vicinity of jt = 0. Tl1is is likely to account for the senseless result wo mentioneJ 

above . 

.So, tho following conclusions may be derived which, howevcJr, cannot JJe yet con s idered provoJ: 

firstly, t!Je oJCact solution seems to hove tf1e s1ngufaflty at the pomt jf = 0 as we// as at tlu;o point 

fz = 0 so that one cannot look for the solution as on expansion in the vicinity of the point 

g = ! 1 = fz = 0; secondly, although tho series of Lappo-'Jonilevsky is better than that of the pertur

:,ation tl1eory, it is not good enougf1 :,ecause it represents the solution partiall y cxponde 1 '>y tho coup/ 

ing constant; thirdly , there are no, as it seems, logarithmic divergencies duo to the poltlt m toraction 

in tho expression for the ronormolixed couplin9 constant. 

lMt:c.llliWi lliiC: 1 

HWX ICCJitAOIIt 

,.,H611HOTEK t. 
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For a final dearing up of these questions a more cletoifecl stucly of integrals in tho series of 

Loppo-Donilevsky i s necessary. 

5. Scalar Symmetrical Theory 
-== 

The methocl set forth In previous Sections may be directly oppliecl to the sea/or s ymmetrical theory 

described by a Hamiltonian: 
3 

H = m(J (f//+tf) + i ~ jt~?:[ !l§Y;rJ + {VYj.f~}z + JW2f,j,1(KJj· + 
J 'C f ( 5. 1 ) 

3 

+! ~ jt~x (lf/+(jtfJrt;·rxJf(~ 
where J-

f{jf?J ore three real sea/or muon lielcls. 

In the interaction representation the equation for the S-motrix is 

i 2 S(t~t.J= 1-h'.l(tJS(t~t.) 
1t 

s (f~ t,J It ·t. = t , 

~~ 3 A 

HI (t) =! J; (If ''lj· </) rr;·M 

('J .(i) == )" V{K)[ . .. -t't.Jt + 1·'-'tl 
T J T "2 w ~I( e + C)·~ e J . 

• ?epruenting the S-motrix as a functional integral 

( 5.2) 

t-t 't 

S (t, f.)= Jf[~f; S/i Sf; e-Kffjfltlfti?A{I·'J){t{F)~&)l.· Uf{r·ft~sf;-(s) 1Jrs1: x 
t. t J y ~ • • -t ( 5.3 ) 

)( C3fflf!1f r Az ii1J IVXf f-zJ.cl~!)·fJ){j(.sJj s ('S t, I Af, A" A,) 

we get the following equation for the 'claulca/' S:matrix 

+ 

X 

r 

Ia 

eel 
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~ - 3 
1.. It S {t)to/A, l1z 11J) = JJf.(lf+'ljlf)A;/t) S{t) to/11,112 113 ) 

S {iJ io/ A, ;11 /\_,) ft• t, = { . ( 5 .4) 

Applying Lappo-Danilevsky methocl to this equation yielcls the following result 

-S (t, (o / llt Az 113 } - f - [2 ('f~ofl-}- (f+l/')2
} -r 

One c:an see by a lmmecliate substitution that the f.matrlx obta/necl satisfies Eq. (5.4 }. Formu

la ( 5.5) is symmetrical with respect to tlte c:ydlc: commutations ol incllc:es l, 2, 3. 

Tlte lunc:tlonal Integration ol the 'dass/c:a/' ! -matrix Is not cllllic:ult since the Integrals obtain

eel areola Gaussian type. The result ol the Integration Is 
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S (f, to)== f - { 2('1' +<~-J- {1/-' ""rr) j + 

~ o0 r1J r;; , I' 
+ L L E L r-i{.,v,.£;!)'1 r-z·rrt"Cz'~-'ifl >< 

r::::o f•o ltf:o nwo (f!-b•J.'2 ,._,_1 (p-]#,),l,trtH ! 

f- t f t 

)( f tl J; . .. ft1J1 [t~J, ... fc~J, 
'to t 0 "to t,. 

9 I' 

rr n E(J;. -I;· J X 

t":f J:f 

A A •• A 

r: Ll(J;-TzJ ... LJ(J; ... _, -?; ... J ~ tr,-Ji). .. LJ(fJ,._,-h,;: ~ (f/AJ... <ft(Jf}fz rt .. J ... rzcr,J: 
t ? I' 

< [ ( 2(¥'''1-) -(¥-'¥-)'): a ( 'J/ Vsl!/! E(s-1,-)E {.FJj) i (S}): -

t- ., p 

- {-)f>f-f {tf',.Zjlf) •• /f(1·~ fc/s _TT (' /'(.S-Ji) E(f- 'Jj') !4 rsJ}.jx 
(/ t. 1•( )-f 

( 5.6) 

t -t r ':J 
)( €.1<f f-It! 1. ["'s. ds, l!/! E{s, ·T,)E(J;-~) d(S.-s, JE(s, -J;) f'(J; - ~) J 

, 

In this expression tl1e symmetry with respect to the commutation of indices I, 2, 3 is con sorveJ. 

If we /Jove the S-motrix it is possi~le to calculate the renormalization constants at L ~ ... ~ 
The moss renormolizotlon of the one-nucleon state is 

i 
L { 3 [ 2 - · - + f m = - ~ c {..) 2 2. f fflTz +f ~ .. .] . ( 5.7 ) 

The renormalizotlon ol the nucleon lield Z 2 is 

Z = ( j_)~7z[1 + !/,z /Jn L + l 
2 l L 1/,z +{ ·.. • 

( 5.8 ) 

Tl1e renormalizotlon of the coupling constant is determined in a usual manner and is written as 

t 

t 

t 

I 

I 
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1 

As lor the behaviour ol a series lor f,.. one may exactly repeat all what has been sale/ about 

the renormali:zatlon coupling constant ol the chargee/ theory (see Sec. 4 }. 

Uote, that In the scalar s ymmetftcal theory there Is notltlng principally new in comparison with 

the scalar chargee/ theory . 

6. On a Model In the Field Theory 

In a recent paper ol Blalynicki-Birulc/41 a moJel ol the local liefJ theory with a lixeJ source was 

treated, in which the nucleon may be in two states Jlllerent lrom each other by their mass ( we agreocJ 

to call these states a proton one/ a neutron }. 

The Hamiltonian ol the s ystem has the lorm 

( 6.1 ) 

Noting that at A "'•: 0 we have an exactly soluabfe case ol scalar mesons with the lixecl s ource 

It is possible to apply the perturbation theory by the constant A llf, without restricting tho interaction 

forces between the nucleon ancl mesons. In this manner an interesting result has been recoivecJ ;,141. 

The charge ronormall:zatlon provecl to be llnlte which cllcl not contain the logarithmic singularities. 

As lor the methocl Jevelopecl above Hamilton/on ( 6. J } Is ol Interest becouu the serie s ol Lappa· 

Donllevsclcy co/nc/Jes here with the series ol the perturbotlon theory by the constant Am • . However, 

as Is was mentioned above, the new metltoc/ enables us to get the n-th orc/er term ol a series that the 

perturbation theory lolls to give. In the cou In question this advantage allows to line/ exactly the spec-
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trum of eigenvalues of the lull !lomiltonion ( 5. J ). 

So, let us cons icier the equation lor the S eo( -matrix. We shall look at once lor the 

order to make use ollormulae ( 4.2 ) oncl ( 4.3 ). 

~ 
S -matrix In 

In the interaction representation we hove 

. a so( -.tit/ ~ 
zat (i,i,)= flr[t-Je S (i,t~~J 

where 
s •r-t,-t,; 1-t--~. = 1 

A 

~(f) = / ('1/+t; ~Jf{t) t- Am, {tf+'T:", f/) 

A () -~ 1J(.c> { -z'~Jt + iwt} y; t = ~ h"" a~R +are • 
K 

( 6.2) 

.?epeoting the procec/ure set lorth In sec. J -3, we obtain the following expression lor the 

s• -matrix 

ol S (t, fo} == t - [2 (~+if)- (~f'I}J + 

'1.f t t 
( i/31f1,) r,/~ (/ -oi(IT,/" ... +IIitl) 
( )

I St· ·· jlfhf e tt 
2.'f ' p 

-tD 'f., 

+ {;f 
~ f 1·7 " f(2r'~'r'f} -r++t~-l): CifJ.I"~i"'jrs-J;;. .. Fri·J11J~m}:-rv-+z;v-J:JifJ.fnic~slfi-&J .. tfJ-Jz,Jrr,~:r l 1 

t., r, 
tt 

{ 
, · (( -el(/f,ftfltf) 1 

~ Uf -z fzJJ-ts,eiJ, (l E~-1;) .. ./{J,-f,,)~fr,-Ji)(fS,"lf) ... f(~~-Ji,J 
t., t. ( 6.3 ) 

2 f t 
- (i'A~t~") fHft/ (tf - oi{/J;J+ ... +/Firf',/) 

(t .,.tJ' li· "J. li,.,, e ,.. 
9 . t. t. 

· [ rcr+tj f/'): Cl~j/d'J i.q~(S-T,) .. .EfJ·li~Jrfrs}: - r'(rt+'li rt): K( ~k.~i-'~sf-rs-Ji) .. tf.r-Jif#,}ff(rJ}] 
~ ~ 

tt 

f 1• •(( -.t{IS,fi./S.I) } 
1( e-xf -Zj'~J J tlir,els, e E(~ -'f,) ... /'{S,-l;fH)LJ(S,-S,)EfSz-];) ... ~(Si-J;.,.,Jj 

t .l. 

f 

s 

II 

rr 

w 

( 

m 
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Hoving the S-matrix , it is easy to calculate the renormollzation constants. 

The eigenvalue of the energy of the one-fermion state Is (seq Appendix !J }. 

where 

<o/(;v HStt((~-oo)c;fo> 

<ofC# So~(~-cD)C,/!o> 

~ Ah10 ~f(-ff1~~{;Jj 
"' 

for the proton { N= p) 

lor the neutron { N = 11} 

:Jetermine the renormolizotlon ( physical } quantities 

m = m"- j !ll; ~~·J 
" 

tJ m = ~ "'o Uf {-!z2;. ~~~9 j n 
... 

( 6.4 } 

( 6.5a ) 

( 6.5h) 

T/1e renormalization In, coincides exactly with the case of scalar mesons in the field with the 

fixed source. It is interesting to note t!1ot in this mode/ the eigenvalue of the energy of the one- fermion 

state is renorma/i:zec/ by the two renormo/ization constants insteoc/ of one, os usual. 

In the case of the transition to the point interaction the requirement of the finiteness of the renormo· 

/izecJ constant m anJ A m leads to t/1e neces~ity of considering the unrenormalizecl quantities 

m
0 

one/ A m
0 

as infinite, the order of their Increasing being different when 

where L is the cut-off momentum. 

Uaving expressed A m
0 

in terms of A m according to ( S.Sb ) one/ s ubstituting It into 

( 6.3 ), we obtain the expression for the S .. -matrix representee/ by a series by the observed para-

meter .d m . 
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The eigenvalue of the energy of the system consisting of a nucleon and n-mesons with t l1e moment a 

f; ... f:, , is equal ( as it should be oxpected) to 

E = c + w- + -+ tJ .. 
N' ;r, ... -'r.. c/V .P~ .. • I'• 

where EN is given by formula ( 6.4 ). 

Such o spectrum of the eigenvalues is natura/lor the Hamiltonian with the fix c:d nucleon. 

The renormalization constant of the fermion fieiJ 'Zz is determined as follows 

Zz = J (ol c,41 .S.,.,(o, -DO) c: lo'> 1
2 = 

1 a =If: c-,·.s~o)., rdrt···fJ,eot(r,t .. :~r,; ~p{-fgtJ],s,d'Jie"'(J's'~ITE(J,-~·}d(J,-ft}Er1z-JjijJ( 6.6 J 
41CO Q, )' -- )-f I -, _ _... _.-

= e¥f {-3'f' ,,_;; 1 { 1 + ;,,u:' j.t r( e !'f ;::;·e·"'r- e i' r;:e 'j -t ... }. 

If 
2
1

1 
( 1 , all the integrals in square brackets ore convergent, when V(H} ...., f (i.e., L ~ oO ) . 

~ I 

Thus, when the cut-oil is taken away Z 2 is tending to zero like {~A_)JX,•. In accordance 

with the probability meaning of Z 2 the equality of this constant to zero means that the physical nuc-

leon cannot be lound In a 'bare' s tate. 

The renormalization coupling constant is introcluced in a usual manner 

! ,. = ( y_(+) ('I'+ 'l', if)?/:.(-))==: f!.-J ,. > of~O 

(of(~ s1...,~oJ(r~r,t~-J s(o,-..o) c:Jo> 

(otc;s-'(oD,-..oJ(/fo>(ojr,s•r~r~Jc,+Jo> ( 6.7 J 

Restricting onese/1 by the two terms in series ( 6.7 ) ( the switching off of the infinite phase from 

( 6.7) is performed in the some way os in ( 4.3 ) ) we shall have 

f,-
y-= 

e>O 

{- 2(t'#!1,..) 1 j d)(·)( [ Uf{ !jt'J;; ~r;>~-t'wJ_ f j + . . . 
0 .. 

( 6.8 ) 

In the transit/on to the point interaction ( V(•J,. f, L __. oo ) all the Integrals in series 

( 6.8 ) are convergent* for i i{ ..,, < f. 

Q1 2. 14! 
Tho c ondition o l e on ver11en c e f{T1 ~ e !liven In I& n ot accurate. 
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The situation in this mocle l is essentially Jilferent fro_ m that for the chargee/ theory ( see ( 4.10) 

one/ further ). 

For ( 6.7) one/ ( 6.8 ), j= 0 is not a singular point since at this point the integrals are limite 

in contrast to ( 4. 12 ). Tl1erelore, here in applying the perturbation theory, i. e. in representing the solut ion 

os a serios by j 2 , there arise no logaritl1mic d ivergences by L characteristic o f the field t!1eory, 

In this connection, the given moJel, in our opinion, c/oes not reflect certain lun.~amental difficulties concer. 

ning the exact equations of mesoclynamics. 

In conclusion we give the expression lor the matrix element of meson-nucfeon -scotteringaccorcling 

tf1is moJo! 

~~i 
o.l + + 

- t:- ( o/ C...v Ott S ( oa1 - oo) a~. ( v fo > 
o<:-+ 0 

(ojcN Sttl.(ooJ - 00) r: to > 
( 6.9) 

- J(t;-f;J 2 :Jri d'(w1 - ~1) H1._ ,-(W;} 
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Making use, as usual, o f the division to cancel the infinite phose onJ rostrict;ng to tfto two terms of 

the expression obtained alter this procedure had been performed, we shall have 

l _,!::! )' 
'l ~ eoo tff'l::~-e '1 } ttf . ( Uf} = -2 ~ qZ V ~) . A #1 1-d. ftJ'Jf1f fix fl. ')( fe ii uJ -f'l+ ( 6.10) 

+-z (/ ~ wf N' w r l.ftz.ll J .... 
'f () 

Conclusion 

The developed method lor solving the problems concerning the field theory with the fixed source 

enables us to line/ the solutions as series lor which the n-th order term is known. At the samo time the 

coupling constant is not a paramoter of expansion, and, hence, the assumption about Us smallness is not 

required. One may hope that the knowledge of an explicit form of the n-th order term of a series rcpre

senting the solution will make it possible to answer the question about the series convergence, at least, 

lor separate models of this class. ltowover, a study of the renormalized coupling constant is likely to 

lead to the conclusion about the existence o( the singular point at the point g = 0. This statement 

cast a serious doubt upon all the methods which make use of the expansion in tho constant g. At any 

rate it follows from formula ( 4.12) that the logarithmically divergent terms which are absent in our 

solution appear inevitably In expanding by g • Besides, let us note the following: the application of 

the IUtle developed method of the functional integration yielding in the given case correct results allows 

one to hope that in further development o( this method it will line/ more ellective application in solving 

the exact equations of the field theory. 

The authors consider it their pleasant duty to thank Professor D.l. 3/okhi ntsev one/ Academician 

N.N. Sogolubov lor very uselul onJ stimulating discussions of the present paper. 

Appendix A 

Taking a simple c/illerential equation of oscillations It is possible to dHr up the meaning ol 

iterations in the method of Lappo-Danllevsky. Consider an equation system written in a matrix form 

'l·~: Y(t)={J~r; +fz~)'!f(-t) 
( A.7) 

Y(o) =I . 

! I' 

sc 

Cc 
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( 

TF 

ff. 
n-: 
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l lere j 1 ancl fz ore constant coefficients. Y(t) Is a two-series matrix. System ( A. J ) i s 

solvecl exactly anJ its solution is written down in tho lorm 

!/{t) == Cfl{z•yt/+t/t)- ,f,: +~2 
t; ltfz''f,t~,.: t) . 

f , +,, ( A.2) 

On the other hand, L appo-Danilevsky methoJ gives the solution as foll ows 

(::)0 • 2f f t 1 

Y(t) == L { ( 11!! Jtlr, ... jt~r,, { CJ~~ ftisE(s-7;). .. Ers-];,~-
f=O (2f }. J t7 " 

-r. 
- l, ft(;r, !diE{.f-JiJ ... E(S-jZf)) j -

Calculating the integrals in ( A.3 ) one con see that the series obtained is a Taylor expansion f<>r fun c

tion ( A.2) in the vicinity ol the point J: = 0 For example 

0.0 • lft f f 

Cf(i~··1:'t) = L :'1! '(tli··· vli, Ci'(.-e ft!strs-r,)Jrs-JZ,;) = 
(l/llt:(J t'l. . )"' ;~ r/ ' 
I D " IJ 

( A.4 ) 

The solution In the lorm ol ( A.3 ) may be obtained il the perturbation theory is applied by the constant 

?z to equation ( A.l ). However, Lappo-Danilevsky presents here the possibility of writ ing down the 

n-th order term of tho series what is not trivial in the perturbation theory. 
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App e ndix B 
-=---=-~-==- -===-

The integration ol the 'c:lasslc:al' !.matrix ( 2.6 ) over the c:laulc:ol lle/Js 

bo .. cl on the lollowlng relations 
~ f 

c jrAz utf-~"f«J!I,_tsJtRts;J ~I'( zjfd'sf(JJAl{.JJj == 
f, . t., 

=- TT tf ( ~(.r)-I f(S)) 
.s 

where j'(S) Is o cerfoin real /unction ol .S. 

"' C f~A, 'Wf {-lf~sA~(s}~fsJ j A,(l;) ... A,(!'-)= 
'~• 

. a . r = 1 •• .• ·l -
5 if/{t) d1',{f;.) 

TT d' ( if:rsJ). 
s 

!1f one/ ;\2 Is 

( Bl) 

( B.2) 

A lunlter Integration over the lunc:tions </!, one/ if>, con be also perlormec/ without any c/illic:ulty 

ri t 

} &~ e-xf{-1 ffaret'J~tr-IJ)~(r)~(?)+ l'ftl~~(s)f,r~J rrrrt{$J(f~s;) = 
~.t, to S 

~t t 

~rf-f:'Jft:ir1 d(/"-?Jf{Jjf{?)-+ ~~ r~"" rzr.rJft'JJ 1 
-1.-1. to ( 3 .3) 

one/ tt + 
I_= L(t,, ... , r .. J = SD~ e-xp{-f-ff"r"?~(f-'1) ~(!)~(?) j ~l'{ift~J'#trsJ f.:rs1" 

~~ ~ 

.r . S' ,.,.. 
)f 2 _ 1 , _ • • •• · 2 _ _ _ TT a ( '.11 rsJ J == 

s 
( 8.4) 

f 4 4 . . u t i 
==c-t ~l!{rJ· .. r[~r~J ~~{-ffftlrt~1 4tr-?J~{rJI/t?J+ i [dsrJrf;{Jm 

f Jt. I " t,l. t, gf{s):: 0 • 

varlc 

~ 
whe1 

L= 

Not• 

It Is 

fore, 

(n-f. 

prov 

.J 

or 

l 

= 
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Let us transform the (unction J,. so that It would have o more convenient form. In ( 3.4 ) the 

variational derivatives may be substituted by particular deriv__atlves, then 

C>.. " h 

1 =(-i)"r ~~r-t' E ~ .. -z.z. + r ~-tl·/1 " L? z, ... o:e, t;j=t IJ ' j j=f j J z,=.-zr2,.=-" ( .s.s) 

whero 

Ll t'j = ,. & (!;· -lj) 
. ..... 

ai = 'l r,t; (!)} . 
._ 

DiUerentiating over Z!, and putting 'Z,. = 0 , we get 

Note, that L {r,r·· Jl:.} is a completely symmetrical /unction with respect to the commutations lir ··J"f... 
It is Integrated over J;, ... , J.. within,.!1entical limits also with a completely symmetrical (unction. There-

lore, one moy consider that it is not 1:: JJi,. Z; which stan cis belore the exponent In ( fl. 6 } hut ,., 
(~t-f)A,_0, Z ,., . Thereby we violate the symmetry ol function ( B.4 ). However, this cloes not allect 

' 
the result ol the integrotion over f,,.. .~ T.. . Thus, the lollowing recurrent relation is obtaineJ 

( 3.7} 

Knowing J, anJ J; ( they con be easily obtoinecl directly (rom ( 8.4) } it is not dillicult to 

prove by the methocl ol mathematical incl~ction that 

[f] I .,._ 

1 =(-f)"~ h . 
2 LI.,z ··· ~z,.,-,1Z• tlz,~, ··· a,.. , £;;; 2,..'" / (h-J~tt}! 

or H -1 ~ 
Lr~;~····r:.J == (-/'r,. [ ··· 1· f~ tWfffff~r"7Jrt-?J¢;(/J{f(?)+ljtl's~fsJ~{IfL = 

L 'r~.,cr,J Fyt,s.J 4<~. t. "'· 

[,"J T •IN 

~ n .
1 

1 "" "' ( 3.8) == L- 2. ... ,! (,-J.,.)! LJ (1;-T,.) ... A(fp..,-Tp,} (/., (Ji,.,4-J .. .f({{J,.) 
'"'!::~ 
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[;]= { 
n 
2 if n=ZK 

n -f -' 2 
il If= 2K+{ 

Appendix C 

The renormalizecl coupling constant In the charged scalar theory is cleterminecl hy ( 4.8 ). Conslcler 

lirst the matrix element standing In the numerator 

e( « tJ + 
~ = (()/CI'S (oD)o){tf"''r.,.ct)S (~,-oDJ C~olo>= 

< o 1 c, sol (t>D, oJ f [r¥-'~-r, 'IJ + ~-r~+rz Y1]s-r~-oOJ(',+ fo> = ( 6. 7 , 

/ 1 £[ ;- . r ] o1 + ' () Cfz~q r... + 1 ~ S (oc~ -oD) C, fo>. 
Q (J ~ {CI} S' r1 (IJ) 

Since the S-mafrlx Is symmetrical with respect to the commutation ollnc/ie3S J one/ 2, then 

01 • I" oi + 
~ = < tJ/Cf .!... ·I"..;.___ s ( oO)-ob) (, I 0 >. 

/ i"~,r~J ( C.2) 

Substituting Into ( C:2 ) ihe expression lor the S-matrlx ( 3. l ),.. we obtain 

~ 

t1 -c = """ ...!_ (- .t.! > , A o( 

1 £- 11 ! z I 1 y=o I . 

where 

N r _, -•{lflf.-•trql) . . 
A, _ t,. ~ f:'rz, e 1 ti{Jf-:rJ ... ,A(lz,.,-Ji,)E(!;JEtliJ ... E(lj,)~ 

(C. 3} 

{ 
/ I((' -J{fs,/<f/f,/) 

)( tWf -tt_'jftlr,tf'J', e l'(J;-1,) ... i'(J;-JI,Jd{$,-S,) E(St -J;) ... f'(.Jz-l~ J. 
The matrix element In the clenomlnator ollormulo ( 4.8 ) may be written as lo/lows 

where 

et e( -MI. = (ofc, S (oO,-ob)c/ fo> ~ L -ff1!lfa.l. r=o f· z I f 
( C.4) 

Wit. 

.. 

I 
=-,~ 

Th. 
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i. 
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Wi th the accuracy ol the lirst degree ol o( the integral in the exponent is equol 

T I 1• t (( --<.{!SJ~>It.J) 
..J

11 
lh r··,"f,.) == - 2 ! 11 tt.r,tls,e E(>,-J). .. rrs,-r,.JLl(S,-Sc)Ecs,-:&J ... F(sl -l,.J = --

The lnllnltepha,. ~f{-1{;·}8'~ "':,':'} 
M;< . There/ore, It con b• canceled out. 

-<. 
Is lclentlcal In all the terms !)/ series 1'11 ancl 

II J, >!; > ... "'>};. , then lormulo ( C.S ) becomes simpler 

The relation ( 4.8) with account ol ( C.3) anJ ( C.4 ) may be rewritten as follows 

o4 

( C.6) 

o( L ",(-f} 9A-l _, 1::..: e.... /11 - /), f•D f· 'f . ~ 1 (- q•;t1 -oi ( C.7 ) 
q o(-~ -l!i-.L--.L- A 
~ ol-.o Hz o(.-.0 2: .!....,(- LlJf ao(- .t-.D IU:O " ' z . *" 

f co f· 2 / f 
-- ol -where A" , A1 ) a1 are related by 

lrom where 

This recurrent relation allows to calculate the n-th order term, II all the previous ones ore knovm. 

The presence ol the lnllnlte phase In 

A- -< ol a part ollntegrals In f and af 

tl oo( 

/'1( ancl M
1 

Is expressed of c( = 0 In the cflvergence --. However, In A,. of o( ~ 0 all the integrals 
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ore convergent. This means that tfu1 Infinite phose is thereby c ancofecl. Thore foro, in tho expreuion for --A .., one moy put o< = 0 , i. e., 

~~-~ I - -• rr n A-A"'= ~ A,. = {A, -a,)- L a u ,_#l l f a,_'l 
.~. ... , fcf t • C' P • 

where 

A,= A; t=" ' tip ::a~"" lola 0 -

Finally we obtain 

i,. - ~..!. t_ .L'J 'A-· 
-;;-- L....f!l Z./ f 
I f= 11 -

( C.9 ) 

( C. 10 ) 

where A 1 Is determined from ( C.9 ), whereas A 'I oncl a, are token from ( C.3 ) and ( C.4 ) 

by tl(:(). 

Consic/er the first term {A. =I} 
- ( o4 1; (J;)Ji) 
A;= (A, -g,) = 1 -'If ["'Tt z·LJ(J,-T.J{ttr:,)l'rr,;-f] e == 

_..., --
oo r, .,. 

-= i''~ f:!i 2i4{];·J,){ E{r,)F{f.) -t) ey/+t{~ [2-2.['"'~-AJ;} , 

Making the substitution of the vorlobles J; = V) ft- lz = 7 we get 

A.= r,lv r.,t~ 2tJ(,J[l"(t~)[{al+,)-f] ~rf-zt•r'lJ;![t-e'~'J}=: 
- .,b 0 .. ( c. 7 7 ) 

since 

00 • 
( ~ v'C•) -a IJ7 { ~(•) [ -I•CJII 1l = - 2 1 «7· 7 ~ r;-e . ~~ -2!' {;.. ,k)J 1-e , 11 

0 • * 

0.0 ? 
fttt~{E{r~)E(II<~'))-fj-::: -2 fdv: -2'J. _ _. ~ 

., 



ion for 

C.4) 

0 ) 

- 33 -

Now let us poss to the limit in A
1 

by L-. -D . As /s known the causality functions hove the 

singularities lor small values ol the argument. Choosing the lorm-loctor in the lorm 

onJ regarding L sullld ent/y Iorge, we obtain the f1ehovlour ol the causality /unctions lor small argu

ments ( by / f +If'!/ {( f ) 

( C. l 2 ) 

Let us present now the causality /unctions os follows 

;: v;:") e_,·(..J~ ' 1 
;: - ifi 'rf+'))z %:, (?} 

( '=· 13 ) 

where 

'T,(o) = g;r()) = (. 

Then the integral ( C. ll ) with account ol ( C. l3) 

/s 
2 00 {/)~ 

A~ = - 7T-; ["'7'7 (., . ~Z·~ T(?) 
a L +•? •• ( C. l4) 

where 

!T(t~)= 1 
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Tl1e function ft~''J) ensures the convergence on infinity. As can he easily seen, at L _.00 tho inte

gral is divergent at the lower limit. Let us divide the integral in ( 3 . 14 ) into two 

d..' f Lz ,....o 

..- 2. f.') x'f viz· 7 "fj 2 I ( F'' j ot ?· 'I T(. ') A1 =- ;rzlL f.!.~t'7} 1.+jY,t · {7)- Jr" lLf I.L +i
7

,z+tXv, · IJ • 
0 LL I l L ' 

( c. 15 ) 

•\t the limit L _. eo(:) the seconJ term disappears, since the intor;ral is convergent on all tho Inter

val [ 1, .,... ] . The lirst term gives the finite contribution • Indeed, making t f1e substitution z'7 .= /.J 
we get 

z'L 
A= 1. r r/y)' .'l(iJJ 

f 1fl • -----=* . , {t+,Yf'f.~· L~~ 

r·~ DO 

2 ( ii'J'J _ :£ (¢)(· X _ .1_ __!_ 
'TTl} {t-tJ)'!•fh-• - 1T'z l{t+X)1•9.7r• - JT' _J_ ~/.1.\ I J 

" (' 71' ( _;,,. '/ 

( c. 16) 

.'Jere we passed from tl1e integration over the ray L 0, i c<> :J to C O, ~ ] , since tlu~ 

integrand is analytical in the region 0 ~ a t"j i! ~ f. 
In the transition to tl1e limit by L ~ .,o •n formulae ( C. 15) and ( ':. 16) the given specula

tions may he proved with mathematical rigour. 

Dy analogy one may obtain Az , AJ etc. 

APilendix n 

According to formula ( 4 .3) the eigenvalue of the energy ol the one-fermion state is JetermineJ 

as follows 

a( + 
(o(C:Nf/ S (&,-oe)('N /o) 

< O/ CIV s ""'(cJ, - oC) c,: /O) 
EN==~ 

"'~ 0 
-}no +3 LJfft + sr ( .'J. l ) 

N o CAl' 

where 

J'Etv = e;_ o( -.o 
(() I ('N f! ( Y-- +~ lf') f(O) Sol(O, -o~>) ('/ /0 > 

(of CONS <><(o, - ~J ct fo> 

.. 
.l• 

I 

T 

m 

2 

a. 
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'::onsider the matrix element standing in the numerator 

Substituting into it the S-matrix lrom ( 6. 3 ), we get 

'"' oQ () .,., }",_, ol.(~# • !.) 0 f 

~ = -j;/··t~"'~J'!fr.j~e ··· "{(fs<ffc{J1Jl4(s)• 
( :1.2) 

Tl1e first component in ( D.4) is identical lor all the terms of a series both lor the numerator and denu

merator one/, hence, it cancels out. Having ealc:ulated the integral 

0 f 

11f-re ·;.(J-J,). .. Frs-J;)r:dfsJ= /!'?; ~'("/ • ! '?; :,~-1 £r-;1f
1
t.JJ; . 

- -4 • " (•I 

( :J. 5 ) 

one/ substituted it into ( 0.2 }, we get 
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ol 

11, I ~ vtr•J M eo: 
- z-1~~ ~ z · , ~z -

o-0 (1 'r 
~f-1 1 

-~ (-z·.!; ..... ), [aT,. p,, e.t(l,• -•r,/1:1:_;~ .... 1}-fe'"t.!J<. e I,(J;, .. ,J;}-

'I -- -- • ~-~ 

= _ _!~l "' 'V'C•J. 1\A ~ _ ( D.6) 
z. (/ ~ (,.)I I -/2. 

• 
00 4 li 
~ 'I[. ,_, <x~ -tJiJ L /. -~{-!"(._A"".) ;"'" -·· [et.r, e I ... , ,./_ '6 + .. . + ~) e rl'lfr·JT,) 

f=l - - - tN (~]; 4:'7, • 

Consider now the r- th orJt~r term ol a series 

o r,., 
R == r «r, . ·- fttlf e ot(J,t-..... ,J ./ ~ T + 2)e Z,fl;r .. ,r,J-

1 }' , 1(~'1" ... ~l"" -

-- -.,.. H .Jf 

0 ? , 
s1 T,-z 

=- I t:tr, [Qfli -.. f d ~;_ e ~(k.,.--· + rr-,J 
-~ -...-a -- f ( X 

0 

r [ f ~ ,- e ""~ 2-~ fJ Ip (J;.," . " J lf) ~) 
Tt ~5 + 

.. l: .,. ~ r J.- n elfr • '(J e r, (J;,-,, '") 'J"-.....~ G' '7". 'r) L...., )&!("" ~ ? - JJ...,., ll)J '".)J.( 

J=,-z ~-.,., -ao -t-

r,_, 
+ r cltr" ot'ft ?. :2. ~I, (trj r,_,) ... )];) 1 -..0 16 • 

Calculating with the accuracy up to ~ , we obtain 
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1.6 ) 
Substituting the obtalnecl e xpression into ( 0.6 ) we get 

( 0.7) 

From here formula ( Y.4 ) follows immecllately 

FN =- mf1 + J';Aifl. - ff1~:~-J -1;4nt.fi-wtf-,~r:.,;}j:: 
• ( 0.8) 
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