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ABSTRACT

Dispersion relations are applied to the analysis of the energy dependence of the
scattering (and reaction) amplitude near the thresbhold for a new reaction.

A general expression wbich characterizes the nonmonotonic energy dependence
for the forward scattering amplitude is obtained.

The energy dependence of one of the ¥ -d elastic scaltering amplitude near
the thresbold for photodisintegration of deuteron is discussed.

-

The study of the scattering of photon by nucleon near the thresheld fer the pheteproduction of pion
shews that dispersion relatiens autematically lead to the appearance of the infinite energy derivative at the
threshold in the real amplitude if the energy dependence of the reactien is taken inte acceunt*.

In the framework of dispersion relation the appearance of infinite energy derivative in the forward

scattering amplitude is related to the study of the integral

2
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where usual notations are adopted. The total cross section contains both the elastic scattering cross sec-
tion G:S (w) and the inelastic one &, W).
The energy dependence of &, (w) near the threshold for a binary reaction

a+€—ac+cL (2)

where the particles have masses (L (incident particle), M (target)y m and M, is given by the

expression
9%
6 (W= 8 < (3)
C
where q‘ and Kc  are the relative momenta before-and after the collision in the center-of-mass
system respectively; B is a constant.
It is easy to show that
q."a, _ (w-w) (w+Wg~3)
TZ) - wt- (4)

* The nonmonotonio de;endenoe near the threshold for plon produotion has been studied phenomenologi-
cally by G.Ustinova and in



is the total energy of the incident particle in the laboratory system;

() (et
We oo~ M

where (p= LK""‘ ")‘{l

is the threshold energy for reaction (2); and
= &mz+ Ma'-r‘-i'Mz}
M .
A

Kinematic parameters A -p and 8 for a series of processes are given in Table 1.

TABLE 1
Process U= g 3 S/zw‘
in MeV in MeV %
YN > NI 150 20,9 7
N°P- 5%n 6,1 3,98 1,33
K°P — K°n g, 4 6,8 08 :
Kn = K®% 4,4 16 9,1¢
Y¥P ~AK 0% 642, 35,8
TP Ax 755 620 34,6
.......... ’.,. P—,E‘io 418044}52}'8

Use of dispersion relation opens the possibility of studying both the local effects near the threshold

itself, which in some cases lead to sharp cusps, and the general influence of the inelastic process proceed-

ing in a certain energy interval on the given process at a fixed energy.

n

A study of the 64\/ scadttering has shown that from the six scalar amplitudes, which describe

the transition matrix in this case, only two of them have local effects. The presence of the other fast vary-

ing amplitudes makes the analysis difficult.

For a detailed analysis of the influence of the inelastic processes we must consider dispersion rela-

tions with momentum exchange Qt’ $#0 or, possibly, the double dispersion relation.



In the present paper we consider only the forward dispersion relations for scalar amplitude function

A(w), which is equal to the trace of the scattering matrix

A (w) :SP M (W;Qt-:O),

whose imaginary part is connected with the total cross section.

The contribution of the inelastic process to D= Re A (U’

two integrals

& p g dw 6 ()
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and
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where &¢ (w) is the total cross section for reaction ( 2), while

(7)

is characterized by the following

(8)

(9)

€c+ (w) is that of the crossing

reaction,
The energy dependence of the real part of A(w) in (7) can be calculated
ol & | (- G 0-8] "™
K - w-u,) (o« Akt
Sa pldw 6. o d“’ ¢ W
hxt S K W-We W- W, 4R ( °) (10)
¢
and
Wy .
Ke pldw & B (1 (-w,)
45> K w+lo A (11)
by

where (), is the boundary value of the S-state in 6,
It is not difficult to obtain

-Ke n(WJ = +(wo

where

(Qwo-3) (Wi -wd) +20 (wo)

in which formula (3) is still valid.

,_(i(‘.,.%e)\f/(r_ —‘I(\—‘Lf’f-) ‘l’(—rv) (12)
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and

ZFG (‘0»)‘{f

s W, sw, (13)
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¥ (w) =faw.y bn ‘ e~ W) (20 -8) (13")
when W, > (A)t
QW) = (Wy-t,) (w,+@, -5) ' (14)

R = (w-w,) (W +w, -8).

The discontinuity in the first energy derivative of %_ (ﬁ),) is caused by %(ﬁ’,} , which is
characterized by an infinite energy derivative from the side &) < W, and a finite value from the other
side.

One may think that G ﬂ(—w.) also contains discontinuity in the derivative at W, =@, -5
But this is not correct. The derivative of Kz (1 (UJ is continuous at &, = &, -8,

Therefore, the crossing inelastic processes do not lead to local cusps near the threshold, although.
they give a contribution to the real part of the scattering amplitudes. k

With the use of the dispersion relation a detailed knowledge of the magnitude and the half-width of the-
threshold anomalies can be obtained.

The half-width € in the side W, < W, can be estimated roughly in the following way.

Near w, (w, < (Jt) , we have

X {
ah.c’?')“ e (15)
and

—
Y=Y-ad. (16)

Define the half-width & = w‘_‘-w‘, as that energy value, in which

-

%(£)=é%(l‘)e)- (17)

From (16) and (17) we obtain

Dy - 2 N w-) @, -8 = £ 2 ()

(18)

or
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In the limiting case where those parts of % (&)‘) which are not connected with (10) and (11)

may be neglected, we have

%7(‘0*) = %1 T ()

and _ ' ' (20)
D () = 1 T(w,)

8w

where from (13)

Ty & [¥((1+ %) +¥ e (-]

(21)
i1 4
Consider the photoproduction of a neutral pion
Fep=p+¥° - (22)
near the threshold for the reaction
VYep ThAET (23)

In this energy tp‘ion it is sufficient to consider only the dipole transltxon- Let us denote the transi-
tion matrix element of (22) -and ( 23.) by E® and E™ respectlvely 7
From the umtarlty condition and the experimental facts Re £°« Re E'ye have

Inv’E 2 ¥ (4, -4)) ReE” : (20)

where & 3 and o, are the corresponding 3i-N  scattering phase shifts. Substituting the ex-



perimental values of o, , dy and E? into ~(2—4) we obtain

Y ~(5
ImE®= %(0«5“(14) qoﬁ +/1 @ 3'5"0!(‘m

14

= E; & (Q_,,-a‘) ?o’l" q+ \’—lbl

where
' ) p)
R B /7 ~rur gV A
g = (vl g, (-
Anomalies near the threshold are determined by the integral
: 1y % 2%
i p | (ov) Q) Ty
41> vi (v - Vo)

in which the cusp phenomena certainly occur.

In the general case consider.the cross section for the reaction

G+8 - c+d
near the thresliold for the reaction

a-o@ -92v+£,.

(25)

(26)

(27)

(28)

If the threshold for (28) lies far from that for (27), it is always possible to find an energy region

in which

Tre Magsed = Magaeg M:4-c.,("'“' =Ag+--

where A is a slowly varying function of energy; is the relative momentum of the €- # system.

Other terms in Im M, ¢ also are slowly varying functions of energy, if there are no other thresholds
a € ~cd y g 8y

in the near neighbourhood. -

In this case dispersion integral has an  ordinary form and we may determine the magnitude and the

half-width of the cusp in the same way as the scattering.

For those processes as the photoproduction of pion
- %
M =A +--
Lwm Megacd 99,

i.e. the threshold for the reaction a8 - ef is near that for Q e - cd .

In this case the dispersion integral is quite complicated and we are not able to

tion.

carry out the integra—
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Therefore, causality, unitarity together with (3) and (4) lead to the discontinuity in energy
derivative of the real part of the scattering amplitude with infinite derivative from the side () < w,.
The appearance of the infinity just in the first energy derivative is connected with the form

of the energy dependence of (3) and (4). The energy dependence of the cross section for reaction ( 2)

when its product particles have. angular momentum equal to 4 is given by the expression
L+
[((w-w,) (w+w, -8) ] (a1)

G; = Be ([O”"f(a) Ya,

Substituting ( 31) into (8) leads to the appearance of infinity in the eth derivative of the
scattering amplitude.

It is of interest to note, that the assumption about the analiticity of partial waves is unnecessary in
the dispersion relation approach, which is inherent for the usual approach. Analiticity of the amplitude with
the limited momentum exchange Q< 0,”“& is sufficient for this purpose.

As has been pointed out by Baz’ based on the unitarity of S -matrix the effect in gach channel
decreases with the increase of the number of the channels. An analysis of ‘—N scattering near the.
threshold for photoproduction, when only two of the six amplitudes show the local cusp phenomena, has
shown that the effect is also masked with the increase of the spin of the particle.

In the theory of dispersion relation it is important to guarantee the convergence of the dispersion
integral by making enough numbers of subtraction.The most of our results are based upon the dispersion rela-

tions with a single subtraction. In the case of dispersion relation without subtraction

OSJ“’G_ AJKG'D‘U . (32)
K (w- o)

With sufficiently high accurrate data the difference between (8) and (32) may serve as information
about the number of subtractions required.

We shall notebriefly what gharacteristics one may expect near the threshold for the reaction
a+8 —vC-c—d-*ﬁ. (33)
Substituting into ( 8) the cross section of (33)
p4
=g’ 'ux > ( W - wt)
ke

where the reaction is assumed to proceed in the S-wave state, we obtain
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which has logarithmic infinity in the second energy derivative of %(HJ .
For reaction with four particles in the final S-wave state (&:’.a;d"a‘[agtﬂq is replaced by
( w, - u)t)-" &‘ , o — wt " Similar energy dependence appears in the real part of the

scattering amplitude near the thresheld for all reactions.

A well known example in literature with the application of dispersion relations is the analysis of the
)

coherent scattering of photon in the Coulomb field of a nucleus

It is easy to show that the real part of the scattering amplitude near the threshold for the electron-

positron pair creation ly=2m (\"5 29‘-“ = 1) contains terms of the type X %G, X (x= ¥-1).

In order to see it, it is sufficient to consider the real part of the amplitude

2 2.3 '
D == (&) 557—.‘ [20.(8) -D9] +

+ [0+ 2L) E - (63- £) (-32) F (0] -

-9
“3';,, 4} (35)

where

.
C, (¥)= Reg WS ok (B)dx G0 = 16297

" anch () Do (4) = 1. 93193

TE() ~(v-3) K (¥) ¥ <4

K Ch) i1
R0 Lk () ¥es
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K (¥) and E(Y) are elliptical integrals of the first and second kind, respectively. As is well known,
at -yt <4

K (%)

"
>

- At (A-3) -9 a5, (A-E) (-5~

E@ < 1L (DG F (- ) (ore
A= ‘a\ L’——-

I-y? (36)

The dependence X Q. b3 is snown to exist. It is not difficult to believe that the scattering of light

by light near the threshold for y+Y-» e~ +et is a well known example in quantum electrodyna-

mic processes, whose amplitudes are characterized by local anomalies (See Fig. 2—4 in'/s/)", while the

amplitude for Compton effect contains terms of the type X2 & X
Yre-@ +2 ~e”

near the threshold for the reaction

v

Elastic scattering of quanta by deuteron near the threshold for photodisintegration is one of

the examples of processes, where the use of dispersion relations in the analysis of the threshold anomalies
is necessary.

The nonmonotonic energy dependence near the threshold is caused by the magnetic dipole transition.

The electric dipole disintegration leads to a marked change in the energy dependence of the x’-d scatter-
ing awplitudes in a relatively large energy region.

The lamplitude for the forward x'-d_ scattering can be expressed as

e Me = A(é”;) +iB (g[é.fe_.-]) .
o ye[(36)(88)+@dn (59 +
+La[ (3[%2) (5[ED) (3[%&1) (S[RED] (37)

The cross section for unpolarized K’ - 'quanta and deuteron has the form

°) = 2 3 LA 42 vl -c[?
(00 =[A+5c+kl" +lcralP S imlv e 512 -¢[%, o)

* Coulomb interaction has been taken into consideration in/6'7/.
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Furthermore ) -
K& = 45 Im A+ 3B+ 3],

: P
With the help of the dispersion relation for the quantity L = A+ %C * ;%

2 2 ”IML(U') 1
Ri.L((d):-_Q’C‘_ +2?“)_me w (39)

d Wy
where (Jg s the threshold for the photodisintegration of deuteron, we shall consider the influence of
the inelastic process on the energy dependence of the real part of L.

In calculation of the dispersion integral it is convenient to use the theoretical expression for the
cross section of photodisintegration of deuteron, (for example see/8/),

Let us begin with the consideration of the local effects. Expression for the cross section for magnetic

Y E\2
g s AF et (H V(oo payt ("")Z(H,‘[;)_
¢ 3 xe \“ M )’()(—l+5/le() : (40)

where 6:_-_'_\8!.‘- ; L) is the energy of photon; l£l=2.22 MeVand &£'=270KeV are the binding energy of

n—p system in ?Sl and1 'S, states. Other notations are the usually adopted ones. The preseace of the
factor [X—-’ + %E’] makes the direct analytic continuation K === ikl impossibte. In

. . . . m s pe .
this case analytlcal,contmuatlon r 6C( turns out to infinity below the threshold for the photodisinte-

. 2_¢ .
gration at ’K’ —,3’

Substituting (4 0) into dispersion integral

dipole disintegration has the form

2 ~© (w) /.
2.8 % pl dv 6,70
c=€ o VA VE
LY
it gives at Q‘, * %’ CSI: {= £'/Ii‘)

2L(Yo) =2 iz. .é... Q&P‘f(n)z (4*@)2

3 Mcr omcr

-

E’
%‘-Xo e("Yo)*'“*- Yo _ 2 _ 2yl /’f‘ (4

S' _ Yv %( “Yo ' "8: (3"’- Y:.)

where

at X<0

A at X2o
0(x)= %0 |

and
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‘
_2 e _ @
2‘L(s)' 3 ame MC’- Cﬂ fq‘) <1 {e ,
41’)
(2 2 (E LB
% g 3 le 21
at XO :ﬁ' %LCX') e
The energy dependence of A, (_“.) = 2_'4—6.2 is shown in Fig. (curve I},
For limiting value of '6° we obtain from (41)
S —fen)? N (2 - Y £’
A% = 3 per (pap - o) ("*ET) {3 T (1 lil)} LA
(42)

£ (p-pn)t (2% \E') 7%
for Yo << i and

a, (‘6-)"4—— (o -pn)? C‘*@) (43)

3 mc?
for Yoo\ ‘
]
At the threshold for the photodisintegration with -39 = fao
2
2. (0=0,24 —,°
( 2 MC"

The half-width of the cusp from the side below the threshold is smaller than € I {e.about 50-60 KeV.

The contribution of electric dipole disintegration to 'D :Re L with
6—(&) - 4y er k¢ (¥-1) & (44)
¢~ mez £ T ¥
is of the form
2 L“v) 0? (,Xo) EHCz =z
1,
e 3 L -3
- - - r =
1M4c SLY}{( Yo) 2 0C-¥) + (1« Y,) 11 q}. (45)
Energy dependence of Ar(x.) is given in the Fig. (Curve ).
It is easily seen that 2 .
AF(_YD) = S-z YO - a-.& Y. << ‘ ) ( 46)

and
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Bp(%) =~ % at Yo ! (47)

At the threshold for the photodisintegration
Dp (1) = 0.156.

The sum of the electric and magnetic dipole contribution is given in Fig. (curve 11T ). At the threshold
the scattering amplitude has changed about 40% when the effect of photodisintegration is taken into con-
sideration.

From (42) and (46 ) we can see the contribution of the photodisintegration to the polarizability of deu-
teron. -
As the total cross section for the photodisintegration of deuteron is greater than the sum of (40)
and ( 44) in higher energy region, the estimation obtained may be regarded as the lowest limit, although the

contribution from higher energy region is expected to be small.

The present analysis of one of the forward y-d scattering amplitudes may serve as an indication that
the inelastic processes, and especially the photodisintegration of deuteron, have a great influence on the
elastic \‘-d, scattering in a wide energy region.

Similar effects should also take place for the scattering of 7 -quanta by heavy nuclei.

It has been shown in /%/ that the cross sections for the elastic scattering of Y -quanta with a
series of nuclear elements are characterized by noticible picks with an energy width of about 2 MeV, near
the threshold of ( K‘I‘L ) reaction, which are probably connected with the threshold anomalies. )

In order to have a more reliable analysis of this phenomena, it is desirable to increase the-accuracy
of the experimental data on the energy dependence of the ( §‘n ) cross section and that for the elastic

scattering of 'a‘ -quanta near the threshold of ( ‘[n ) reaction.
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