JOINT
 INSTITUTE FOR NUCLEAR Laboratory of Theoretical Physics

$$
\text { D - } 498
$$

B.M. Barbashov, G.V. Efimov

ON A NEW METHOD IN THE QUANTUM FIELD THEORY

WITH THE FIXED SOURCE

MCगTक, $1960,-39,62$, с 400-460,

B.M. Barbashov, G.V. Efimov

ON A NEW METHOD IN THE QUANTUM FIELD THEORY

WITH THE FIXED SOURCE

Submitted to JETP

> оненНнй инсти
> них нсследова ИБЛНОТЕКА

Abstract

Abstract

A new method is suggested for solving the problems of the quantum field theory with a fixed source. The formalism is independent of the magnitude of the coupling constant. It is hased on the matrix methods for solv. ing the linear differential equations developed by l.A. Lappo-Danilevsky. The solutions are obtained in the form of series for which a concrete form of the r-th order term is known. The S-matricus have been obtained for a scolar charged and scalar symmetrical theary with a fixed saurce, as well as for the model advanced by Blalynicki-3irula. The renormalizotion constants have been treated. In passing to a point interoction the renormalized chorge in these models does not contain the logarithmic divergencies.

Introduction

The assumption asout a weak coupling and the application of the perturbation theory to the equations of inesodynamics lead to the results inconsistent with experiment. Titerafore, it would be useful to wotk out a method which would in no way be isased upon the coupling constont os a parameter for iteration, and in which the approximations could be assessed on other grounds. As for Tamm-Jankoff method, it turned out, to be unsotisfactory due to the difficulties ussociated with the renormalizations. Recently o method of dispersion relations hos 'seen given considerable attention and proved to be successful. Jut since this method is josed upon the most general principles of covariance, causality, unitarity and spectrality, it may give poarer information than the ':Iamiltonian of the inferacting fields. In view af great mon thematical difficulties we encounter in investigating the equations for the quantum field theory, a study of variaus molels of the tireory became rather populor.

Special attention is focused on o closs of models with a 'fixed source', i, e., when the fermion field is characterized only by spin and isotopic coordinates. Since the experimental data on pion-nuelean inte. roction of low energies have ween accounted for by Chew-Law model/ $/ /$, referred to this class, one may think that the given model describes to some extent the reat interaction. Therefore, it should be expected that under these simplifying ossumptions there remain a number of problems of the exoct field theory. In this connection, o knowledge af the exact solutions of sucin models will enoble us to understand the origin of the difficulties in the theary. 'lowever, even for o class of models under consideration (with the oxception of a triviol case of the interoction setween the scalar neutral mesons and the fixed nucleon $/ 2 /$) there exist no solutions unfike to those mentioned ajove.

This paper describes a new inethad for solving the nesodynamics equations for this class of models taking as an example an interacting system of charged scolar mesons with a fixed source. The formolism suggested is independent of the magnitude of the coupling constant, but is based on the matrix
methods for solving the linear differential equations developed by 1.A. Capo- Janilavsky/3/. To use the language generally accepted, a new formalixm is equivalent to the perturbation theory when the 'Jamiltonian of o system of neutral mesons and a fixed nucleon is chosen as an unperturbed Hamiltonian. ilowever, the advantage is that the n-th order term of the approximation is written down in a closed form whereas in the perturbation theory one can only find any concrete term of a series but not the neth one. This circumn stance makes it, in principle, possible to investigate the convergence of series.

A method for solving the equation for the S-motrix of the scalar charged theory is set forth in Sections 1 -3. Section 4 is concerned with the discussion of the renormalization constants in this model. Section 5 is devoted to the description of the extention of the method to the scalar symmetrical theory. In Section 6, the method is applied to the model suggested by 3ialynicki-Birula/4/. All the calculaions are given in the Appendix.

1. Representation of the S-Matrix as a Functional

Integral

Consider a system of scalar charged mesons interacting with the tixed extended nucleon. In this model the nucleon has only two isotopic states (proton and neutron). The system is described by a tamil. fanion:

$$
\begin{align*}
H=m_{0}\left(\psi^{+} \psi\right) & +\frac{1}{2} \sum_{i=1}^{2} \int d \vec{x}:\left[\vec{x}_{i}^{2}(\vec{x})+\left(\vec{\nabla} \varphi_{i}(\vec{x})\right)^{2}+\mu^{2} \varphi_{i}^{2}(\vec{x})\right]+ \\
& +g \sum_{i=1}^{2} \int d \vec{x}\left(\psi^{+} \bar{r}_{i} \psi\right) \varphi_{i}(\vec{x}) \rho(\vec{x}) \tag{1.1}
\end{align*}
$$

where $\psi=V_{p} C_{p}+V_{n} C_{n}$ is the operator of the nucleon field, $C_{N}(N=p, n)$ is the operotor of the nucleon annihilation, V_{N} is the spinor describing the nucleon $\left[v_{P}=\binom{1}{0}, v_{N}=\binom{0}{1}\right]$, $\pi_{i}(\vec{x})$ and $\varphi_{i}(\vec{x})$ are the operators of the meson field, $\quad \rho=\sum_{\vec{k}} v(\vec{k}) e^{i \vec{x} \vec{x}^{2}}$ is the nucleon form-factor, τ_{i} are the matrices of isotopic spin $1 / 2$.

In the interaction representation the S-matrix satisfies the following equation:

$$
\begin{gather*}
i \frac{\partial}{\partial t} S\left(t, t_{0}\right)=H_{I}(t) S\left(t, t_{0}\right) \tag{1.2}\\
\left.S\left(t, t_{0}\right)\right|_{t=t}=1
\end{gather*}
$$

where

$$
\begin{aligned}
& H_{T}(t)=q \sum_{i=1}^{2}\left(\psi^{+}(t), \tau_{i} \psi(t)\right) \hat{\varphi_{i}}(t) \\
& \hat{\varphi}_{i}(t)=\int d \vec{x} \varphi_{i}(\vec{x}, t) \rho(\vec{x})=\sum_{\vec{i}} \frac{v(\vec{x})}{\sqrt{2 \omega}}\left[a_{i} \vec{x} e^{-i \omega t}+a_{i \vec{i}}^{+} e^{i \omega t}\right] \\
& \psi(t)=\psi e^{-i \omega_{0} t}
\end{aligned}
$$

In the symbolic form the solution of Eq. (1.2) is

$$
\begin{equation*}
S\left(t, t_{0}\right)=7_{4} T_{4} \exp \left\{-i \int_{r_{0}}^{t} d s H_{y}(s)\right\} \tag{1.3}
\end{equation*}
$$

The main problem of the thery-the representation of the S-matrix as normal products $=$ may be partially solved in a general form $/ 5,6 /$, namely, the expression for the S-matrix may be transformed so as it would be ordered in the meson operators $\hat{\varphi}$. At the same time, however, the nucleon operators ψ and ψ^{+}remain entangled (i.e. under the T-product). Such a partial ordering is accomplish. ed by representing the S-matrix as a functional integral.

Following Feynman $/ 5 /$ we suppose that any functional $\mathcal{F}[A]$ determined over the set of scaler functions $\Lambda(s)$ set in the interval $\left[t_{0}, t\right]$, may be represented as a superposition of the exponential functionals (by analogy with the "-ourier integral for usual functions):

$$
\begin{equation*}
\bar{f}[\Lambda]=\int \delta \Phi(s) \exp \left\{i \int_{i_{0}}^{t} d s \Lambda(s) \Phi(s)\right\} \bar{f}[\Phi] \tag{1.4}
\end{equation*}
$$

where $\overline{7}[\Phi]$ is a new functional which is a functional Fourier transform of $7[1] . \int \delta \Phi .$. is the functional integration over the space of real scalar functions $\Phi(s)$. lleglecting the mathematical difficulties in the determination of this operation (e.g. the determination of measure in the space of functions $\Phi(s))$ we shall mean by $\int \delta \Phi G[\Phi]$ the limit

$$
\lim _{n \rightarrow-\infty} \int_{-\infty}^{\infty} d \Phi_{s_{1}} \ldots \int_{-\infty}^{\infty} d \Phi_{s_{n}} G\left(\Phi_{s_{1}}, \ldots, \Phi_{s_{n}}\right)
$$

where n is the number of points dividing the interval $[$ to, +$]$. If $\mathcal{F}[\Lambda]$ is set, then $\overline{\mathcal{F}}[\Phi]$ may be detomined from the reverse transformation:

$$
\begin{equation*}
\overline{\mathcal{F}}[\phi]=C \int \delta \wedge \exp \left\{-\left\{-\dot{T}_{t}^{t}(s)(s) \phi(s)\right\} \mathcal{F}[1]\right. \tag{1.5}
\end{equation*}
$$

where C is the normalization constant.
Then the operator $\boldsymbol{f}[\hat{\varphi}]$ is determined as

$$
\begin{equation*}
\mathcal{F}[\hat{\varphi}]=\int \delta \Phi \exp \left\{i \int_{\tau_{0}}^{t} \phi(s) \dot{\phi}(s)\right\} \bar{F}[\phi] \tag{1.6}
\end{equation*}
$$

where $\mathcal{F}[\Phi]$ is set by (1.4) and (1.5), and by the operator

$$
\hat{G}\left(t, t_{0}\right)=\exp \left\{i \int_{t_{0}}^{t} d s \phi(s) \hat{\varphi}(s)\right\}
$$

we mean the solution of the operator differential equation

$$
\begin{gather*}
\frac{\partial}{\partial \hat{G}}(t, t)=i \hat{\varphi}(t) \Phi(t) \hat{G}\left(t, t_{0}\right) \tag{1.7}\\
\hat{G}\left(t, t_{0}\right) /_{t=t_{0}}=1
\end{gather*}
$$

Din tho basis of these results, the 5 -matrix of Eq. (1.2) may be put as

$$
\begin{align*}
& S\left(t, t_{0}\right)=\iint \delta \Phi_{1} \delta \Phi_{2} \exp \left\{i \int_{t_{0}}^{r} d s \hat{\varphi}_{j}(s) \Phi_{j}(s)\right\} \times \\
& \times C^{2} \iint \delta \Lambda_{1} \delta \Lambda_{2} \exp \left\{-i \int_{t_{0}}^{+}\left(s \Lambda_{j}(s) \Phi_{j}(s)\right\} \tilde{S}\left(t_{,} t_{0} / \Lambda_{1}, \Lambda_{2}\right)\right. \tag{7.8}
\end{align*}
$$

fere $\tilde{S}\left(t, t_{0} J \Lambda_{1}, \Lambda_{2}\right)$ has the meaning of the S-matrix of the system of the classic ul charged meson field $\Lambda_{1}(t), \Lambda_{2}(t)$ and the quantized nucleon field $\psi(t), \psi^{+}(t)$, and obeys the equation

$$
\begin{gather*}
i \frac{\partial}{\partial t} \tilde{S}\left(t, t_{0} / \Lambda_{1}, \Lambda_{i}\right)=g \sum_{i=1}^{2}\left(\psi+\psi_{i} \psi\right) \Lambda_{i}(t) \widetilde{S}\left(t, t_{0} / \Lambda_{1}, \Lambda_{2}\right) \\
\tilde{S}\left(t, t_{0} / \Lambda_{1}, \Lambda_{2}\right) /_{t=t_{0}}=1 \tag{1.9}
\end{gather*}
$$

Since the operator $\exp \left\{i \int_{\tau_{0}}^{*} d s \hat{\varphi}(s) \Phi(s)\right\} \quad$ satisfies $E_{q}(1.7)$ by the definition, it must be considered as time-ordered (a usual T-product). According to Wick's theorem $/ 7 /$ the T-product of the meson operators may be expressed in terms of the normal product

$$
\begin{gather*}
T_{\hat{\varphi}} \exp \left\{i \int_{t_{0}}^{t} d s \hat{\varphi}_{j}(s) \Phi_{j}(s)\right\}=N_{\hat{\varphi}} \int \exp \left\{\frac{i}{2} \iint_{t_{0} t_{0}}^{t+} d \xi d \eta \Delta(\xi-\eta) \frac{\delta^{2}}{\delta \hat{\varphi}_{j}(\zeta) \delta \hat{\varphi}_{j}(\eta)}\right\} \exp \left\{i \int_{t_{0}}^{t} d s \Phi_{j}(s) \hat{\varphi}_{j}(s)\right\}= \tag{1.10}\\
=\exp \left\{-\frac{i}{2} \iint_{i_{0}+t_{0}}^{t t} d r d \eta \Delta(r-\eta) \Phi_{j}(\xi) \Phi_{j}(\eta)\right\}: \exp \left\{i \int_{t_{0}}^{t} d s \hat{\varphi}_{j}(s) \Phi_{j}(s)\right\}:
\end{gather*}
$$

where the causality function $\Delta(5-\eta)$ is determined by the relation

$$
\begin{equation*}
\langle 0| T\left\{\hat{\varphi}_{i}(\xi) \hat{\varphi}_{j}(\eta)\right\}|0\rangle=i \delta_{i j} \Lambda(\xi-\eta)=i \delta_{i j} \sum_{\vec{i}} \frac{v^{2}(\vec{r})}{2 i \omega} e^{-i \omega / \xi-\eta)} \tag{1.11}
\end{equation*}
$$

Finally the S -matrix, disentangled in the meson operators $\hat{\varphi}_{1} \hat{\varphi} \hat{\mathrm{f}}$, may be written os

$$
\begin{align*}
S\left(t, t_{0}\right) & =\iint \delta \Phi_{1} \delta \Phi_{2} \exp \left\{-\frac{i}{2} \iint_{t_{0} t_{0}}^{t t}\left(y d \eta \Delta(\zeta-\eta) \Phi_{j}(\eta) \Phi_{j}(\eta)\right\}: \exp \left\{i \int_{t_{0}}^{i} d s \hat{q}_{j}(s) \Phi_{j}(s)\right\}_{0} \times\right. \tag{1.12}\\
& \times C^{2} \iint \delta \Lambda_{1} \delta \Lambda_{2} \exp \left\{-i_{0} \int_{0} d s \Lambda_{j}(s) \Phi_{j}(s)\right\} \tilde{S}\left(t, t_{0} / \Lambda_{1}, \Lambda_{z}\right)_{1}
\end{align*}
$$

Thus, the problem of finding the S-matrix of 'hamiltonian (1.1) is divided into: Il the problem of finding the classical 5 -matrix as a solution of Eq. (1.2) with arbitrary functions $\Lambda_{1}(t), \Lambda_{2}(t)$ and 2) the problem of the functional integration of this matrix by (i. 12).
2. The Finding of the 'Classical' \tilde{S}-Matrix

Since the nucleon field has only two degrees of freedom and the operators of this field anticommute between each other, then the operator $\tilde{S}\left(t, t_{0} / \Lambda_{t}, \Lambda_{2}\right)$ may be represented as the following expansion over the nucleon operators ψ and ψ^{+}, which, as can be easily shown, is most general

$$
\begin{gather*}
\tilde{S}\left(t, t_{0} / \Lambda_{1}, \Lambda_{2}\right)=1+\left[2\left(\psi^{+} \psi\right)-\left(\psi^{+} \psi\right)^{2}\right] f\left(t, t_{0} / \Lambda_{1}, \Lambda_{2}\right)+ \\
+\sum_{j=1}^{3}\left(\psi^{+} \tau_{j} \psi\right) h_{j}\left(t, t_{0} / \Lambda_{1}, \Lambda_{2}\right) \tag{2.1}
\end{gather*}
$$

where f and f f are the usual scalar functions. This follows immediately from the relations easily verified.

$$
\begin{aligned}
& \left(\psi^{+} \tau_{i} \psi\right)\left(\psi^{+} \tau_{j} \psi\right)=i \varepsilon_{i j e}\left(\psi^{+} \tau_{e} \psi\right)+\delta_{i j}\left[2\left(\psi^{+} \psi\right)-\left(\psi^{+} \psi\right)^{2}\right] \\
& \left(\psi^{+} \tau_{i} \psi\right)\left[2\left(\psi^{+} \psi\right)-\left(\psi^{+} \psi\right)^{2}\right]=\left(\psi^{+} \tau_{i} \psi\right)
\end{aligned}
$$

After substituting (2.1) into Eq. (1.9) and equating the coefficients of identical structures, we obtain the equation system for f and h_{j} which may be put in the matrix form

$$
\begin{gathered}
i \frac{\partial}{\partial t} Y\left(t, t_{0} / \Lambda_{1}, A_{2}\right)=g \sum_{i=1}^{2} \tau_{i} A_{i}(t) Y\left(t, t_{0} / \Lambda_{1}, \Lambda_{2}\right) \\
\left.Y\left(t, t_{0} / \Lambda_{1}, \Lambda_{1}\right)\right|_{t=t_{0}}=I
\end{gathered}
$$

where

$$
\mathcal{Y}\left(t, t_{0} / A_{1}, A_{2}\right)=\left(\begin{array}{cc}
1+f\left(t, t_{1} / A_{1}, A_{2}\right)+h_{3}\left(t, t_{0} / A_{1}, A_{2}\right), & h_{1}\left(t, t_{0} / A_{1}, A_{1}\right)-i h_{2}\left(t_{1}, t_{0} / A_{1}, A_{2}\right) \\
h_{1}\left(t_{1}, t_{0} / A_{1}, A_{2}\right)+i h_{2}\left(t, t_{0} / A_{1}, A_{2}\right), 1+f\left(t, A_{0} / A_{1}, A_{2}\right)-h_{1}\left(t, t_{0} / A_{1}, A_{2}\right)
\end{array}\right)
$$

The solution of (2.2) is very difficult as it reduces to the solution of the linear differential equatron of the second order with two arbitrary functions. As usual such equations ore solved by the method of the perturbation theory, i.e., by expanding over the parameter g which is assumed to be small. If the parameter g is large, Ξq. (2.2) may be approximately solved using the 'quasi-elassical' methad. However, in this case the expressions obtained cannot be functionally integrated.

Lappo-Donilevsky developed a method solving the differential equation systems employing the theary of functions of matrices. The method is that the function of matrices may be represented as a finite sum of the main compositions of matrices with the coefficients which may be expanded in series by certain characteristic parameters of matrices. Thus, it is not the constant g but some invariants of the matrices entering the equation turn out to be the expansion parameters, We will not be concerned here with the procedure of obtaining the solution, all the details are given in the monograph by l.A. Lappo-Danilovsky/\$/. Omitting very complicated and long transformations of the recurrent relations of Lappo-Sanilevsky for Eq. (2.2), we give at once the final expression

$$
\begin{aligned}
& Y\left(t, t_{0} / \Lambda_{1}, A_{2}\right)=\sum_{q=0}^{\infty}\left\{\frac{(i g)^{2 q}}{(2 q)!} \int_{t_{0}}^{t} d \xi_{1} \ldots\right)_{t_{0}}^{t} d \xi_{2 q} A_{1}\left(\xi_{1}\right) \ldots \Lambda_{1}\left(\xi_{2 q}\right) x
\end{aligned}
$$

$$
\begin{align*}
& -\frac{(i \dot{q})^{2 q+1}}{(2 q+1)!} \int_{t_{0}}^{t} d \xi, \ldots \int_{1}^{t} d \xi_{2 q+1}^{t} \Lambda_{1}(\xi) \ldots . \Lambda_{1}\left(\xi_{2 q+1}\right) x \tag{2.3}\\
& \times\left[\tau_{1} C h\left(i g \int_{t_{0}}^{t} d s \varepsilon\left(s-\xi_{1}\right) \ldots s\left(s-\xi_{i q+1}\right) \Lambda_{1}(s)\right)+i \tau_{3} S h\left(i g{ }_{t_{0}}^{t}\left(s \varepsilon\left(s-\xi_{1}\right) \ldots s\left(s-\xi_{2 q+1}\right) \Lambda_{2}(s)\right)\right]\right\}
\end{align*}
$$

where

$$
\varepsilon(x)= \begin{cases}+1, & x>0 \\ -1, & x<0\end{cases}
$$

One may see by a direct substitution that the solution (2.3) satisfies Ξ_{q} (2.2) with the requires initial condition.

The functions Λ_{1} and Λ_{2} enter the solution (2.3) quite symmetrically since by expanding the hyperbolic cosine and sine in series and by changing the sequence of summation, one obtains another expression for $Y\left(t, t_{0}\right)$, where Λ_{1} and Λ_{2}, T_{1} and T_{2} change their places

$$
\begin{aligned}
& -\frac{(19)^{29+1}}{(29+1)!} \int_{t}^{t} / 51 \ldots \int_{t}^{t} d 5_{29+1}^{t} \lambda_{2}(5)_{n} \ldots A_{2}(\sqrt{2}+1) \times
\end{aligned}
$$

For series (2.3) and (2.4), a majorating functional may be easily written down because cosine and sine are not greater than unity $\left(\Lambda_{1}\right.$ and Λ_{2} are real) and the remaining series are easy to be summed up.

$$
\begin{equation*}
\left.Y\left(t, t_{0} \mid A_{1}, A_{2}\right) \leq\left(1+\tau_{1}\right) \min \left\{\exp \left[\frac{g}{t_{t}} \int_{d}^{t} / A_{1}(s)\right]\right], \exp \left[g \int_{t_{0}}^{t} \int_{s}^{t} / \Lambda_{2}(s) \mid\right]\right\} . \tag{2.5}
\end{equation*}
$$

Thus, the solution of Eq. (2.2) is represented as series (2.3) and (2.4) which are convergent uniformly and absolutely for the interval $\left[t_{0}, t\right]$, if, at least, one of the integrals $\int_{i}\left(s / A_{s}(s) /\right.$ and $\int_{0}^{t} d s / A_{2}(s) /$ is limited over $\left[t_{0}, t\right]$.

The relationship between the Loppo-Danilevsky method and the perturbation theory for equations of (2.2) type is shown in Appendix A.

Being aware of $\boldsymbol{Y}\left(t, t_{0}\right)$, one can easily write an expression for a 'classical' $\mathrm{S}_{\text {-matrix }}$ expressed by equality (2.1):

$$
\begin{align*}
& \tilde{S}\left(t, t_{0} / A_{t}, A_{2}\right)=1-\left(2\left(\psi^{+} \psi\right)-(\psi+\psi)^{2}\right)+ \\
& +\sum_{q=0}^{\infty} \frac{[-i g(\psi+\tau, \psi)]^{9}}{q!} \int_{t_{0}}^{t} d \xi, \ldots \int_{t}^{t} d \xi_{q} A_{1}(\xi) \ldots \Lambda_{1}\left(\xi_{4}\right) x \\
& \times\left[\left(2(4+\psi)-\left(\psi^{+}+\right)^{2}\right) C h\left(i g \int_{i_{0}}^{t} d s \varepsilon\left(s-\xi_{1}\right) \ldots s\left(s-T_{p}\right) A_{2}(s)\right)-\right. \tag{2.6}\\
& \left.-(-) \psi\left(\psi+\tau_{2} \psi\right) \rho h\left(i g \int_{1} d s \varepsilon\left(s-\xi_{1}\right) \ldots s\left(s-\xi_{4}\right) A_{2}(s)\right)\right]
\end{align*}
$$

The formula is symmetrical with respect to the commutation of indices 1 and 2.

Note, that the criterion thus obtained of the uniform and absolute convergence is not sufficient for performing the functional integration since in integrating there may always be found such functions Λ, and Λ_{2} which do not sotisfy the obtained criterion. Heverthesess, we put aside the problem of the correctness of the functional integration procedure, the more as so far the existence of the functional integrals has been proved only for a very narrow class of functionals. Suppose that a series may be intergrated by a term. This operation which has not yet been proved may be justified by the circumstance that the S-matrix obtained as a result of integration satisfies the original equation (1.2). This is confirmed by a direct substitution
3. The Finding of the Quantum S-Matrix

The functional integration of the 'classical' $\tilde{5}$-matrix may be performed without any difficulty as the solution of the classical equation has a "Gaussian" form. A method for calculating similar functional integrals has become known since 'Wiener's papers $/ 8 /$ and in the applications to the quantum problems it was developed by Feymman $/ 5 /$. Let us give the final form of the S-matrix. (See Appendix 3).

$$
\begin{align*}
& S\left(t, t_{0}\right)=1-\left(2\left(t^{+} t\right)-\left(t^{*} \psi\right)^{2}\right)+ \tag{3.1}\\
& \sum_{q=0}^{\infty} \sum_{m=0}^{q}\left\{\frac{(i g)^{21} i^{m}}{(2 q-2 m)!2^{m} \int_{1}} \int_{t_{0}}^{t} d \xi_{1} \ldots \int_{\xi_{2}}^{t} \Delta\left(\xi_{1}-\xi_{2}\right) \ldots \Delta\left(\xi_{2 m-1}-\xi_{i m}\right): \hat{\varphi}_{1}\left(\xi_{m+1}\right) \ldots \cdot \hat{\varphi}_{1}\left(\xi_{2}\right): x\right. \\
& y\left[\left(2(\psi+\phi)-(\psi+4)^{2}\right): \operatorname{Ch}\left(i g \int_{t_{0}}^{t} d s \varepsilon\left(s-\xi_{1}\right) \ldots \varepsilon\left(s-\xi_{2 q}\right) \hat{\varphi}_{2}(s)\right):-\left(\psi+\tau_{2} \psi\right): \theta\left(i g \int_{t_{0}}^{t}\left(s s\left(s-\xi_{i}\right) \ldots s\left(s-s_{i q}\right) \hat{\varphi}_{2}(s)\right) \cdot\right]_{x}\right. \\
& \times \exp \left\{-\frac{i}{2} g^{2} \iint_{t_{0} t_{0}}^{t t} d s_{1} d s_{2} s\left(s_{1}-\xi_{1}\right) \ldots s\left(s_{1}-I_{z_{q}}\right) \Delta\left(s_{1}-s_{2}\right) s\left(s_{2}-s_{1}\right) \ldots r\left(s_{2}-s_{1 q}\right)\right\} \\
& -\frac{(i g)^{2 q+1} i^{m}}{(2 q+1-2 m)!2^{m}!} \int_{t_{0}}^{t} d r_{1} \ldots \int_{1}^{t} d \xi_{2 q+} \Delta\left(r_{1}-\xi_{2}\right) \ldots \Delta\left(\xi_{1 m-1}-\xi_{2 m}\right): \hat{\varphi}_{1}\left(\xi_{2 m+1}\right) \ldots \hat{\varphi_{1}}\left(\zeta_{2 q n}\right): x
\end{align*}
$$

$$
\begin{aligned}
& x \text { exp }\left\{-\frac{3}{2} q^{2} \iint_{t_{0} t_{0}}^{t s_{1} d s_{2}\left[\left(s_{1}-s_{1}\right) \ldots d\left(s_{9}-s_{2 q+1}\right) \Delta\left(s_{1}-s_{1}\right)\left(s_{2}-s_{1}\right) \ldots, c\left(s_{2}-s_{2}, f\right)\right\}}\right\}
\end{aligned}
$$

Expression (3.1) is symmetrical with respect to the commutation of indices one and two, that corresponds to the symmetry in the classical function $\mathcal{Z}\left(t, t_{0} / \Lambda_{1}, A_{2}\right)$ expressed in (2.3) and (2.4).

The obtained expression for the S-matrix af hamiltonian (7.7) is written down in the normal form bath in the nucleon and meson operators. One can see by a direct substitution that the 5 matrix satisfies Eq. (1.2) with the initial condition.

Thus, the operation of the functional integration, although not grounded from a mathematical paint of view, leads in the given case to a correct result, that is confirmed by a direct substitution. This circumatance points out that the metirad proposed by Feynman is correct. In expanding by the coupling conspant g the series of the usual perturbation theory are obtained with the advantage that here we have an explicit farm of the n-th order term of this series while the existing apparatus of tine pertur. bation theory permits to obtain any concfete term of the series but not the neth one. This shortcoming of the perturbation theory, in our opinion, is the main difficultly in studing the problem of series convergene in the perturbation theory.

To clear up the physical meaning of the iterations in the S-matrix (3.7) let us return again to Eq. (1.2)

$$
\begin{equation*}
i \frac{\partial}{\partial t} S=q\left[\left(\psi^{*} \tau_{1} \psi\right) \hat{\varphi}_{1}(t)+\left(\psi^{+} \tau_{2} \psi\right) \hat{\varphi}_{2}(t)\right] S \tag{3.2}
\end{equation*}
$$

The expressions $\hat{\varphi}_{1} \pm i \hat{\varphi}_{2}$ ore the operators of chargedmesons, while the operators $\hat{\varphi}_{1}$ and $\hat{\varphi}_{2}$ lead to the creation or annihilation of a definite combination of positive and negative masons. For instrance, the operator $\hat{\varphi}_{1}$ corresponds to the combination $\frac{1}{2}\left(\pi^{-+}+\pi^{+}\right)$. Now instead of the main nucleon states v_{p} and v_{n}, let us introduce $v_{+}=\frac{1}{\sqrt{2}}\left(v_{p}+v_{n}\right)$ and $v_{-}=\frac{1}{\sqrt{2}}\left(v_{p}-v_{n}\right)$.

This transformation means the transition to new orts in the isotopic space. In these new orts Eq.(3.2) is written as

$$
\begin{equation*}
i \frac{\partial}{\partial t} S=g\left[\left(\psi^{\prime} \tau_{3} \psi^{\prime}\right) \hat{\varphi}_{1}(t)-\left(\psi^{\prime+} \tau_{2} \psi^{\prime}\right) \hat{\varphi}_{2}(t)\right] S \tag{3.3}
\end{equation*}
$$

Here $\psi^{\prime}=v_{+} C_{+}+V_{-} C_{\infty}, C_{ \pm}$is the particle annihitation operator.
The operator $\hat{\varphi}_{1}$ enters $-q$. (3.3) together with the Jiagonal matrix τ_{3} and, hence, it is responsisle for the emission and a'usorption of such cambination of negative and posifive mesons which does not give rise to the transition of a nueleon from the state \mathcal{V}_{+}in \mathcal{V}_{-}and conversely. If in the right-hand side of (3.3) the second ferm had been absent we would hove had a neutral theory according to which the emission and absorption of a mesan does not change the isatopic coordinotes of a nuc. leon. The solution (3.1) is equivalent to the solution by the perturation theory when the expression $\left(\psi^{\prime+} \tau_{2} \psi^{\prime}\right) \hat{\varphi}_{2}(t)$ giving rise to the transitians between the states V_{+}and V_{-}is assu-
med to be a perturbation. Mote, that it is possible to diagonalize the matrix τ_{2} enotering into med to be a perturbation. Note, that it is possible to diagonalize the matrix \mathcal{C}_{2} enotering into The 'perturbing' term will be then $\left(\psi^{\prime}+\dot{\tau}_{2} \psi^{\prime}\right) \hat{\varphi}_{1}(t)$. This situation corresponds to the obovementioned symmetry of the S-matrix wit', respect to the operators φ_{1} and φ_{2}. Ilowever, if one restricts oneself to the finite number of terms in series (3.1), then the symmetry will be violated (one operator is in the degree of the exponent in expansing of which any degree of this aperator appear, whereas the other will enter this expression in the finite degree. In fealing with the cut off series for the S-matrix there may arise the processes vialating the law of charge conservation. This will take place if for the processes involving more thon $2 n$ mesons one restricts oneself to the n terms of a series. Therefore, it is necessary to colculate the matrix element of the complete series of the S-matrix and only in the series of the matrix element one may restrict oneself to this or that number of terms. In the language of the perturbation theory a separate term of series (3.1) involves such graphs for which the law of charge conservation does not fulfilled, (for instance $n \rightarrow p+\pi^{+}$). For the complete S-matrix the law of chorge conservation is fulfilled exactly and when the matrix elements are calculated carrectly, as was pointed aut asove, there is no violation of this law. Therefore, in the framework of the formalizm developed one may speak that the law of charge conservation is not fulfilled in virtual processes like in the perturbation theory the law of energy conservation is not fulfilled for virtual processes.

4. Renormalization Constants

To obtain the eigenfunction and eigenvalues of Hamiltonian* (1.1) we make use of the hypothesis of the adiabatic switching on of the interaction $/ 10 /$ which may be formulated as follows:

Let Φ_{m} be the eigenfunction of the free Hamiltonian H_{0}. If, further, the solution of the aqua. ton for the S-matrix with the adiabotic ally increasing interaction is known

$$
\begin{gather*}
i^{\prime} \frac{\partial}{\partial t} S^{\alpha}\left(t, t_{0}\right)=H_{r}(t) e^{-\alpha / r /} S^{\alpha}\left(t, t_{0}\right) \tag{4.1}\\
S^{\alpha}\left(t, t_{0}\right) /_{t=r_{0}}=1
\end{gather*}
$$

then the eigenfunction of the operator ${ }^{\prime} \|=i f_{0}+H_{I}$ are

$$
\begin{equation*}
C_{m} \Psi_{m}^{(土)}=\lim _{\alpha \rightarrow 0} \frac{S^{\alpha}(0, \pm \infty) \Phi_{m}}{\left(\Phi_{\infty, S^{\alpha}}(0, \pm \infty) \Phi_{m}\right)} \tag{4.2}
\end{equation*}
$$

where C_{m} is the normalization constant, whereas the signs (士) correspond to the 'outgoing' and 'incoming' waves. The eigenvalue of the energy in the state $\mathcal{Y}_{m}^{(t)}$ is determined by the equalty

$$
\begin{equation*}
E_{m}=\lim _{\alpha \rightarrow 0} \frac{\left(\Phi_{m}, H S^{\alpha}(0, \pm \infty) \Phi_{m}\right)}{\left(\Phi_{m}, S^{\alpha}(0, \pm \infty) \Phi_{m}\right)} \tag{4.3}
\end{equation*}
$$

The limiting transition allows to determine correctly the quotient, since the numerator and denominator are not determined due to the presence of the infinite phase factor exp $\left(i \frac{M}{\alpha}\right)$.

The 'adiabatic' s^{-1}-matrix which is the solution of Eq. (4.7) can be easily obtained form (3.1) by substituting there all the differentials $d \xi_{j}, d S_{j}$, for the expression $d s_{j} e^{-d / \xi_{j} /}, d s_{j} e^{-\alpha / s_{j} j}$.

Note, that the introduction of counter terms into the Hamiltonian leads to the automatic switching out of infinite phases. Although such on introduction of counter terms is considered to be a mare cor. rect procedure, in calculating the matrix elements it would be more convenient for us to use theorems (4.2)-(4.3) of the adiabatic hypotheses.

* The Oren function of fiamiltonian (II) has bean obtained in $/ 9 /$.

Since the $S_{\text {-matrix }}$ is sot as a series, then the matrix elements will be represented as a limit of the ratio of two series when $\alpha \rightarrow 0$. It appears, that if we divide one series into another and collect the terms by the equal degrees of the coupling constant standing before the exponent, then in the terms thus obtained the phase reduces, and, therefore, one may pass to the limit $\alpha \rightarrow 0$ in each term separatety. In Appendix C this procedure is illustrated by the calculations of the renormalized coupling constank. Far other matrix elements the calculations are being performed analogously.

The expressions obtained proved to be rather complicated. Although the nth order term could be written dawn we have not yet succeeded in investigating it to the end. Therefore, we write out only the secord and the third approximation. The calculation of the integrals is considerably simplified in the limiting case of the point interaction when the form-factor $\mathscr{V}(\alpha)$ is tending to unity, life choose the formfactor as follows

$$
v(\kappa)=\exp \left\{-\frac{\omega-\mu}{2 L}\right\}
$$

where L has the meaning of the cut-aff momentum. The transition to the point interaction will be performed when L is tending to infinity .

Consider first of all the eigenvalues of energy of the one-nucleon state. According to theorem (4.3) we abstain

$$
\begin{equation*}
E_{N}=\lim _{\alpha \rightarrow 0} \frac{\langle 0| c_{N} H S^{\alpha}(0,-\infty) c_{N}^{+}|0\rangle}{\langle 0| c_{N} S^{\alpha}(0,-\infty) c_{N}^{+}|0\rangle}=m_{0}+\delta m \tag{4.4}
\end{equation*}
$$

where

$$
\delta m=\lim _{\alpha \rightarrow 0} \frac{\langle 0| C_{N} H_{I} S^{\alpha}(0,-\infty) C_{N}^{+}|0\rangle}{\langle 0| C_{N} S^{\alpha}(0,-\infty) C_{N}^{+}|0\rangle}=
$$

$$
\begin{align*}
A_{q}^{\alpha}= & \int_{-\infty}^{0} d r_{1} \ldots \int_{-\infty}^{0} d \xi_{2 q} e^{\alpha\left(\xi_{1}+\ldots+\xi_{q}\right)} \Delta\left(\xi_{1}-\xi_{k}\right) \ldots \Delta\left(\xi_{2 q-1}-\xi_{2 q}\right) \varepsilon\left(\sigma-\xi_{1}\right) \ldots \varepsilon\left(\sigma-\xi_{2 q}\right) x \tag{4.5}\\
& \times \exp \left\{-\frac{i}{2} q^{2} \iint_{-\infty}^{0} \alpha s_{1} \alpha s_{2} e^{\alpha\left(s_{1}+s_{2}\right)} \varepsilon\left(s_{1}-\xi_{1}\right) \ldots s\left(s_{1}, \xi_{q}\right) \Delta\left(s_{1}-s_{2}\right) \varepsilon\left(s_{2}-\xi_{1}\right) \ldots s\left(s_{2}-\xi_{2 q}\right)\right\}
\end{align*}
$$

$$
\begin{aligned}
a_{q}^{\alpha} & =\int_{-\infty}^{0} d s_{1} \ldots \int_{-\infty}^{0} d s_{2 q} e^{\alpha\left(s_{1}+\ldots+\zeta_{2}\right)} \Delta\left(\xi_{1}-r_{2}\right) \ldots \Delta\left(s_{2 q},-\zeta_{s_{q}}\right) x \\
& x \exp \left\{-\frac{i}{2} g^{2} \iint_{-\infty}^{0} d s_{1} d s_{2} e^{\alpha\left(s_{1}+s_{1}\right)} s\left(s_{1}-\zeta_{1}\right) \ldots \varepsilon\left(s_{1}-s_{1 q}\right) \Delta\left(s_{1}-s_{2}\right) \varepsilon\left(s_{2}-\xi_{1}\right) \ldots s\left(s_{2}-\xi_{2 q}\right)\right\}
\end{aligned}
$$

Within the limits of the point interaction the mass renormalization is written down as

$$
\begin{equation*}
\delta m \rightarrow g^{2} \sum_{\vec{\infty} \rightarrow \infty} \frac{1}{\cos ^{2}}\left[1+\frac{1}{2\left(1+\frac{g^{2}}{27^{2}}\right)}+\ldots\right] \tag{4.6}
\end{equation*}
$$

In accordance with its probability meaning the renormalization constant of the fermion field \mathbb{Z}_{2} is determined by

$$
\begin{align*}
& \left.I_{2}=\left|\langle 0| C_{N} S^{\alpha}(0,-\infty) C_{N}^{+}\right| 0\right\rangle\left.\right|^{2} \Rightarrow\left|\sum_{q=0}^{\infty} \frac{1}{q!}\left(-\frac{10^{2}}{2}\right)^{q} a_{q}^{\alpha}\right|^{2}= \tag{4.7}
\end{align*}
$$

A series standing inside straight brackets contains an indefinite phase factor $\ell^{i \frac{M}{\alpha}}$ which disappears in raising this series by a module to the second power. ?estricting to the first two terms in the limit, when $L \rightarrow \infty$, we have

$$
\begin{equation*}
Z_{2} \underset{L \rightarrow \infty}{ }\left(\frac{1}{L}\right)^{\frac{g^{2}}{4 \pi^{2}}}\left[1+\frac{\frac{g^{2}}{2 \pi^{2}}}{1+\frac{\theta^{2}}{2 \pi^{2}}} \ln L+\ldots\right] \tag{4.8}
\end{equation*}
$$

The most interesting from the point of view physical is the connection between the renormalized (abserved) coupling constant $g r$ and the unrenormalized constant g. This connection is
determined by determined by

$$
\frac{g_{r}}{g}=\left(\Psi_{p}^{(+)},\left(\psi^{+} \tau_{+} \psi\right) \Psi_{n}^{(-)}\right)=\lim _{\alpha \rightarrow 0} \frac{\langle 0| c_{p} S^{\alpha}(\infty, 0)\left(\psi^{+} \tau_{+} \psi\right) S^{\alpha}(0,-\infty) c_{n}^{+}|0\rangle}{\langle 0| c_{p} S^{\alpha}(\infty,-\infty) c_{p}^{+}(0\rangle}
$$

To make a further analysis more convenient, we will assume that the field \hat{f}_{1} enters the intoraction Hamiltonian with the coupling constant g_{1}, whereas the field φ_{2} with the constant \mathscr{g}_{2}.

After making some calculations (see Appendix 3), and restricting to several terms of a series, we get

$$
\begin{aligned}
& \frac{g_{r}}{\sqrt{g_{1} g_{2}}}=1+q_{1}^{2} \int_{0}^{\infty} d x \cdot x\left(\sum_{\omega} \frac{v^{2}(\omega)}{\omega} e^{-i \omega x}\right) \exp \left\{-2 g_{2}^{2} \sum_{i}^{\infty} \frac{v^{2}(\omega)}{\omega^{3}}\left[1-e^{-i \omega x}\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
& x\left[\exp \left\{-2 g_{2}^{2} \sum_{i \rightarrow} \frac{v^{2}(x)}{\omega^{2}}\left[e^{\sim i \omega\left(x_{1}+x_{3}\right)}+e^{-i \omega\left(x_{2}+x_{3}\right)}-e^{-i \omega\left(x_{1}+x_{2}+x_{3}\right)}-e^{-i \omega x_{3}}\right]\right\}-1\right]-\text { (4.10)} \\
& -q_{1}^{4} \int_{0}^{\infty} d x_{1}^{\infty} d x_{2} \int_{0}^{\infty} d x_{3}\left(x_{1}+x_{2}\right)\left[\left(\sum_{2}^{\infty} \frac{v^{2}(\omega)}{\omega} e^{-i \omega\left(x_{1}+x_{3}\right)} /\left(\sum_{=} \frac{v^{2}(a)}{\omega} e^{-i \omega\left(x_{2}+x_{2}\right)}\right)+\left(\sum_{\omega} \frac{v^{2}(w)}{\omega} l^{-i \omega\left(x_{1}+x_{2}+x_{3}\right)}\right) x\right.\right. \\
& \left.\left(\sum_{i} \frac{v^{2}(\omega)}{\omega} e^{-i \omega x_{3}}\right)\right] \exp \left\{-2 g_{2}^{2} \sum_{\rightarrow} \frac{v^{2}(\omega)}{\omega^{3}}\left[2-e^{-i \omega x_{1}}-e^{-i \omega x_{2}}+e^{-i \omega\left(x_{1}+x_{1}\right)}+e^{-i \omega\left(x_{2}+x_{1}\right)}-e^{\left.-i \omega x_{1}+x_{i}+x_{3}\right)}-e^{\left.-i \omega x_{j}\right]}\right]\right\}
\end{aligned}
$$

Note, that we may change the places of the constants, g_{1} and g_{2}. This is the consequence of the S-matrix symmetry by the operators $\hat{\varphi}_{1}$ and $\hat{\varphi}_{2}$ as has been already pointed out.

Formula (4.10) is remarkable because there exists a finite limit when $L \rightarrow \infty$ (see Appendix 3).

$$
\begin{aligned}
& \frac{g_{n}}{\sqrt{g_{1} g_{2}}}=1-\frac{g_{1}^{2}}{\pi^{2}} \frac{1}{\frac{g_{1}^{2}}{\pi^{2}}\left(\frac{g_{1}^{4}}{\pi^{3}}+1\right)}-
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{g_{1}}{2 \pi^{4}} \int_{0}^{\infty} d x_{1}^{\infty} \int_{0}^{\infty} \vec{x}_{2}^{\infty} d x_{3}\left(x_{1}+x_{2}\right)\left(\frac{\left(1+x_{1}+x_{3}\right)\left(1+x_{2}+x_{3}\right)}{\left(1+x_{1}\right)\left(1+x_{2}\right)\left(1+x_{1}+x_{2}+x_{3}\right)\left(1+x_{3}\right)}\right)^{g_{2}^{2} / \pi^{2}}\left[\frac{1}{\left(1+x_{1}+x_{3}\right)^{2}\left(1+x_{2}+x_{3}\right)^{2}}+\frac{1}{\left.\left(1+x_{1}+x_{2}+x_{3}\right)^{2}\left(1+x_{3}\right)\right)^{2}}\right] .
\end{aligned}
$$

Consider in more detail the first term of (4.10)

$$
\begin{equation*}
d_{1}^{2} \int d x \cdot \sum_{i=1}^{\infty} \frac{v^{2}(a)}{\omega} \theta^{-i+k} e x p\left\{-2 \theta^{2} \sum_{i=1}^{\omega^{2}} \frac{v^{2}(a)}{\omega^{3}}\left[1-e^{-i \omega x}\right]\right\} \tag{4.12}
\end{equation*}
$$

Ht is easy to notice that in expanding the integrand by g_{2} there is obrained a sories containing the terms logarithnically divergent by L. The main divergent part of this series is of fhe form

$$
\begin{equation*}
g_{1}^{2} \ln L \cdot \sum_{n=0}^{\infty} \frac{\left(-g_{2}^{2} \ln L\right)^{n}}{n!(n+1)} \tag{4.13}
\end{equation*}
$$

in complete accordance with the result of the perturbation theory. At the some time (4.12) has the limit at $L \rightarrow \infty$ equal to

$$
-\frac{\mathscr{g}_{1}^{2}}{\pi^{2}} \cdot \frac{1}{\mathscr{g}_{2}^{2} / \pi^{2} \cdot\left(3^{2} / \pi^{2}+1\right)}
$$

Therefore, integral (4.12) os a function of g_{2}^{2}, has the pole in the point $g_{2}=0$ ond, hence, camot be expanded in a Taylor series in the neightrourhood of $g_{2}=0$. Such a situation also occurs in the further ferms of a series, but the restrictions upon g_{2}^{z}, π_{1}^{2} at which the integrals appear to be convergent chonge in the transitian from one order to another. The thirdintegral in (4.10) is convergent olreo $d y$ whan $g_{2}^{2} / \widehat{d}^{2}>1$, while in the n-th order the integrals are sanvergent for $8_{0}^{2}, \boldsymbol{y}^{2}>n-1$. Therefore, in order all the terms of sories (4.9) to be finite when the cut-off is token oway ($L \rightarrow \infty$), it is neces ssary to ossume g_{2} to je a infinitely lorge quantity. Thase restrictions on the constont g_{2} Jifferent for in each terin of a series seem to be rather meoningless. To account for this foct, lat us recall that the ek. expression for the renormolized constont (4.9) is symanetricol with respect to the suistitution \# $\#$. Thus, all the conclusions concerning g_{2} are olso true for $g_{1}($ since (4.3) inay be represented as o series in g_{2}, whereas g_{1} will enter only in the index of the exponent), therators, the assertion thot there is o singularity in zero also by g_{1} is correct.. I, e., $g_{r}=f\left(g_{1}, g_{2}\right)$ cannot bo represented by an exponsion in the neightourhoo j of $g_{1}=0$ or $g_{2}=0$. Sut series (4.11) is the expunsion just in the vicinity of $g_{1}=0$. This is likely to occount for the senseless result we mentioned obove.

So, the following conclusions may be derived which, however, cannot se yet considered proved: firstly, the exoct solution seems to have the singularity at the point $g_{\rho}=0$ as well os at the point $g_{2}=0$ so that one cannot look for the solution as an expansion in the vicinity of the point $g=g_{1}=g_{2}=0$; secondly, although the series of Loppo-Donilevsky is better thon that of the perturbation theory, it is nat good enough Jecause it represents the solution portially exponded by the coupl. ing constant; thirdly, thete are no, as it seems, logarithmic divergencies duo to the point interaction in the expression for the renormalised coupling constant.

For a final clearing up of these questions a more detailed study of integrals in the series of Lappo-Danilevsky is necessary.
5. Scalar Symmetrical Theory

The method set forth in previous Sections may be directly applied to the scalar symmetrical theory described by a Hamiltonian:

$$
\begin{gathered}
\left.H=M_{0}\left(\psi^{+} \varphi\right)+\frac{1}{2} \sum_{j=1}^{3} \int d \vec{x}: \Gamma \mathbb{\pi}_{j}^{2}(\vec{x})+\left(\vec{\nabla} \varphi_{j}(\vec{x})\right)^{2}+\mu^{2} \varphi_{j}^{2}(\vec{x})\right] \\
+g \sum_{j=1}^{3} \int d \vec{x}\left(\psi^{+} \varphi_{j} \psi\right) \varphi_{j}(\vec{x}) \rho(\vec{x})
\end{gathered}
$$

where
$\varphi_{j}(\vec{x})$ ore three real scalar meson fields.
In the interaction representation the equation for the 5 -matrix is

$$
\begin{gather*}
i \frac{\partial}{\partial t} S\left(t, t_{0}\right)=H_{\Gamma}(t) S\left(t, t_{0}\right) \tag{5.2}\\
S\left(t, t_{0}\right) /_{t=t_{0}}=1
\end{gather*}
$$

where

$$
\begin{aligned}
& H_{I}(t)=q \sum_{j=1}^{3}\left(\psi+\tau_{j} \psi\right) \varphi_{j}(t) \\
& \hat{\varphi}_{j}(t)=\sum_{\vec{R}} \frac{v(\pi)}{\sqrt{2 \omega}}\left[a_{j}+e^{-i \omega t}+a_{j}^{+} e^{i \omega t}\right]
\end{aligned}
$$

Representing the S-matrix as a functional integral

$$
\begin{align*}
& S\left(t, t_{0}\right)=\iiint \delta \Phi_{1} \delta \Phi_{2} \delta \Phi_{3} \exp \left\{-\frac{i}{2} \iint_{t_{0} t_{0}}^{t} d r d \eta \Delta(r-\eta) \Phi_{j}(\sigma) \Phi_{j}(\eta)\right\}: \exp \left\{t \int_{t_{0}}^{t} d s \hat{\varphi}_{j}(s) \Phi_{j}(s)\right\}_{0}, ~ \tag{5.3}\\
& \times C^{+3} \iint\left(\delta A_{1} \delta A_{2} \delta A_{3} \text { exp }\left\{-i \int_{t_{0}}^{t} d s A_{j}(1) \Phi_{j}(s)\right\} \tilde{S}\left(t, t, 1 A_{1}, A_{2}, A_{3}\right)\right.
\end{align*}
$$

we get the following equation for the 'classical' S-matrix

$$
\begin{gather*}
i \frac{\partial}{\partial t} \tilde{S}\left(t, t_{0} \mid \Lambda_{1} \Lambda_{2} \Lambda_{3}\right)=g \sum_{j=1}^{3}\left(\psi^{+} \tau_{j} \psi\right) \Lambda_{j}(t) \tilde{S}\left(t, t_{0} \mid \Lambda_{1} \Lambda_{2} \Lambda_{3}\right) \\
\left.\widetilde{S}\left(t, t_{0} \mid \Lambda_{1} \Lambda_{2} \Lambda_{3}\right)\right|_{t=t_{0}}=1 \tag{5.4}
\end{gather*}
$$

Applying Lappo-Danilevsky method to this equation yields the following result

$$
\begin{align*}
& \left.\tilde{S}\left(t, t_{0} 1_{1} 1_{2} R_{3}\right)=1-\left[2\left(t^{*} t_{1}\right)\left(t^{*}\right)^{*}\right)^{2}\right]+ \\
& +\sum_{q=0}^{\infty} \sum_{p=0}^{\infty} \frac{\left[-i\left(\psi+\tau_{1} \psi\right)\right]^{q}}{q!^{\prime}} \frac{\left[-i\left(\psi+\tau_{2} \psi\right)\right]^{\rho}}{p^{\prime}} g^{q+p} \times \\
& \times \int_{t_{0}}^{t} d \zeta_{1} \ldots \int_{t_{0}}^{t} d \zeta_{i} \int_{t_{0}}^{t} d s_{1} \ldots \int_{t_{0}}^{t} d s_{p} \prod_{i=1}^{q} \prod_{j=1}^{p} \Lambda_{i}\left(\xi_{i}\right) \varepsilon\left(\zeta_{i}-\zeta_{j}\right) \Lambda_{2}\left(\zeta_{j}\right) \times \\
& x\left[\left(2(4+\psi)-(4+4)^{2}\right) C h\left(i g \int_{r_{0}}^{u} d s \prod_{i=1}^{1} \prod_{j=1}^{p} s\left(s-s_{i}\right) \varepsilon\left(s-\xi_{j}\right) A_{3}(s)\right)\right. \\
& \left.-(-)^{q+p}\left(\psi+\tau_{3} \psi\right) \text { Uh }\left(i{ }_{i} \int_{i=1}^{t} \prod_{i=1}^{q} \prod_{j=1}^{p} s\left(s-\xi_{j}\right) \varepsilon\left(s-\zeta_{j}\right) \Lambda_{j}(s)\right)\right] . \tag{5.5}
\end{align*}
$$

One can see by a immediate substitution that the S-matrix obtained satisfies E_{q} (5.4). Formelo (5.5) is symmetrical with respect to the cyclic commutations of indices $1,2,3$.

The functional integration of the 'classical' S-matrix is not difficult since the Integrals obtain--d are of a Gaussian type. The result of the integration is

$$
\begin{align*}
& S\left(t, t_{0}\right)=1-\left[2\left(\psi^{+} \psi\right)-\left(\psi^{t} \psi\right)^{2}\right]+ \\
& +\sum_{q=0}^{\infty} \sum_{p=0}^{\infty} \sum_{m=0}^{\left[\frac{1}{2}\right]} \sum_{n=0}^{\left[\frac{p}{2}\right]} \frac{\left[-i\left(\psi+c_{1} \psi\right) g\right]^{q}}{(q-2 m)!2^{m} m!} \frac{\left[-2^{n}\left(4+r_{2} \psi\right) g\right]^{p}}{(p-2 n)!2^{n} n!} x \\
& x \int_{z_{0}}^{t} d s_{1} \ldots \int_{t_{0}}^{t} d s_{q} \int_{t_{0}}^{t} d s_{1} \ldots \int_{t_{0}}^{t} d s_{p} \prod_{i=1}^{q} \prod_{j=1}^{p} r\left(s_{i}-s_{j}\right) x \\
& \times \Delta\left(\xi_{1}-\xi_{2}\right) \ldots \Delta\left(\zeta_{2 m-1}-\zeta_{2 m}\right) \Delta\left(\zeta_{1}-\zeta_{2}\right) \ldots \Delta\left(\zeta_{2 n-1}-\zeta_{2 n}\right): \hat{\varphi}_{1}\left(\zeta_{2 m}\right) \ldots \hat{\varphi}_{1}\left(\zeta_{q}\right) \ddot{\varphi}_{2}\left(\zeta_{2 n}\right) \ldots \hat{\varphi}_{2}\left(\zeta_{p}\right): \\
& x\left[\left(2\left(\psi^{4} \psi\right)-\left(\psi^{t} \psi\right)^{2}\right): C h\left(i y_{i=1}^{t} \int_{i=1}^{t} \prod_{j=1}^{9} \prod_{i=1}^{p} \varepsilon\left(s-\xi_{i}\right) \varepsilon\left(s-\xi_{j}\right) \hat{\varphi}_{\rho}(s)\right):-\right. \\
& \left.-(-)^{p+q}(\psi+\tau ; \psi): \delta h\left(i q \int_{i=1}^{t} d \prod_{i=1}^{q} \prod_{j=1}^{\rho} c\left(s-\xi_{i}\right) s\left(s-\xi_{j}\right) \hat{\rho}_{j}(s)\right):\right] x \tag{5.6}\\
& \times \exp \left\{-\frac{j^{\prime}}{2} g^{2} \int_{t_{0} t_{0}}^{t} d s_{1} d s_{2} \int_{j=1}^{9} \prod_{j=1}^{1_{j}^{3}} \varepsilon\left(s_{1}-s_{i}\right) s\left(s_{1}-s_{j}\right) \Delta\left(s_{1}-s_{2}\right) \varepsilon\left(s_{2}-s_{i}\right) s\left(s_{2}-s_{j}\right)\right\}
\end{align*}
$$

In this expression the symmetry with respect to the commutation of indices $1,2,3$ is conserved. If we hove the S-matrix it is possible to calculate the renormalization constants at $L \rightarrow$ The mass renormalization of the one-nucleon state is

$$
\begin{equation*}
\delta m=-g^{2} \sum_{\pi} \frac{1}{\omega^{2}} \cdot \frac{3}{2}\left[1+\frac{1}{g^{2} / \pi^{2}+1}+\ldots\right] \tag{5.7}
\end{equation*}
$$

The renormalization of the nucleon field \mathcal{Z}_{2} is

$$
\begin{equation*}
Z_{2}=\left(\frac{1}{L}\right)^{g^{2} / 2 \pi^{2}}\left[1+\frac{g^{2} / \pi^{2}}{g^{2} / \pi^{2}+1} \ln L+\ldots\right] \tag{5.8}
\end{equation*}
$$

The renormalization of the coupling constant is determined in a usual manner and is written as

$$
\begin{aligned}
& \frac{g r}{g}=\frac{2}{g^{2} / r^{2}+1}=
\end{aligned}
$$

$$
\begin{aligned}
& \left.t \frac{1}{\left(1+x_{1}\right)^{5 /-2}\left(1+x_{2}\right)^{-2}\left(1+x_{1}+x_{2}+x_{1}\right)^{2}\left(1+x_{3}\right)^{2}}\left(\frac{\left(1+x_{1}+x_{3}\right)\left(1+x_{2}+x_{3}\right)}{\left(1+x_{1}+x_{2}+x_{3}\right)\left(1+x_{1}\right)}\right)^{\frac{1^{2}}{3}}\right)<\cdots
\end{aligned}
$$

As for the behaviour of a series for gr one may exactly repeat all what has been said about the renormalization coupling constant of the charged theory (see Sec. 4).

Note, that in the scalar symmeffical theory there is nothing principally new in comparison with the scalar charged theory.

6. On a Model in the Field Theory

In a recent paper af Blalynicki-Birula/4/ a model of the local field theory with a fixed source was treated, in which the nucleon may be in two states different from each other by their moss (wo agreed to call these states a proton and a neutron).

The Itamiltonian of the system has the form

$$
\begin{align*}
H & =m_{0}\left(\psi^{+} \psi\right)+\frac{1}{2} \int d \vec{x}:\left[\pi^{2}(\vec{x})+\left(\vec{\nabla} \varphi\left(\vec{x}^{2}\right)\right)^{2}+\mu^{2} \varphi^{2}(\vec{x})\right]:+ \\
& +g \int d \vec{x}\left(\psi^{+} \tau_{1} \psi\right) \varphi(\vec{x}) \rho(\vec{x})+\Delta m_{0}\left(\psi^{+} \sigma_{3} \psi\right) \tag{6.1}
\end{align*}
$$

Noting that at $\Delta m_{0}=0$ we have on exactly solvable case of scalar mesons with the fixed source it is possible to apply the perturbation theory by the constant $\Delta \mathrm{m}_{0}$ without restricting the interaction forces between the nucleon and mesons. In this manner an interesting result has been received ir f $/ 4 /$. The charge renormalization proved to be finite which did not contain the logarithmic singularities.

As for the method developed above Hamiltonian (6.1) is of interest because the series of Lappo. Danllevscky coincides here with the series of the perturbation theory by the constant $\Delta \mathrm{M}_{\mathrm{e}}$. However, as is was mentioned above, the new method enables us to get the nth order term of o series that the perturbation theory foils to give. In the case in question this advantage allows to find exactly the spec-
trum of eigenvalues of the full :hamiltonian (5.1).
So, let us consider the equation for the 5^{α}-matrix. We shall look at once for the 5^{α}-matrix in order to make use of formulae (4.2) and (4.3).

In the interaction representation we have

$$
\begin{gathered}
i \frac{\partial}{\partial t} S^{\alpha}\left(t, t_{0}\right)=H_{I}(t) e^{-\alpha / t t} S^{\alpha}\left(t, t_{0}\right) \\
\left.S^{\alpha}(t, t)\right|_{t=t_{0}}=1
\end{gathered}
$$

where

$$
\begin{align*}
& H_{I}(t)=g\left(\psi^{+} \tau_{1} \psi\right) \hat{\varphi}(t)+\Delta m_{0}\left(\psi^{+} \tau ; \psi\right) \\
& \hat{\varphi}(t)=\sum_{\vec{k}} \frac{v(k)}{\sqrt{2 \omega}}\left(a_{R} e^{-i \omega t}+a_{k}^{*} e^{i \omega t}\right) \tag{6.2}
\end{align*}
$$

Repeating the procedure set forth in sec. 1-3, we obtain the following expression for the S^{α}-matrix

$$
\begin{aligned}
& S^{\alpha}\left(t, t_{0}\right)=1-\left[2\left(\psi^{+} \psi\right)-\left(\psi^{+} \psi\right)^{2}\right]+ \\
+ & \sum_{q=0}^{\infty}\left\{\frac{\left(i \Delta m_{0}\right)^{2 q}}{(2 q)!} \int_{t_{0}}^{t} d \xi_{1} \ldots \int_{t_{0}}^{t} d \xi_{2 q} e^{-\alpha\left(1 r_{t} /+\ldots+/ s_{q} /\right)}\right.
\end{aligned}
$$

 $\times \exp \left\{-\frac{i}{2} g^{2} \iint_{t_{0} t_{0}}^{t t} d s_{1} d s_{2} e^{\left.-d\left(s_{1}+1+s_{2}\right)\right)} \delta\left(s_{-}-z_{1}\right) \ldots \delta\left(s_{1}-s_{2 q}\right) \Delta\left(s_{1}-s_{2}\right) s\left(s_{2}-s_{1}\right) \ldots s\left(s_{2}-s_{2 q}\right)\right\}$ -$-\frac{\left(i \Delta m_{0}\right)^{2 q+1}}{(2 q+1) \int_{t}^{t} d \xi_{p} \ldots \int_{t_{0}}^{t} d \xi_{p q+1} e^{-\alpha\left(1 / 1+\ldots+/ f_{p}+1\right)} x} x$
 $\left.\times \exp \left\{-\frac{i}{2} g^{2} \iint_{t_{0} t_{0}}^{t t} d s_{1} d s_{2} e^{-\alpha\left(1 s_{1} /+1 s_{1} /\right)} \varepsilon\left(s_{1}-\xi_{1}\right) \ldots s\left(s_{1}-s_{2 q}+1\right) \Delta\left(s_{1}-s_{2}\right) s\left(s_{2}-s_{1}\right) \ldots s\left(s_{2}-s_{L_{q}+1}\right)\right\}\right\}$

Saving the S-matrix, it is easy to calculate the renormalization constants.
The eigenvalue of the energy of the one-fermion state is (see Appendix D).

$$
\begin{gather*}
E_{N}=\lim _{\alpha \rightarrow 0} \frac{\langle 0| C_{N} H S^{\alpha}(0,-\infty) C_{N}^{+}|0\rangle}{\langle 0| \mathcal{C}_{N} S^{\alpha}(0,-\infty) C_{N}^{+}|0\rangle}= \tag{6.4}\\
=m_{0}-\frac{1}{2} g^{2} \sum_{\vec{Z}} \frac{v^{2}(N)}{\omega^{2}}+\delta_{N} \Delta m_{0} \exp \left\{-g^{2} \sum_{\vec{z}} \frac{v^{2}(\alpha)}{\omega^{3}}\right\}
\end{gather*}
$$

where

$$
\delta_{N}= \begin{cases}+1 & \text { for the proton } \\ (N=\rho) \\ -1 & \text { for the neutron } \\ (N=n)\end{cases}
$$

Determine the renormalization (physical) quantities

$$
\begin{align*}
& n=m=\frac{1}{2} g^{2} \sum_{m} \frac{v^{2}(a)}{\omega^{2}} \tag{8.5a}\\
& \Delta M=\Delta m_{0} \quad e x p\left\{-g^{2} \sum_{\Delta} \frac{v^{2}(\omega)}{\omega^{3}}\right\} \tag{6.5b}
\end{align*}
$$

The renormalization m. coincides exactly with the case of scalar mesons in the field with the fixed source. It is interesting to note that in this model the eigenvalue of the energy of the one-fermion state is renormalized by the two renormalization constants instead of one, as usual.

In the case of the transition to the point interaction the requirement of the finiteness of the renormafixed constant m and Δm leads to the necessity of considering the unrenormalized quantities m_{0} and $\Delta m_{0} \quad$ as infinite, the order of their increasing being different when

$$
\begin{aligned}
& m_{0} \rightarrow \frac{g^{2}}{4 \pi^{2}} L \\
& \Delta m_{0} \rightarrow \Delta m \cdot L \frac{g^{2}}{2 \pi^{2}}
\end{aligned}
$$

where L is the cutoff momentum.
laving expressed Δm_{a} in terms of $\Delta \mathrm{m}$ according to (5.5b) and substituting it into ($S .3$), we obtain the expression for the S^{∞}-matrix represented by a series by the observed parameter $\Delta \mathrm{m}$.

The eigenvalue of the energy of the system consisting of a nucleon and n-mesons with the momenta $\vec{p}_{1} \ldots \vec{p}_{n}$, is equal (as it should be expected) to

$$
E_{N \pi_{1} \ldots \pi_{n}}=E_{N}+\omega_{\vec{p}_{1}}+\ldots+\omega_{\vec{p}_{n}}
$$

where E_{N} is given by formula (6.4).
Such a spectrum of the eigenvalues is natural for the 'familionion with the fixed nucleon.
The renormalization constant of the fermion field \boldsymbol{Z}_{2} is determined as follows

$$
\begin{aligned}
& \left.Z_{2}=\left|\langle 0| C_{N} S^{\alpha}(0,-\infty) C_{N}^{+}\right| 0\right\rangle\left.\right|^{2}= \\
& =\left|\sum_{q=0}^{\infty} \frac{\left(-1 \Delta m_{0}\right)^{q}}{q!} \int_{-\infty}^{0} d T_{1} \ldots \int_{-\infty}^{0} d \xi_{q} e^{\alpha\left(I_{1}+\ldots+\xi_{q}\right)} \exp \left\{-\frac{i}{2} g^{2} \iint_{-\infty}^{0} d s_{1} d s_{2} e^{\alpha\left(s s_{1} s_{1}\right)} \prod_{j=1}^{q} \varepsilon\left(s_{1}-\xi_{j}\right) d\left(s_{1}-s_{2}\right) \delta\left(s_{2}-z_{j}\right)\right\}\right|_{(6.6)}^{2} \\
& =\exp \left\{-g^{2} \sum_{a^{2}} \frac{v^{2}(v)}{2 \omega^{3}}\right\}\left[1+i \Delta m \int_{-\infty}^{0} d r\left(e^{g^{2} \sum_{i=2}^{v^{2}(s)} e^{-i \omega s}}-e^{g^{2} \sum \frac{v^{2}}{\omega^{2}} e^{i \omega r}}\right)+\ldots\right] .
\end{aligned}
$$

If $\frac{g^{2}}{2 \pi^{\prime}}<1$, all the integrals in square brackets are convergent, when $V(\mu) \rightarrow 1 \quad$ (i.e., $L \rightarrow \infty$). Thus, when the cutoff is token away Z_{2} is tending to zero like $(1 / L)^{y / 2 / 2 z}$. In accordance with the probability meaning of \boldsymbol{Z}_{2} the equality of this constant to zero means that the physical nuslean cannot be found in a 'bare' state.

The renormalization coupling constant is introduced in a usual manner

$$
\begin{equation*}
\frac{g_{r}}{g}=\left(\psi_{p}^{(+)},\left(\psi^{+} \tau_{1} \psi\right) \psi_{n}^{(-)}\right)=\lim _{\alpha \rightarrow 0} \frac{\left\langle 0 / c_{p} S^{\infty}(\infty, 0)\left(\psi^{+}(, \psi) S^{\alpha}(0,-\infty) c_{n}^{+}|0\rangle\right.\right.}{\sqrt{\left\langle 0 / c_{p} s^{\alpha}(\infty,-\infty) c_{p}^{+} \mid 0\right\rangle\left\langle 0 / c_{n} S^{\infty}(\infty,-\infty) c_{n}^{+} \mid 0\right\rangle}} \tag{6.7}
\end{equation*}
$$

Restricting oneself by the two terms in series (6.7) (the switching off of the infinite phase from (6.7) is performed in the same way as in (4.3)) we shall have

$$
\begin{equation*}
\frac{g_{r}}{g}=1-2(i \Delta m)^{2} \int_{0}^{\infty} d x \cdot x\left[\exp \left\{2 g^{2} \sum_{m} \frac{v^{2}(n)}{\omega^{3}} e^{-i \omega x}\right\}-1\right]+\ldots \tag{6.8}
\end{equation*}
$$

In the transition to the point interaction $(V(k) \rightarrow 1, L \rightarrow \infty$) all the integrals in series (6.8) are convergent* for $8 / 2 \pi^{2}<1$. The condition of convergence $\frac{9^{2}}{2 x^{2}}<\frac{2}{2}$ given in $/$ / is not accurate.

The situation in this model is essentially different from that for the charged theory (see (4.10) and further).

For (6.7) and (6.8), $g=0$ is not a singular point since of this point the integrals are limited in contrast to (4.12). Therefore, here in applying the perturbation theory, i.e. in representing the solution as a series by g^{2}, there arise no logarithmic divergences by L characteristic of the field theory, In this connection, the given model, in our opinion, does not reflect certain fundamental difficulties concern, ming the exact equations of mesodynamics.

In conclusion we give the expression for the matrix element of meson-nucleon-seatteringaccording to this model

$$
\begin{align*}
& S_{f \leftarrow i}=\lim _{\alpha \rightarrow 0} \frac{\left\langle 0 / C_{N} a_{p_{t}} S^{\infty}(\infty,-\infty) a_{\vec{p}_{i}}^{+} C_{N}^{+} \mid 0\right\rangle}{\left\langle 0 / C_{N} S^{\alpha}(\infty,-\infty) c_{N}^{+} \mid 0\right\rangle}= \tag{6.9}\\
& \quad=\delta\left(\vec{p}_{i}-\vec{p}_{f}\right)-2 \pi i \delta\left(\omega_{f}-\omega_{i}\right) M_{f \leftrightarrow i}\left(\omega_{f}\right)
\end{align*}
$$

where

$$
\begin{aligned}
& B_{q}^{\alpha}=\int_{-\infty}^{\infty} d \xi_{1} \ldots \int_{-\infty}^{\infty} d \xi_{q} e^{-\alpha\left(1 / / /+\ldots+/ T_{q}\right)} \delta\left(r_{p}\right) \ldots s\left(\zeta_{q} / \varepsilon\left(s_{p}-\tau\right) \ldots s\left(\zeta_{q}-\tau\right) \times\right. \\
& \times \exp \left\{-\frac{i}{2} g^{2} \iint_{-\infty}^{\infty} d s_{1} d s_{2} e^{-x\left(1 s_{1}+\left(s_{1}\right)\right.} \prod_{j=1}^{q} \varepsilon\left(s_{1}-s_{j}\right) \Delta\left(s_{1}-s_{2}\right) \varepsilon\left(s_{2}-\gamma_{j}\right)\right\} \\
& \left.b_{1}^{\alpha}=\int_{-\infty}^{\infty} d s_{1} \ldots \int_{-\infty}^{\infty} d s_{p} e^{-\alpha\left(1 s_{1} /+\ldots+/ r_{i}\right)} \exp \left\{-\frac{i}{2} q^{2} \iint_{-\infty}^{\infty} d s_{1} d s_{i} e^{\left.-\delta\left(/ s_{1}, \mu / s_{i}\right)\right)} \prod_{j=1}^{q} \delta\left(s_{i}-s_{j}\right) \Delta\left(s_{i}-s_{2}\right) \varepsilon\left(s_{2}-\right\}_{j}\right)\right\}
\end{aligned}
$$

Haking use, os usual, of the division to cancel the infinite phase and resticting to the two terms of the expression obtained after this procedure had been performed, we sholl have

$$
M_{f \rightarrow i}\left(\omega_{f}\right)=-2 \delta_{N} g^{2} \frac{v^{2}\left(p_{f}\right)}{\omega_{f}^{2}} \cdot \frac{\Delta m}{\omega_{f}}\left[1-\delta_{N} \frac{4 i \Delta m}{\omega_{f}} \int_{0}^{\infty} d x f_{i m^{2}} \frac{x}{2}\left\{\ell^{2 g^{2} \sum_{i} \frac{v^{2}-i \omega^{-i} e^{2} x}{\omega_{f}}}-1\right\}+\ldots\right](6.10)
$$

Conclusion

The developed method for solving the problems concerning the field theory with the fixed source enables us to find the solutions as series for which the n-th order term is known. At tho same time the coupling constant is not a parameter of exponsion, and, hence, the assumption obout its smallness is not required. One may hope that the knowledge of an explicit form of the n-th order term of a series representing the solution will moke it possible to answer the question about the series convergence, at least, for separate models of this closs. However, a study of the renormalized coupling canstant is likely to lead to the conclusion obout the existence of the singulor point at tho point $g=0$. This statement cast a serious doubt upon all the methods which make use of the expansion in the constant g. At any rate it follows from formula (4.12) that the logarithmically divergent terms which are absent in our solution appear inevitably in expanding by g. Besides, let us note the following: the application of the little developed method of the functional integration yielding in the given case correct results allows one to hope that in further development of this method it will find more effective application in solving the exact equations of the field theory.

The authors consider it their pleasant duty to thank Professor D.I. Blokhintsev and Acadenician A.N. Bogolubov for very useful and stimulating discussions of the present paper.

Appendix A

Taking a simple differential equation of oscillations it is possible to clear up the meaning of iterations in the method of Lappo-Danilevsky. Consider an equation system written in a matrix form

$$
\begin{equation*}
i \frac{\partial}{\partial t} y(t)=\left(g_{1} \tau_{1}+g_{2} \tau_{s}\right) \mathscr{Y}(t) \tag{A.1}
\end{equation*}
$$

$$
y(0)=I .
$$

Here g_{1} and g_{2} are constant coefficients. $\mathscr{H}(t)$ is a two-series matrix. System (A.1) is solved exactly and its solution is written down in the form

$$
\begin{equation*}
I(t)=C\left(i \sqrt{g_{1}^{2}+g_{2}^{2}} t\right)-\frac{g_{1} \tau_{1}+g_{2} \tau_{i}}{\sqrt{g_{1}^{2}+g_{2}^{2}}} f f_{1}\left(i \sqrt{g_{1}^{2}+g_{2}^{2}} t\right) \tag{A.2}
\end{equation*}
$$

On the other hand, Lappo-Danilevsky method gives the solution as follows

$$
\begin{align*}
& Y(t)=\sum_{q=0}^{\infty}\left\{\frac { (i g _ { 2 }) ^ { 2 q } } { (2 q) ! } \int _ { 0 } ^ { t } d r _ { 1 } \ldots \int _ { 0 } ^ { t } d s _ { 2 q } \left[C h\left(i q_{1} \int_{1}^{t} d s s\left(s-s_{t}\right) \ldots s\left(s-r_{2 q}\right)\right)-\right.\right. \\
& \left.-\tau_{1} \operatorname{Sh}\left(i g_{1} \int_{0}^{t} d s\left(s-s_{1}\right) \ldots s\left(s-j_{21}\right)\right)\right]- \\
& -\frac{\left(i q_{2}\right)^{2 q+1}}{(2 q+1)!} \int_{0}^{t} d \xi_{p} \ldots \int_{0}^{t} d s_{s q+1}\left[\tau _ { 2 } C l \left(i q_{1} \int_{1}^{t}\left(s \Sigma\left(s-\xi_{1}\right) \ldots s\left(s-\xi_{2 q+1}\right)\right)+\right.\right. \tag{AB}\\
& \left.\left.+\varepsilon_{2} \varepsilon_{1} \operatorname{Sh}\left(\operatorname{ig}_{1} \int_{0}^{t} d s s\left(s-\xi_{0}\right) \ldots \varepsilon\left(s-\xi_{2 q+1}\right)\right)\right]\right\} .
\end{align*}
$$

Calculating the integrals in (A.3) one can see that the series obtained is a Taylor expansion for functon (A.2) in the vicinity of the point $g_{2}=0$. For example

$$
C h\left(i \sqrt{g_{1}+g_{2}^{2}} t\right)=\sum_{q=0}^{\infty} \frac{\left(i g_{2}\right)^{2 q}}{(2 q)!} \int_{0}^{t} d \xi_{1} \ldots \int_{0}^{t} d s_{z_{q}} C l\left(i g_{1} \int_{0}^{t} d s s\left(s-r_{p}\right) \ldots s\left(s-\xi_{2 q}\right)\right)=
$$

$$
\begin{equation*}
=C h\left(i g_{1} t\right)+\frac{1}{2}\left(i g_{2} t\right) \frac{g_{2}}{g_{1}} f_{h}\left(i g_{1} t\right)+\ldots \tag{A.4}
\end{equation*}
$$

The solution in the form of (A.3) may be obtained if the perturbation theory is applied by the constant gl to equation (A.I). However, Lappo-Danilevsky presents here the possibility of writing down the n -th order term of the series what is not trivial in the perturbation theory.

The integration of the 'classical' \tilde{S}-matrix (2.6) over the classical fields Λ_{1} and Λ_{2} is based on the following relations

$$
\begin{align*}
& C \int \delta A_{2} \exp \left\{-i \int_{t_{0}}^{t} d s \Lambda_{2}(s) \Phi_{2}(s)\right\} \exp \left\{i g \int_{t_{1}}^{t} d s \rho(s) A_{2}(s)\right\}= \\
& =\prod_{s} \delta\left(\Phi_{2}(s)-g \rho(s)\right) \tag{31}
\end{align*}
$$

where $\rho(s)$ is a certain real function of s.

$$
\begin{align*}
& C \int \delta \Lambda_{1} \exp \left\{-i \int_{t_{0}}^{t} d s \Lambda_{1}(s) \Phi_{1}(s)\right\} \Lambda_{1}\left(\xi_{1}\right) \ldots \Lambda_{1}\left(\xi_{n}\right)= \\
& =i \frac{\delta}{\delta \Phi_{1}\left(T_{1}\right)} \cdots i \frac{\delta}{\delta \Phi_{r}\left(\zeta_{n}\right)} \prod_{s} \delta\left(\Phi_{1}(s)\right) \tag{3.2}
\end{align*}
$$

A further integration over the functions Φ_{1} and Φ_{2} can be also performed without any difficulty

$$
\begin{align*}
& \left\{\delta \Phi_{2} \exp \left\{-\frac{i}{2} \iint_{t_{0} t_{0}}^{t t} d r d \eta \Delta(\xi-\eta) \Phi_{2}(r) \Phi_{2}(\eta)+i \int_{t_{0}}^{t} d s \hat{\varphi}_{2}(s) \Phi_{i}(s)\right\} \prod \prod_{s} \delta\left(\Phi_{2}(s)-g \rho(s)\right)=\right. \\
& \quad=\exp \left\{-\frac{i}{2} g^{2} \iint_{t_{0} t_{0}}^{t t} d \zeta d \eta \Delta(\zeta-\eta) \rho(\xi) \rho(\eta)+i q_{\{0} \int_{0}^{t} d s \dot{\varphi}_{2}(r) \rho(s)\right\} \tag{3.3}
\end{align*}
$$

$$
\begin{align*}
& \text { and } \\
& \left.I_{n}=I_{n}\left(\xi_{n}, \ldots, \xi_{n}\right)=\int \delta \Phi_{1} \exp \left\{-\frac{i}{2} \iint_{t_{0} t_{0}}^{t t} d\right\} d \eta \Delta(\xi-\eta) \Phi_{p}(\xi) \Phi_{1}(\eta)\right\} \exp \left\{讠^{0} \int_{t_{0}}^{t} d s \hat{\varphi}_{1}(s) \Phi_{p}(s)\right\}_{x} \\
& \times i \frac{\delta}{\delta \Phi_{1}\left(\zeta_{1}\right)} \cdots i \frac{\delta}{\delta \Phi_{1}\left(\zeta_{n}\right)} \prod_{s} \delta\left(\Phi_{1}(s)\right)= \tag{8.4}\\
& =(-)^{n}\left[\frac{\delta}{\delta \Phi_{1}\left(\zeta_{n}\right)} \cdots i \frac{\delta}{\delta \phi_{1}\left(\zeta_{n}\right)} \exp \left\{-\frac{i}{2} \iint_{t_{0} t_{0}}^{t t} d \zeta d \eta \Delta(\zeta-\eta) \Phi_{1}(\zeta) \Phi_{1}(\eta)+i \int_{t_{0}}^{t} d s \hat{\varphi}_{1}(s) \Phi_{p}(s)\right]_{\phi(s)=0} .\right.
\end{align*}
$$

Let us transform the function I_{n} so that it would have a more convenient form. In (3.4) the variational derivatives may be substituted by particular derivatives, then

$$
I_{n}=(-i)^{n}\left[\frac{\partial^{n}}{\partial z_{1, \ldots} \partial z_{n}} \exp \left\{-\frac{1}{2} \sum_{i, j=1}^{n} \Delta_{i j} z_{i} z_{j}+\sum_{j=1}^{n} z_{j} a_{j}\right\}\right]_{z_{1}=\ldots=z_{n}=0} \text { (3.5) }
$$

where

$$
\begin{aligned}
& \left.\Delta_{i j}=i^{*}\left(\xi_{i}-\right\}_{j}\right) \\
& a_{j}=\hat{P}_{i}\left(\xi_{j}\right)
\end{aligned}
$$

Differentiating over Z_{n} and putting $Z_{n}=0$, we get

$$
\left.I_{n}=(-i)^{n}\left[\frac{\partial^{n-1}}{\partial z_{i} \ldots \partial z_{n-1}}\left(-\sum_{j=1}^{n-1} \Delta_{j n} z_{j}\right) \exp \left\{-\frac{1}{2} \sum_{i, j=1}^{n-1} \Delta_{i j} z_{i} z_{j}+\sum_{j=1}^{n-1} z_{j} a_{j}\right\}\right]_{z_{i}=\ldots=z_{n-1}=0}+(-i) a_{n} T_{n-1} 3.6\right)
$$

Note, that $I_{n}\left(Y_{1}, \ldots, Y_{n}\right)$ is a completely symmetrical function with respect to the commutations $\zeta_{1}, \ldots, \xi_{n}$. It is integrated over $\left.\zeta_{1}, \ldots,\right\}_{n}$ within identical limits also with a completely symmetrical function. Therefore, one may consider that it is not $\sum_{j=f}^{n-1} \Delta_{j w} Z_{j}$ which stands before the exponent in (3.6) but $(n-1) \Delta_{m-1, n} Z_{n-1}$. Thereby we violate the symmetry of function (B.4). However, this does not affect the result of the integration over $\zeta_{1, \ldots}, \zeta_{n}$. Thus, the following recurrent relation is obtained

$$
\begin{equation*}
I_{m}=(n-1) \Delta_{n-1, n} I_{n-2}-2 a_{n} I_{n-1} \tag{3.7}
\end{equation*}
$$

Knowing $I_{\text {, }}$ and I_{2} (they can be easily obtained directly from (B.4)) it is not difficult to prove by the method of mathematical induction that

$$
I_{n}=\left(-i^{n}\right)^{n} \sum_{m=0}^{\left[\frac{n}{2}\right\rceil} \frac{n!i^{m}}{2^{m} m(n-2 m)!} \Delta_{12 \ldots} \ldots \Delta_{2 m-1,2 m} a_{2 m+1} \ldots a_{m}
$$

or

$$
\begin{align*}
& =\sum_{m=0}^{\left[\frac{n}{2}\right]} \frac{n!i^{m}}{2^{m} n!(n-2 m)!} \Delta\left(\xi-\xi_{2}\right) \ldots \Delta\left(\xi_{m-1}-\xi_{m=n}\right) \hat{\varphi_{4}}\left(\xi_{2 m+1}\right) \ldots \hat{P}_{1}\left(\xi_{n}\right) \tag{3.8}
\end{align*}
$$

$$
\left[\frac{n}{2}\right]=\left\{\begin{array}{cl}
\frac{n}{2}, & \text { if } \\
n=2 k \\
\frac{n-1}{2}, & \text { if } \\
n=2 k+1
\end{array}\right.
$$

Appendix C

The renormalized coupling constant in the charged scalar theory is determined by (4.8). Consider first the matrix element standing in the numerator

$$
\begin{align*}
M_{1}^{\alpha} & =\langle 0| C_{p} S^{\alpha}(\infty, 0)\left(\psi^{+} \tau_{+} \psi\right) S^{\alpha}(0,-\infty) C_{n}^{+}|0\rangle= \\
& =\langle 0| C_{p} S^{\infty}(\infty, 0) \frac{1}{2}\left[\left(\psi^{+} \tau_{1} \psi\right)+i\left(\psi^{+} \tau_{2} \psi\right)\right] S^{\alpha}(0,-\infty) C_{n}^{+}|0\rangle= \tag{6.1}\\
& =\langle 0| C_{p} \frac{i}{2 g}\left[\frac{\delta}{\delta \hat{p}_{1}(0)}+i \frac{\delta}{\delta \hat{Q}_{2}(0)}\right] S^{\infty}(\infty,-\infty) C_{n}^{+}|0\rangle .
\end{align*}
$$

Since the S-matrix is symmetrical with respect to the commutation of indices 1 and 2 , then

$$
\begin{equation*}
M_{1}^{o}=\left\langle\left. 0 / c_{p} \frac{i}{g} i \frac{\delta}{\delta \hat{p}_{2}(0)} S^{\alpha}(\infty,-\infty) c_{n}^{+} \right\rvert\, 0\right\rangle \tag{C.2}
\end{equation*}
$$

Substituting into (C.2) the expression for the 5 -matrix (3.1) e we obtain

$$
M_{1}^{\alpha}=\sum_{q=0}^{\infty} \frac{1}{q^{!}}\left(-\frac{q^{2}}{2}\right)^{q} A_{q}^{\alpha}
$$

where
$x \exp \left\{-\frac{i}{2} q^{2} \iint_{0}^{\infty} d s_{1} d s_{2} e^{-\alpha\left(\mid s_{d} /+1 s_{1}\right)} \varepsilon\left(s_{1}-s_{q}\right) \ldots s\left(s_{1}-\xi_{z_{q}}\right) \Delta\left(s_{1}-s_{2}\right) \varepsilon\left(s_{2}-s_{1}\right) \ldots \varepsilon\left(s_{p}-s_{2 q}\right)\right\}$.
The matrix element in the denominator of formula (4.8) may be written as follows

$$
\begin{equation*}
M_{2}^{\alpha}=\left\langle 0 / c_{p} S^{\alpha}(\infty,-\infty) c_{p}^{+} \mid 0\right\rangle=\sum_{q=0}^{\infty} \frac{1}{q!}\left(-\frac{q^{2}}{2}\right)^{q} a_{q}^{\alpha} \tag{C.4}
\end{equation*}
$$

where

With the accuracy of the first degree of α the integral in the exponent is equal

$$
\begin{equation*}
\left.J_{n}\left(\zeta_{1}, \ldots, \zeta_{n}\right)=-\frac{i}{2} g_{-\infty}^{2} \iint_{-\infty}^{\infty} d s_{1} d s_{s} e^{-\alpha\left(\left(s_{1} / t / s_{1}\right)\right.}\right)\left(s_{1}-\pi_{n}\right) \ldots \varepsilon\left(s_{1}-\gamma_{n}\right) \Delta\left(s_{1}-s_{2}\right) \varepsilon\left(s_{2}-\xi_{n}\right) \ldots s\left(s_{2}-\xi_{n}\right)= \tag{C.5}
\end{equation*}
$$

The infinite phase $\exp \left\{-\frac{1}{i \alpha} \cdot \frac{1}{2} g^{2} \sum_{i} \frac{v^{2}(\alpha)}{\omega^{2}}\right\} \quad$ is Identical in all the terms of series M_{1}^{α} and $M_{2}{ }^{\alpha}$. Therefore, it can be canceled out. If $\xi_{1}>\xi_{2}>\ldots>\xi_{n}$, then formula (C.5) becomes simpler

$$
\begin{equation*}
J_{n}\left(\xi_{n}, \ldots, \xi_{n}\right)=-g^{2} \sum_{\vec{i}} \frac{v^{2}(n)}{\omega^{3}}\left[n+\sum_{l=2}^{n} \sum_{m=1}^{n /}(-)^{l+m} e^{-i \omega\left(\xi_{m}-\xi_{l}\right)}\right] \tag{C.6}
\end{equation*}
$$

The relation (4.8) with account of (C.3) and (C.4) may be rewritten as follows
$\frac{g_{n}}{g}=\lim _{\alpha \rightarrow 0} \frac{M_{q}^{\alpha}}{M_{2}^{\alpha}}=\lim _{\alpha \rightarrow 0} \frac{\sum_{q=0}^{\infty} \frac{1}{q!}\left(-\frac{q^{2}}{2}\right)^{q} A_{q}^{\alpha}}{\sum_{q=0}^{\infty} \frac{1}{q!}\left(-\frac{q^{2}}{2}\right)^{q} a_{q}^{\alpha}}=\lim _{\alpha \rightarrow 0} \sum_{n=0}^{\infty} \frac{1}{n!}\left(-\frac{q^{2}}{2}\right)^{n} A_{n}^{\alpha}$
where $\vec{A}_{m}^{\alpha}, A_{q}^{\alpha}, a_{q}^{\alpha} \quad$ are related by

$$
A_{n}^{\alpha}=\sum_{p+q=n} \frac{n!}{p!q!} a_{p}^{\alpha} \bar{A}_{q}^{\alpha}
$$

from where

$$
\bar{A}_{n}^{\alpha}=\left(A_{n}^{\alpha}-a_{n}^{\alpha}\right)-\sum_{q=1}^{n-1} \frac{n!}{q!(n-q)!} \bar{A}_{q}^{\alpha} a_{n-q}^{\alpha}
$$

This recurrent relation allows to calculate the n-th order term, if all the previous ones are known.
The presence of the infinite phase in M_{1}^{α} and M_{2}^{α} is expressed at $\alpha=0$ in the divergence of a part of integrals in A_{q}^{*} and a_{q}^{α}. However, in $\bar{A}_{\infty}^{\alpha}$ at $\alpha \rightarrow 0$ all the integrals

$$
\begin{aligned}
& a_{q}^{n}=\int_{-\infty}^{\infty} d \zeta_{1} \ldots \int_{-\infty}^{\infty} d s_{q_{q}} e^{-\alpha\left(1 \xi_{1}+\ldots+/ \zeta_{2 q}\right)} i \Delta\left(\zeta_{1}-\zeta_{2}\right) \ldots i^{+} \Delta\left(\zeta_{2 q-1}-\zeta_{2 q}\right) x \\
& \left.\times \exp \left\{-\frac{i}{2} g^{2} \iint_{-\infty}^{\infty} d s_{1} d s_{2} e^{-\alpha\left(s_{f} /+/ s_{2}\right)} \varepsilon\left(s_{1}-\right\}_{1}\right) \ldots s\left(s_{1}-f_{2 q}\right) \Delta\left(s_{1}-s_{2}\right) \varepsilon\left(s_{2}-z_{i}\right) \ldots \varepsilon\left(s_{2}-j_{2}\right)\right\} .
\end{aligned}
$$

are convergent. This means that the infinite phase is thereby canceled. Therefore, in the expression for $\bar{A}_{n}^{\alpha} \quad$ one may put $\alpha=0$, ie.,

$$
\begin{equation*}
\bar{A}_{n}=\lim _{\alpha \rightarrow 0} \bar{A}_{n}^{\alpha}=\left(A_{n}-a_{n}\right)-\sum_{q=1}^{n-1} \frac{n!}{q!(n-q)!} \bar{A}_{q} a_{n-q} \tag{C.9}
\end{equation*}
$$

where

$$
A_{q}=A_{q}^{\alpha} /_{\alpha=0} ; \quad a_{p}=a_{p}^{\alpha} /_{o=0}
$$

Finally we obtain

$$
\begin{equation*}
\frac{g r}{g}=\sum_{i=0}^{\infty} \frac{1}{1}\left(-\frac{g^{2}}{2}\right)^{9} A_{4} \tag{C.10}
\end{equation*}
$$

where \bar{A}_{9} is determined from (C.9), whereas A_{9} and A_{9} are taken from (C.3) and (C.4) by $\alpha=0$.

Consider the first term $\quad\left(\bar{A}_{0}=1\right)$

Making the substitution of the variables $\zeta_{1}=v, \zeta_{1}-\zeta_{2}=\eta \quad$ we get

$$
\begin{aligned}
\bar{A}_{1} & =\int_{-\infty}^{\infty} d v \int_{0}^{\infty} d \eta 2 i \Delta(\eta)[\varepsilon(v) \varepsilon(\nu+\eta)-1] \exp \left\{-2 g^{2} \sum_{n}^{\infty} \frac{v^{2}(\omega)}{\omega^{3}}\left[1-e^{-i \omega \eta}\right]\right\}=(c . \eta) \\
& =-2 \int_{0}^{\infty} d \eta \cdot \eta \sum_{\vec{a}}^{\infty} \frac{v^{2}(s)}{i \omega} e^{-i \omega \eta} \cdot \exp \left\{-2 g^{2} \sum_{n} \frac{v^{2}(\omega)}{\omega^{3}}\left[1-e^{-i \omega \eta}\right]\right\}
\end{aligned}
$$

since

$$
\int_{-\infty}^{\infty} d v\left[c(v)[(v+\eta)-1]=-2 \int_{0}^{n} d v=-27\right.
$$

Now let us pass to the limit in $\overline{A_{1}}$ by $L \rightarrow \infty$. As is known the causality functions have the singularities for small values of the argument. Choosing the form-factor in the form

$$
v(\kappa)=\exp \left\{-\frac{\omega-\mu}{2 L}\right\}
$$

and regarding L sufficiently large, we obtain the 'behaviour of the causality functions for small argusments $\left(\right.$ by $\left.\left|\frac{\mu}{L}+i \mu \eta\right| \ll 1\right)$

$$
\begin{align*}
& \sum_{T} \frac{v^{2}(k)}{\omega} e^{-i \omega\rangle} \sim \frac{1}{\pi^{2}} \frac{1}{\left(\frac{1}{L}+i \eta\right)^{2}} \tag{C.12}\\
& \sum_{\vec{i}} \frac{v^{2}(\omega)}{\omega^{3}} e^{-i \omega \eta} \sim-\frac{1}{2 T^{2}} \ln \left(\frac{\mu}{L}+i \eta\right) .
\end{align*}
$$

Let us present now the causality functions as follows

$$
\begin{align*}
& \sum_{\pi i n} \frac{v^{2}(\eta)}{\omega} e^{-i \omega \eta}=\frac{1}{\pi^{2}} \cdot \frac{1}{\left(\frac{1}{L}+i \eta\right)^{2}} F_{1}(\eta) \tag{=.13}\\
& \sum_{\vec{z}} \frac{v^{2}(\eta)}{\omega^{3}} e^{-i \omega \eta}=-\frac{1}{2 \pi^{2}} \ln \left(\frac{N}{L}+i \mu \eta\right)+\ln F_{2}(\eta)
\end{align*}
$$

where

$$
F_{1}(0)=F_{2}(0)=1 .
$$

Then the integral (C.11) with account of (C.13)

$$
\begin{equation*}
\overline{A_{1}}=-\frac{2}{\pi^{2}} \int_{0}^{\infty} d \eta \eta \frac{\left(\frac{1}{L}\right)^{\frac{\eta^{2}}{n^{2}}}}{\left(\frac{1}{L}+i \eta\right)^{2+\frac{2^{2}}{n^{2}}}} \mathcal{F}(\eta) \tag{C.14}
\end{equation*}
$$

where

$$
F(n)=F_{1}(n)\left[\mathcal{F}_{2}(n)\right]^{g^{2} / 5^{2}} ; \quad F(0)=1
$$

The function $\mathcal{F}^{\prime}(n)$ ensures the convergence on infinity. As can be easily seen, at $L \rightarrow \infty$ the intograf is divergent at the lower limit. Let us divide the integral in (0.14) into two

$$
\begin{equation*}
\vec{A}_{1}=-\frac{2}{\pi^{2}}\left(\frac{1}{L}\right)^{\frac{y^{2}}{\pi^{2}}} \int_{0}^{1} \frac{d \eta \cdot \eta}{\left(\frac{1}{2}+i \eta\right)^{2+b^{2} / \eta}}, F(\eta)-\frac{2}{\pi^{2}}\left(\frac{1}{L}\right)^{\frac{1^{2}}{\pi^{2}}} \int_{1}^{\infty} \frac{d \eta \cdot \eta}{\left(\frac{1}{2}+i \eta\right)^{2+\eta} / n} \cdot F(\eta) \tag{0.15}
\end{equation*}
$$

At the limit $L \rightarrow \infty$ the second term disappears, since the integral is convergent on all the interval [1, $\infty]$. The first term gives the finite contribution. Indeed, making the substitution in $=\frac{1}{L} y$ we get

$$
\begin{equation*}
\bar{A}_{1}=\frac{2}{\pi^{2}} \int_{0}^{i L} \frac{d y \cdot y F(i-y)}{(1+y)^{2+y^{2} / \pi^{2}}} \underset{L \rightarrow \infty}{ } \frac{2}{\pi^{2}} \int_{0}^{i \infty} \frac{d y \cdot y}{(1+y)^{2+y^{2} x^{2}}}=\frac{2}{\pi^{2}} \int_{0}^{\infty} \frac{d x \cdot x}{(1+x)^{\left.2+y^{2}\right)^{2}}}=\frac{2}{\pi^{2}} \frac{1}{\frac{g^{2}}{\pi^{2}}\left(\frac{g^{2}}{\pi^{2}}+1\right)} \tag{0.16}
\end{equation*}
$$

Here we passed from tho integration over the ray $[0, i \infty]$ to $[0, \infty]$, since the integrand is analytical in the region $0 \leqslant \arg Z \leq \frac{\pi}{2}$.

In the transition to the limit by $L \rightarrow \infty$ in formulae (C.15) and (C.16) the given speculatons may be proved with mathematical rigour.

By analogy one may obtain $\overrightarrow{A_{2}}, \overrightarrow{A_{3}}$ etc.

Appendix

According to formula (4.3) the eigenvalue of the energy of the one-fermion state is determined as follows

$$
\begin{equation*}
E_{N}=\lim _{\alpha \rightarrow 0} \frac{\left\langle 0 / C_{N} H S^{\alpha}(0,-\infty) C_{N}^{+} \mid 0\right\rangle}{\left\langle 0 / C_{N}\right.} \frac{S^{\alpha}(0,-\infty) C_{N}^{+}|0\rangle}{\left\langle m_{0}+\delta_{N} \Delta m_{0}+\delta E_{N}\right.} \tag{0.1}
\end{equation*}
$$

where

$$
\delta E_{N}=\lim _{\alpha \rightarrow 0} \frac{\langle 0| C_{N} y^{+}\left(\psi^{+}, \psi\right) \hat{\varphi}(0) S^{\alpha}(0,-\infty) c_{N}^{+}|0\rangle}{\left\langle 0 / C_{N} S^{\alpha}(0,-\infty) C_{N}^{+} \mid 0\right\rangle}
$$

Consider the matrix element standing in the numerator

$$
M_{1}^{\alpha}=\left\langle 0 / C_{N} H_{M} S^{\alpha}(0,-\infty) C_{N}^{+} \mid 0\right\rangle=\left\langle 0 / C_{N} g\left(\varphi^{+} C_{1} \psi\right) \hat{\varphi}(0) S^{\alpha}(0,-\infty) \dot{c}_{\infty}^{*} \mid\right\rangle
$$

Substituting into it the S-matrix from (6.3), we get

$$
\begin{align*}
& M_{1}^{\alpha}=-\sum_{q=0}^{\infty}\left(-i d_{1} \Delta m\right)^{q} \int_{-\infty}^{0} d s_{i} \int_{-\infty}^{y_{1}}\left(s_{2} \ldots \int_{-\infty}^{s_{p}} d s_{p} e^{\left.\alpha\left(y_{i}+\ldots\right)_{q}\right)} i q^{2} \int_{-\infty}^{0} d s e^{\alpha s=1} \prod_{j=1}^{q} \varepsilon\left(s-s_{j}\right) i \Delta(s) x\right. \\
& x \exp \left\{-\frac{i}{2} g^{2} \int_{-\infty}^{0} d s_{1} d s_{2} e^{\infty\left(s_{1}+s_{2}\right)} \prod_{-j=1}^{q} \varepsilon\left(s_{1}-s_{j}\right) \Delta\left(s_{1}-s_{2}\right) c\left(s_{2}-s_{j}\right)\right\} . \tag{0.2}
\end{align*}
$$

The matrix element in the denomerator of formula (D.1) is obtained analogously

$$
\begin{aligned}
& M_{2}^{\alpha}=\left\langle 0 / C_{N} \rho^{\alpha}(0,-\infty) C_{N}^{+} \mid 0\right\rangle=\sum_{p=0}^{\infty}\left(-\gamma_{N} \Delta m_{0}\right)^{q} \int_{-\infty}^{0} d s_{1} \int_{-\infty}^{j} d \xi_{2} \ldots \int_{-\infty}^{p_{p}} d s_{p} e^{\alpha\left(s_{p}+\ldots+5\right)} \\
& x \exp \left\{-\frac{i}{2} g^{2} \iint_{-\infty}^{0} d s_{i} d s_{2} e^{\alpha\left(s_{1}+s_{2}\right)} \prod_{j=1}^{q} \varepsilon\left(s_{1}-s_{j}\right) \Delta\left(s_{1}-s_{2}\right) \varepsilon\left(s_{2}-s_{j}\right)\right\} .
\end{aligned}
$$

The integral standing in the degree of the exponent is equal to (by $\left.\xi_{1}>\right\}_{2}>\ldots>\xi_{9}$)

$$
\begin{aligned}
& I_{q}\left(\xi_{q}, \ldots, \xi_{1}\right)=-\frac{i}{2} g^{2} \int_{-\infty}^{0} d s_{1} d s_{2} e^{\alpha\left(s_{1}+s_{2}\right)} \prod_{j=1}^{q} \varepsilon\left(s_{j}-s_{j}\right) \Delta\left(s_{1}-s_{2}\right) \varepsilon_{1}\left(s_{2}-z_{j}\right)= \\
& =-\frac{1}{4} g^{2} \sum_{\vec{i}} \frac{v^{2}(\alpha)}{\omega^{2}}\left(\frac{1}{i \alpha}+\frac{1}{\omega}\right)-g^{2} \sum_{\vec{i}} \frac{v^{2}(\alpha)}{\omega^{3}}\left[q+\sum_{\ell=1}^{q}(-)^{\ell} \ell^{i \omega T}+2 \sum_{\ell=2}^{q} \sum_{m=1}^{e-1}(-)^{i+m} e^{-i \omega(\xi m-y)}\right]^{(D .4)}
\end{aligned}
$$

The first component in (D.4) is identical for all the terms of a series both for the numerator and danumercator and, hence, it cancels out. Having calculated the integral

$$
\begin{equation*}
2 g^{2} \int_{-\infty}^{0} d s e^{=s} \delta\left(s-y_{j}\right) \ldots s\left(s-r_{p}\right) i^{2} \Delta(s)=\frac{1}{2} g^{2} \sum_{\vec{m}} \frac{v^{2}(\omega)}{\omega^{2}}+g^{2} \sum_{m=1} \frac{v^{2} Y_{s}}{\omega^{2}} \sum_{i=1}^{q}(\omega)^{e} e^{i \omega\rangle} \tag{3.5}
\end{equation*}
$$

and substituted it into (0.2), we get

$$
\begin{aligned}
& M_{1}^{\alpha}=-\frac{1}{2} g^{2} \sum_{m} \frac{v^{2}(\theta)}{\omega^{2}} \cdot M_{2}^{\alpha}-
\end{aligned}
$$

$$
\begin{align*}
& =-\frac{1}{2} g^{2} \sum_{=i} \frac{v^{2}(n)}{\omega^{2}} \cdot M_{2}^{\alpha}- \tag{D.6}\\
& -\sum_{q=1}^{\infty}\left(-i \delta_{N} \Delta m_{0}\right)^{q} \int_{-\infty}^{0} d s_{i} \ldots \int_{-\infty}^{r_{q}} d \xi_{q} e^{\alpha\left(\xi_{1}+\ldots+r_{q}\right)} \cdot\left(\frac{\partial}{\partial \xi_{1}}+\ldots+\frac{\partial}{\partial \xi_{q}}\right) e^{T,\left(s_{i}, \ldots, r_{1}\right)} .
\end{align*}
$$

Consider now the q-th order term of a series

$$
\begin{aligned}
& =\int_{-\infty}^{0} d r_{1} \int_{-\infty}^{r_{1}} d s_{2} \ldots \int_{-\infty}^{s_{p-2}} d s_{p-1} e^{\alpha\left(r_{1}+\ldots+r_{p-1}\right) x} \\
& \times\left\{\int_{T_{1}}^{0} d \sigma e^{\alpha \sigma} i^{\alpha} \frac{\partial}{\sigma} e^{I_{q}\left(S_{p}-1, \ldots, S_{1}, \sigma\right)}+\right. \\
& +\sum_{j=q-2}^{1} \int_{\zeta_{j+1}}^{\zeta_{j}} d \sigma e^{\alpha \sigma} i_{\partial} \frac{\partial}{\sigma} e^{I_{q}\left(r_{p}-1, \ldots, \zeta_{j}, \sigma, \zeta_{j}, \ldots, \zeta_{1}\right)}+ \\
& \left.+\int_{-\infty}^{5,-1} d \sigma e^{\alpha \sigma} \gamma \frac{\partial}{\partial \sigma} e^{I_{p}(\sigma, 3,-1, \ldots, \xi)}\right\} .
\end{aligned}
$$

Calculating with the accuracy up to or , we obtain

$$
\begin{aligned}
& R_{q}=\int_{-\infty}^{0} d s_{1} \ldots \int_{-\infty}^{s_{p-2}} d s_{p-1} e^{\alpha\left(S_{1}+\ldots+F_{1}\right.} i\left[e^{x_{q}\left(S_{p_{1}}, \ldots, \zeta_{1}, 0\right)}-e^{I_{p}\left(-\infty, S_{p-1} \ldots, 3_{1}\right)}\right]=
\end{aligned}
$$

Substituting the obtained expression into (0.6) we get

$$
M_{1}^{\alpha}=-\frac{1}{2} g^{2} \sum_{\overrightarrow{2}} \frac{v^{2}(\sigma)}{\omega^{3}} \cdot M_{2}^{\alpha}-i\left[1-\exp \left\{-g^{2} \sum_{i}^{\Gamma} \frac{v^{2}(\theta)}{\omega^{2}}\right\}\right]\left(-i \delta_{N} \Delta m_{0}\right) / M_{2}^{\alpha}
$$

From here formula (Y.4) follows immediately

$$
\begin{aligned}
E_{N} & =m_{0}+\delta_{N} \Delta m_{0}-\frac{1}{2} g^{2} \sum_{\rightarrow} \frac{v^{4}(\theta)}{\omega^{2}}-\delta_{N} \Delta m_{0}\left[1-\exp \left\{-g^{2} \sum \frac{v^{2}}{\omega^{3}}\right\}\right]= \\
& =m_{0}-\frac{1}{2} g^{2} \sum_{i=1} \frac{v^{2}(v}{\omega^{2}}+\delta_{N} \Delta m_{0} \exp \left\{-g^{2} \sum_{N} \frac{v^{2}(\omega)}{\omega^{3}}\right\}
\end{aligned}
$$

REFERENCES

1. G.F . Chew, F.E. Low, Phys Rev., 101, 1570 (1956).
2. S.F. Edwards, R.E. Peierls, Proc. Roy. Soc., 224, 24 (1954). ПСФ No 3, /1955/
3. И.А. Лаппо-Данилевский. Применение функции от матриц к теории линейніх систем обыкновенных дифференциальных уравнении. Гостехиэдат, 1957 г.
4. I. Bialynicki-Birula, Nucl.Phys,, 12, 309 (1959).
5. R.P. Feymman, Phys.Rev, 84, 108 (1951). ПСФ No $3 / 1955$ /
6. Н.Н. Боголюбов, Д.В. Ширков. Введение в теорию квантованных полеи. Гостехиздат, 1957 Г.
7. S. Hori, Progr. Theor.Phys. 7 578'(1952) ГПСФ, No 3 /1955/
8. N. Whener, Proc. Nat. Acad. Sci., 7, 253 (1921). Proc.Nat.Acad.Sci, 7, 294 (1921).
9. Б.М. Барбашов, Г.В. Ефимов. ЖЭТФ, 38, $198 / 1960 /$.
10. M. Gell-Mann, F.Low, Phys.Rev., 84, 350 (1951) ПСФ, № 10, /1955/
