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Thi> pap., tr~ats th~ fluctuations ofth~ metric: 

t~nsor for two casu: 
aj in the macroworld where lhes~ fluctuations 

are due to tbe turbul~n/ motion of matter and 

b/ in the micr~world where thue fluctuations 

are caused by >:ero 1·acuum oscillation: It bas been 

shown in the Iafier cas~ that tbue fluctuations are 

euentialfor tbe distances uf. thc r"llr of L 
0 
= ( Jr" )'It ;' to·J2

cm. 

llere r is the Newtonian gravita tional constant. 

1. INTRODUCTION 

In those regions of space where there are powerful turbulent motions of matter accompanied by con 

siderable changes in the density of matter or having large irregular velocities of motion ( r is not 

small!), the metric tensor OJ (tl¥ is a random quantity. This implies that the interval of time t.AS and 

the distance X A8 separating two physical world-points A and n also become random 

quantities. Therefore, one may speak only of the probability that t..,6 =t ' XA& ::: e. 
In the microworld s uch a statistical character of metric may be due to the statistical features of the 

vacuum, or in other words, to the 'ze;o' oscilla tions of the quantized fields. However, we face here a very 

intricate problem and it is probable that the statistical features of metric which reflect zero vacuum os

cillat ions are essential only in the extremely small volumes which are likely to be beyond the limits of the 

quantum theor) . 

Nevertheless, it seems interesting to make a theoretical attempt to enter this region. 1t is sufficient 

for the time being to restric t onese lf to the simp lest problem. 

2. FLUCTUATIONS OF METRIC 

We will assume that th e energy tensor of matter 

,.,., 
T may be expanded into two terms 

( 1 ) 

T ,.t"Y 
so that J" describes the global motion of matter characterized by large scales L ~nd 

long periods of time T , whereas the term 0 r~yi s due to the turbulent motion of matter characterized 

by small scales and short periods r ( A<..< 1., ' 't' << T ). The mean value of s T ,.., by the timt 

intervals comparable with T or by the scales comparable with L is assumed to be zero. Therefore. 

( 2) 
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where < · · · > means the averaging over the turbulent mot ion. Correspondingly the metric tensor ( 1 ) 

may be decomposed into two parts: 

tlJ. ('1 Y Ot. ~v ("' v 
-0 = -d 0 -t- ft ... . . . ( 3 ) 

The magnitude of the turbulent fluc tuations of matter J T("'V is also assumed to be small, thus the 

quantities ~ (I'V are also small compared with OJ 0 f'Y determining the global space-time metric. 

Under these assumptions the Einstein gravitational equat ion may be put as 

Here: ~ =£~[ 
:"lewtonian gravitational constant; 

the tensor 

where 

invariant. 

F'rom ( 4) we find 

-f 0 • ~ (VI v = X t rv 

-· c..u:_ r = 6,':1- ·Lo ~".1. 
2 04 -., _a_ 2-

0 = -Uo o~ oX~ 

t ~v = 6 T r'Y - t OJ :v J T 

S T = D;J ocl.fJ J' To.~ 

Q_ l"V - 2 .L r' v 
(f ( X) = - 2 J(. 0 1- ( ot ) 

( 4 ) 

is the 

and 

( 5 ) 

is an 

( 6 ) 

where 0-2 is the operator, reverse to 0 2• According to ( 6 ) we can write now for the correla

t ions of the metric tensor components at the two space-time points X and X 
1

: 

J..f> ('IV' J. 2 -.z o-2 t"'" trv .( l} ( X ) Cj ( X ')>= '1 Jl 0% x• ~ ( X ) ( X ') > ( 7) 

Because of the smallness of 

and !3 

~ ("" ( X ) , the interva l between the two phys ical world-points A 

may 
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• 
:f,. = J V o.J- rv d :r(' da:; ( 8 ) 

J 

may be represented as follows 

+ .. . 
( 9 ) 

The mean value of <: :f.., > , irf the linear approximation, i• equal to , wherea• the root-

mean-s quare deviat ion ~ (.. :J All - :fA: ) a > • A :J A! 
according to ( 9 ), may be written as 

6 

A 1,: =.f.-} dx~ }dx~"9't<~ cx'9'rr cx'J> 
.A 

Here the direct ion of the interval i• taken a long the 

( 10 ) 

\1aking use of ( 7 ) we express now !l j.A~ 
OXr axis. 

in terms of the mat ter fluctuations 

I 8 
J:l J!' }d Jd , o·lo-• l,.,. l,.,.. 1.,..,. t,.,. .1 "J .f& = T Xr x,. % .x ' < L (%] "L cx ')-+-L (%') (%).,. ( 11 ) 

J If 



-6-

Thus, in the li near approximation, the problem reduces to the calculati on of the double correlat ions 

of th e tensor 1: ~v(X.). 

3. AN ESTIMATION OF ~IETRIC FLUCTUATIONS IN TilE 

l\IACROWORLD 

The motion of matter will be treated as a motion of a perfect compressed fluid. 

The tensor of matter for this case reads: 

Here j 
ut" 

T l"v - ( o -r .f._) u tt uv - rp Q ~v 
- J C2 ~ C2 if 

is the rest mass density of the medium, p :s J ( S'J is the pressure, 

are the velocity components of the medium. From ( 5 ) and ( 12) we obtain 

( 12 ) 

tt'v( X)= J/e'v(X)Oj -r8(x) 8(~:Uv) (13) 

t"'V 2 U~UV f Ot_ ~V) 
where Jl (X)= ( i- ~~ ){ cr - T ([ 0 and 

8£%):(_9-r ~2 ), V2=~ isthe 

square of the velocity of sound. Note, that the density fluctuations r} 0 , by the order of oui .r 
magnitude, are equal to ""'"V2 Jl . 

Consider now the tensor correlations lJ {'!V outside the vol41me SL occupied by the 

turbulent matter. According to ( 7 ), we get 

< ~ vv (X) f'<x'p = lliJt '} J R ~:~~)~• ;,._., l1 <t. nw.~) f'l[t')' Z) ~ ( 14 I 
.Jl,.J\.. 

where R. (X,IJ) and R. ex: c) are the di&tances between X and ~ , X I and 2 ' while 

[t] t ~ r.t•1 f' Rtx!&J . = - c 1 Lt"-J = - c are the retarded moments of t1me. 

If 0 /l2 is not small compared with V2 
' but still appreciably less than c2, then among 

the components t YV only th e term t H is impohant. At the same time A 44 = ·~. s44~< 
<<:\ H, therefore : < tIll./ ( V) t 't'l ( 2) > ~ ~ 0 .P ( Y) OJ ( ~) >. 

When the medium is sufficiently homogeneous this quantity will depend weakly upon 

j ( ~ ... 2) and essentially depend upon ( 1J - l ). Passing now in (14) to th e 

coordinates f (~ f-'l.) and ( ~ - l ), it is not difficult to obtain an estimate of ( 14) for 
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x '= c x, t' J: 

< a""(t,xJ9"11(t',x)> ~ x2Jlw~;'-tJo.P~_ 
(/ ( 15 ) 

Jl -.!::!...Jr. /) ~ . 
Here - 3 1\ is the vol ume of the medtum, W ( t '- t ) 
is the correlation function, which is equal, at f, = t' , to the fluctuation volume ( .A ~ ), Of> 
is the amplitude of the medium density flu ctuation. As is seen from ( 15), the fluctuations of the metric 

n '/2 ") J/2 n 
tensor are proportional to """ 1\. A , where r-. 

are the lin ear dimensions of the medium, ,A is the linear scale of turbulentness Correspondingly: 

( 16 ) 

where is the time scale of turbulentness. 

4. AN ESTIMATION OF METRIC FLUCTUATIONS IN T HE MICROWORLD 

Let us now evalua~e the corre lation between the quant ities at the points JC 

and X 1 which is due to the oscillations of the scalar field , with the n<•nzero rest 

mass. 

In this case the Lagrange functi on is 

and the tensor of matter equals 

Tt"" ().{~<l..f>.l"'l>o'l' D'IJ -d~~ -P 
(X)= tfo -tfo oX;. oXi" cJ._ 

( 17 ) 

( 18 ) 

/}( ~., 
Due to the nature of the vacuum the quantities 0 0 have now the Galilean values. It is not the tensor 

T rv but only its fluctuations cS T r., we are interested in. In order to 

obtain 0 T t'" from ( 18) it is sufficient to mean by ~ ~ 'f:l etc the nonnal pro-
a ,;~ u X.,& ' 

ducts of these operators. Therefore, according to ( 5) and ( 18 ), we get 

( 19) 
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here the produc ts o f the opera tors a re cons ide red alre ady norma l. 

E xpanding, a s usua l, th e fi e ld '1-- into a Fourier series 

--.~ _ _L , [ ( _L ) '/2 ( e L<"-,Z' a+ -i u< ;•C>J 
. ~ - V '12 L - 2 w a... + "- e ( 2r. > 

K I( ' IC 

..... + 
where V is thenorrnal izedvolurne, Wi<. = c VK 2 + f" 2 , K.. =( ~ , W),atc ,a rc. 
a re thr annihi lation and producti on operators o f the fi eld partic les. A s ubs t itution of ( 20 ) into ( 19) 

y ie lds 

t~x) = -v1 
[ [ ( 2tzw ) 'h {il.:~·(X)QI(Q", +BI(t'(x)Q/C+a". +B:". (xJ{l;.al(+ J(jxJda··]< ?1 > 
I( "' I( II.' " 1(.' -

a nd 

JIK 1< 1 (X): - ~ [2(l+ (!i ,K 1Jj-e i. (K.?I<.~X) 
( 22) 

8"1(.' <x J=:- ~ [2 j' 2.-( K,K'J]e-i < K. - ~< : x> 
( 22 ' ) 

F'ro rn ( 21 ) a nJ ( 7 ) and by <n>e raging ove i the vac uum, we find 
.L 
£ < lj.,'f (X)fj-lf'f {X'} -t- fh lf ( X~fJ ~ ., (X)> = 

= ft Z-Jt2 f(j d3
K d

3
K.' ( 2f"''-+ (J( , J( ')]~S ( If.+-1\: ' :C-X') 

) .J U) I( UJ I( I ( I( + 1\ ', K -t- /( I ) :J 
( 23) 

For x = ( x , ct) I - t' X = (X, C ) > t' - t = T 
we get 

~ ~ {j '~" {X)t)w { X')+{)"" (X') {jll'l (X)> = 

KK ~ ( U ) - QJi~zxz K,2dKK'che 1 r' 2 e-'~UJ<.J~KK-' \" 2 , 

- c • j! "' "-'' 2 + 2••' ~ C' ' ... ,.,~ ' "'' ..- i'' • K ' • "'' }cos(w..,,TJ 
Th is in t r gral is divergent a t the upprr l imit. by :1{ ___,. 00 

If the rest mass of the fiettt pa rt icles i:; zero ( ~ ""'o·J , then for -:l[c T >"7 i 
the integra l in ( 16) i:; l e nJing to /. t! rO like YT:l . wherea s ror s rna ll t imes '1f.c T << i 
it be ha ves lik e ":/{'~ \"i z: 

.-t ~ 

.... I:>() 

-: ~ 
~ 

'-> 
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( 23 ) 

lt is see n from here, that the metric fluctuations become esse nti a l. if C T<-4 i =Lo and the scale 

is determin ed b) th e formulu 

£o ( ~t:) '12 = o. 82·1 o-~~ ;;;n. ( 26 ) 

This scale is much larger than ~l e gravitational radii of parti c les Llj = ;}{ r e is the mass of particles ),whi ch arc us uall )' trea ted 1\S d1aracteristic dimensions of that region of 

space in which the gravitational effects in the microworld cou ld be essen tial. HowevN, it is s t ill considc· 

rubl)' small e r even than those s mall scales which are characteristic of weak intera c tions ( .- w-16 em) . 

. ote, that the mass of the field partic les is o f no importance for the metric fluctuations until the 

Compton length
1 
o f the particle L c = fc is longer than its gravitational rad1us Lfj si nce 

Lo = (1.,9- L ,) 12, then the condition Lc > Lff is cttuivalent to the condition 1.. 0 > Li-. 

Rttc~iv~d by Publishing O•pmlmttnl 
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