$$
\frac{3}{M-31}
$$

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ
ЛАЕОРАТОРИЯ ТЕОРЕТНЧЕСКОЙ ФНЗИКИ
M.A.Markov

D-1345

ON THE DIFFERENCE BETWEEN MUON AND ELECTRON MASSES (on two types of Dirac fielde)

$$
\begin{gathered}
\text { Huce, phys, } 1964, \sim 55, \sim 1, \\
\text { p, } 130144 .
\end{gathered}
$$

M. A.Markov

D-1345

ON THE DIFFERENCE BETTEEN MUON AND EI,ECTRON MASSES (on two types of Dirac fields)

> 06 зециненный институ廿ериых мсследона"* БИБЛИОТЕНА

Abstract

Starting from the Konopinski-Mahmoud hypothesis, the term of the weak interaction through symmetrical neutral currents can be written

$$
\begin{equation*}
-G\left(\bar{\psi}_{\mathrm{e}} \gamma_{\rho} \psi_{\mathrm{e}} \bar{\psi}_{\mathrm{e}} \gamma_{\rho} \psi_{\mathrm{e}}-\vec{\psi}_{\mu} \gamma_{\rho} \psi_{\mu} \vec{\psi}_{\mu} \gamma_{\rho} \psi_{\mu}\right) \tag{1}
\end{equation*}
$$

This interaction yields contributions, equal in quantity but opposite in sign, to the muon and electron bare masses.
The idea of two types of $\mathrm{D}_{\text {irac }}$ fields (in particular, electron and muon ones) conjugate in the sense of the generalized Konopinski-Mahmoud hypothesis (e^{-}, μ^{+}- particles, e^{+}, μ^{-}-antiparticles, Ξ^{-}, p^{+}particles, etc.) can more conveniently be presented and interpreted with the aid of the second order equation for four-component spinors. It is equivalent to the two Dirac equations ($\mathrm{i} \stackrel{\wedge}{\mathrm{p}}+\mathrm{m}$) $\psi_{y}=0$ and ($\mathrm{i} \hat{\mathrm{p}}-\mathrm{m}$) $\psi_{n}=0$ whose field quanta are automatically connected by the Konopinski-Mahmoud hypothesis. The quanta of the "conjugate" fields ψ_{J} and $\psi_{J I}$ poseess equal bare masses.

1. Electron and Muon

Many years ago a second order equation was proposed for the spinor field (of electrons), with a Lagrangian in the form $/ 1 /$

$$
\begin{equation*}
L=\frac{1}{2 m \mu \rho} \frac{\partial \phi}{\partial x_{p}} \gamma_{\rho} \gamma_{\mu} \frac{\partial \phi}{\partial x_{\mu}}-\frac{m}{2} \vec{\phi} \phi \tag{1}
\end{equation*}
$$

Both energy and charge in this theory are non-positively definite.
Such a theory can describe the electron as a particle of positive energy and negative charge e-and the positron as a hole in occupied electron states of negative energies. The theory also allows for another particle of positive charge and positive energy and for its antiparticle. The latter is a hole in the distribution of levels occupied by particles of positive charges and negative energies.
A_{n} electron may annihilate with a positron (hole), but not with another, positively charged particle. According to this equation, there should exist a "second" electron. Its properties must be, in a sense, opposite to the electron: the particle is a field quantum charged positively while the antiparticle is charged negatively.

Since there seem to be no "second" electrons in nature a question arises whether the μ^{+}meson could be interpres ed as the second particle in this theory.

Interest in the old Konopinski-Mahmoud hypothesis concerming the muon and electron ${ }^{/ 2 /}$ has recently revived in connection with experimental evidence in favour of the existence of muon and electron neutrinos.

According to this hypothesis the e^{-}electron and μ^{+}meson are treated as particles and the e^{+}positron and $\mu^{-} m e{ }^{-}$ son as antiparticles. This is the situation described by the above equation.

It appears of interest to investigate which kinds of the known (or experimentally allowable) interactions can remove the degeneracy with respect to the masses of the free equation describing these particles, i.e., lead to $\mathrm{m}_{\mu} \neq \mathrm{m}_{\mathrm{e}}$: to what extent the muon and electron neutrinos can naturally be included in this scheme; and in general how universal is such a classification of bare Fermi particles: can this scheme, for example, incorporate baryone ?

The second order equation for the four-component spinor is equivalent to the first order equation for the eight-component function. This equation can be written in the form of two separated equations

$$
\begin{align*}
& \left(i \hat{p}^{\prime}+m\right) \psi_{I}=0, \tag{2}\\
& (i \hat{p}-m) \psi_{I}=0, \tag{3}
\end{align*}
$$

or, introducing the eight row matrices

$$
\Gamma_{\mu}=\left|\begin{array}{ll}
\gamma_{\mu} & 0 \tag{4}\\
0 & \gamma_{\mu}
\end{array}\right| \quad ; \quad \mu=1,2,3,4, \quad \Gamma=\left|\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right|,
$$

eqs. (2) and (3) can be written as "one" equation

$$
\begin{equation*}
(\hat{i} \hat{P}+\Gamma m) \psi=0, \quad \psi=\left.\right|_{\psi_{I I}} ^{\psi_{I}} \quad, \quad \ddot{P}=\Gamma_{\mu} p_{\mu} . \tag{5}
\end{equation*}
$$

Dirac arrived at his equation by expanding into factors the operator $\quad \boldsymbol{P}_{\mu}{ }^{2}-m^{2}=(i \dot{p}+m)(i \hat{p}-m)$ and taking one of the factors as the operator of his equation.

The eight-component equation (5) possesses special symmetry properties as compared with Dirac's four-component equation.

2. Symmetries of the Generalized Dirac Equation

The Fermi fields satisfying eq. (2) shall be called fields 1 and the fields obeying eq. (3) fields II.
Lagrangian (1) leads to the expression for the charge density ρ :

$$
\rho=-\frac{i}{2 m c}\left(\sum_{\rho} \frac{\partial \bar{\psi}}{\partial \mathbf{x}_{\rho}} \gamma_{\rho} \gamma_{\psi} \psi-\bar{\psi} \gamma_{4} \sum_{\rho} \gamma_{\rho} \frac{\partial \psi}{\partial x_{\rho}}\right) .
$$

In this respect eqs. (2) and (3) differ in that ${ }^{/ 1 /}$ eq. (2) selects the functions ψ_{I} for which ρ is negative (electron solutions). Eq. (3) selects the fanctions $\psi_{I I}$ for which ρ is positive (μ-meson fields). Only in this interrelation of eqs. (2) and (3) it is expedient to differentiate the conjugate fields $\quad \psi_{I}$ and $\quad \psi_{I^{I}}$.

The symmetries of the Dirac equation for the eight-component ψ - function (5) are in many respects analogous to those for the four-component function if one puts in the latter case $m=0$.

Indeed, in the transformations

$$
\begin{array}{lll}
\psi_{I} \rightarrow \gamma_{S} \psi_{I I} & , & \bar{\psi} \rightarrow-\bar{\psi} \gamma_{s} \\
\psi_{I I} \rightarrow \gamma_{g} \psi_{I} & , &
\end{array}
$$

eq. (2) takes on the form of eq. (3) and vice versa.
The same holds good for the transformations

$$
\begin{array}{ll}
\psi_{I} \rightarrow y_{\mu} \psi_{I Z}, & \frac{\partial}{\partial x_{\mu}} \rightarrow-\frac{\partial}{\partial x_{\mu}}, \tag{7}\\
\psi_{I I} \rightarrow \gamma_{\mu} \psi_{I}, & \frac{\partial}{\partial x_{\mu}} \rightarrow-\frac{\partial}{\partial x_{\mu}},
\end{array}
$$

In this sense the four-spinor (bi-bispinor) of eq. (5) is as much single whole as the bispinor of the $\mathrm{D}_{\text {irac }}$ equation for $m=0$; eqs. (2) and (3) are each invariant with respect to the Lorentz transformations, but in the transformations (6) and (7) one bispinor passes into the other.

These new symmetry properties arise because and only because the masses in eqs. (2) and (3) are assumed equal.
Naturally, only such kinds of interactions which are not invariant with respect to these transformations can remove the degeneracy over the bare particle masses.

The set of 8×8 matrices corresponding to the generalized Dirac equation (5) possesses several specific properties*.
Eq_{q} (5) can be obtained from the Lagrangian

$$
\begin{equation*}
L=1 / 2\left(\psi I_{v} \frac{\partial \psi}{\partial x_{\nu}}-\frac{\partial \bar{\psi}}{\partial x_{\nu}} \Gamma_{\nu} \psi\right)-m \bar{\psi} \psi . \tag{3}
\end{equation*}
$$

According to eq. (8), the $\psi \quad$ field energy-momentum tensor is given by the expression

$$
\begin{equation*}
T_{\mu \nu}=1 / 2\left(\bar{\psi} \Gamma_{\nu} \frac{\partial \psi}{\partial x_{\mu}}-\frac{\partial \psi}{\partial x_{\mu}} \Gamma_{\nu} \psi\right) \tag{1}
\end{equation*}
$$

or, to be more specific, the energy density of the bare electron-meson field.

$$
\begin{equation*}
\omega=\frac{1}{2 i}\left[\left(-\psi_{0}^{*} \frac{\partial \psi}{\partial t} \cdot+\frac{\partial \psi_{0}^{*}}{\partial t} \psi_{0}\right)+\left(-\psi_{\mu}^{*} \frac{\partial \psi_{\mu}}{\partial t}+\frac{\partial \psi_{\mu}^{*}}{\partial t} \psi_{\mu}\right)\right] . \tag{0}
\end{equation*}
$$

Lagrangian (8) is invariant with respect to the transformations

$$
\begin{array}{lll}
\psi \rightarrow e^{+i \alpha} \psi & , & \psi^{*} \rightarrow \psi^{*} e^{-i \alpha} \\
\psi \rightarrow e^{-i \beta \Gamma} & , & \psi^{*} \rightarrow \psi^{*} e^{+i \beta \Gamma} \tag{1.2}
\end{array}
$$

Accordingly, we have two conservation laws

$$
\begin{align*}
& \frac{\partial\left(\bar{\psi} \Gamma_{\nu} \psi\right)}{\partial x_{\nu}}=0 \tag{13}\\
& \frac{\partial \bar{\psi} \Gamma \Gamma_{\nu} \psi}{\partial x_{\nu}}=0 \tag{14}
\end{align*}
$$

The fourth component of the vector $\quad I_{\nu}^{\prime}=-\bar{\psi} \Gamma \Gamma_{\nu} \psi \quad$ obeying eq. (14) i.e., the quantity

$$
\begin{equation*}
\rho=-\left(\psi_{I}^{*} \psi_{I}-\psi_{I I}^{*} \psi_{I I}\right)=-\left(\psi_{I}^{*} \psi-\psi_{\mu}^{*} \psi_{\mu}\right) \tag{15}
\end{equation*}
$$

can be interpreted as a quantity connected with the electric charge density.
The corresponding fourth component of the vector $\quad I_{\nu}^{\prime \prime}=\Psi \quad \Gamma_{\nu} \psi, \quad$ namely $\bar{\psi} \Gamma_{*} \psi$

$$
\begin{equation*}
\eta=\psi_{I}^{*} \psi_{I}+\psi_{I I}^{*} \psi_{I I} \quad=\psi^{*} \psi_{0}+\psi_{\mu}^{*} \psi_{\mu} \tag{16}
\end{equation*}
$$

can naturally be interpreted as the lepton number density.
Thus the electron-muon field charge is given by the expression ($e=|e|$).

$$
\begin{gather*}
e Q=-e \int \bar{\psi} \Gamma \Gamma_{4} \psi d v \tag{1.7}\\
=-e \int \rho d v=-e \int\left(\psi^{*} \psi_{0}-\psi_{\mu}^{*} \psi_{\mu}\right) d v
\end{gather*}
$$

[^0]and the number of leptons
\[

$$
\begin{align*}
L & =\int \bar{\psi} \Gamma_{4} \psi d v \\
=\int \eta d v & =\int\left(\psi_{0}^{*} \psi_{0}+\psi_{\mu}^{*} \psi_{\mu}\right) d v \tag{18}
\end{align*}
$$
\]

After the quantization of the ψ field the meaning of eqs. (17) and (18) is revealed in the most comprehensive and consistent manner.

3. Quantization.

In accordance with eqs. (2) and (3), the permutation relations of the ψ_{e} and ψ_{μ} fields can naturally be determined

$$
\begin{align*}
& {\left[\psi^{\circ}(x), \bar{\psi}^{\bullet}(y)\right]_{+}=(-i \hat{p}-i m) \Delta(x-y),} \tag{19}\\
& {\left[\psi^{\mu}(x), \bar{\psi}^{\mu}(y)\right]_{+}=(-\hat{p}+i m) \Delta(x-y)} \tag{20}
\end{align*}
$$

Let us have
where a^{+}is the operator of the production of e^{-}and A^{+}is that of μ^{+}.
The other operators are interpreted accordingly. $a^{+} a^{-}$is the number of electrons (5^{-}) and $A^{+} A^{-}$that of μ^{+}-muons.
Thus we have

$$
\begin{gather*}
e Q=-e\left\{\left[\Sigma a_{r}^{+} a_{r}^{-}-\Sigma b_{p}^{+} b_{r}^{-}\right]-\left[\Sigma A_{p}^{+} A_{p}^{-}-\Sigma B_{r}^{+} B_{f}^{-i}\right]\right\}, \tag{23}\\
\text { or } \\
e Q=-\left\{\left[\Sigma n_{r}\left(e^{-}\right)-\Sigma n_{r}\left(e^{+}\right)\right]-\left[\Sigma n_{r}\left(\mu^{+}\right)-\Sigma \Sigma_{p}\left(\mu^{-}\right)\right]\right.
\end{gather*}
$$

It can readily be seen that eq. (13) leads to the conservation of some other number L :

$$
\begin{align*}
& L=\left[\Sigma a_{r}^{+} a_{r}^{-}-\Sigma b_{r}^{+} b_{r}^{-}\right]+\left[\Sigma A_{r}^{+} A_{r}^{-:}-\Sigma B_{r}^{+} B_{r}^{-}\right] \\
& \text {or } \tag{24}\\
& L=\left[\Sigma n_{r}\left(e^{-}\right)-\Sigma n_{r}\left(e^{+}\right)\right]+\left[\Sigma n_{r}\left(\mu^{+}\right)-\Sigma n_{r}\left(\mu^{-}\right)\right]
\end{align*}
$$

Eq. (13) gives the conservation of the number of particles (or rather the number of particles minus the number of antiparticles).

Thus the Konopinski-Mahmoud hypothesis (e^{-}, μ^{+}-particles, e^{+}, μ^{--}-antiparticles) finds its natural description in the above formalism
 ation like eq. (2) and others by equations like eq. (3). It is natural to extend such a classification onto baryon fields.

We gradually get used to the idea of considerable affinity between the doublets

$$
\left(p^{+}, n\right) \quad \text { and } \quad\left(E^{-}, \Xi^{0}\right)
$$

At present there is no explanation of the difference between the masses of p^{+}and $\underset{\Xi}{-}$ particles.
Naturally, analogy between e^{-}, μ^{+}on the one hand and Ξ^{-}, p^{+}on the other suggests itself. In the latter case the corresponding generalisation of the Konopinski-Mahnoud hypothesis is trivial enough: baryons of opposite electric charges E^{-}, P^{+}are actually particles.

It is possible that the interactions involving p^{+}and E^{-}are identical to the same degree as the interactions involving electrons and muons have so far been identical experimentally.

Finally, the existence of Σ^{+}and Σ^{-}particles furnishes an example of the realization of the Konopinski-Mahmoud hypothesis.
4. Electrically-Neutral Fermi Fields

There are no general considerations on the basis if which one of eqs. (2) and (3) could be descriminated for electri cally neutral fields.

The existence of neutral components of the doublets $p^{+}, n \quad ; \quad \Xi^{-}, E^{\circ}$ and probably $e^{-}, \nu_{e} ; \mu^{+} ; \nu_{\mu}$; confirms the possibility of such a viewpoint.

The neutral components of the doublets

$$
\gamma=\frac{\Lambda^{0}-\Sigma^{0}}{\sqrt{2}} \quad \text { and } \quad z=\frac{\Lambda^{0}+\Sigma^{0}}{\sqrt{2}}-
$$

can be made to correspond (?), as is often done, to the particles Σ^{+}and Σ^{-}.
Two conservation laws of the type (13) and (14) must likewise hold for electrically neutral fields.
The interpretation of the conserving number $\quad \mathcal{L}$ (24) (the number of particles minus the number of antiparticles) is universal.

The intepretation of the second conversation law (23) is also universal if it is bome in inind that eq. (23) has the meaning of electric charge only if the fourth component of the vector $\quad I_{\nu}^{\prime}=-\bar{\psi} \Gamma \psi$ is multiplied by the electromagnetic interaction constant.

The expression

$$
\begin{equation*}
t_{\rho}=-f\left(\psi_{t}^{*} \psi_{t}-\psi_{I I}^{*} \psi_{I I}\right) \tag{25}
\end{equation*}
$$

where \quad is a specific constant of any interaction which has a more general meaning than the particular case (23)

In this sense the constant $f=G$ imparts to eq. (25) a more universal meaning of the conservation of weak charge for both electrically charged and electrically neutral Fermi fields*.

$$
\begin{equation*}
N=-G\left\{\left[n\left(\mathrm{e}^{-}\right)-n\left(\mathrm{e}^{+}\right)\right]-\left[n\left(\mu^{+}\right)-n\left(\mu^{-}\right)\right]\right\} . \tag{26}
\end{equation*}
$$

5. Neutrino

From the viewpoint of the two types of Dirac fields, two types of neutrino fields are only a particular manifestation of the general law.

The baryon doublets

$$
\left(p^{+}, n\right) ; \quad\left(\Xi^{-}, \Xi^{0}\right)
$$

can be assumed to correspond to the lepton doublets $/ 6 /$

$$
\left(\mu^{+}, \nu_{\mu}\right) ;\left(e^{-}, \nu_{0}\right)
$$

It is natural to suppose that for the neutrino field as well there can be written two different equations similar to eqs. (2) and (3)

$$
\begin{align*}
& \left(i \hat{p}+m_{\nu}\right) \psi_{\nu}^{0}=0 \tag{27}\\
& \left(i \hat{p}-m_{\nu}\right) \psi_{\nu}^{\mu}=0 \tag{28}\\
& \left(i \hat{P}+\Gamma m_{\nu}\right) \psi_{\nu}=0 \tag{29}
\end{align*}
$$

where $\quad m_{\nu}$ is the bare mass of the muon and electron neutrino. Neutrino bare masses can in principle have any values. In particular, the bare masses of, for example, all leptons and even fermions might be equal.

As for the real masses of the physical neutrinos, it is only known at present that

$$
m_{\nu}^{\bullet} \leq 10^{-3} m_{0}, \quad \text { and } \quad m_{\nu}^{\mu} \leq 8 m_{0}
$$

For the time being it is not ruled out, of course, that the physical neutrinos have no proper mass. Nor is it ruled out generally speaking, that bare masses are also zero for neutrinos. The latter case deserves a special analysis.
(a) Case $m_{\nu} \neq 0$

The case of non-zero bare masses for electron and muon neutrinos is treated before the introduction of the interaction also as a bare free electron-muon field.

Here in a form analogous to eq. (24) we write the conserving number

[^1]\[

$$
\begin{equation*}
L_{\nu}=\left[n\left(\nu_{e}\right)-n\left(\nu_{e}\right)\right]+\left[n\left(\nu_{\mu}\right)-n\left(v_{\mu}\right)\right] \tag{30}
\end{equation*}
$$

\]

and in a form analogous to eq. (26) the conserving number of the weak charge

$$
\begin{equation*}
N_{\nu}=-G\left[n\left(\nu_{0}\right)-n\left(\nu_{0}\right)\right]-\left[n\left(\nu_{\mu}\right)-n\left(\nu_{\mu}\right)\right] . \tag{31}
\end{equation*}
$$

If it is assumed that all leptons form an isolated system of fermions, that the Lagrangian is invariant with respect to the transformations (11) having the same form for all lepton functions

$$
\begin{equation*}
\psi_{L} \rightarrow e^{i \alpha} \psi_{L} \quad ; \quad \psi_{L}^{*} \rightarrow \psi_{L}^{*} e^{-i \alpha} \tag{32}
\end{equation*}
$$

the generalized lepton number conservation law is of the form

$$
\begin{align*}
& L=\left[n\left(e^{-}\right)-n\left(e^{+}\right)\right]+\left[n\left(\mu^{+}\right)-n(\mu)\right]+ \\
& +\left[n\left(\nu_{0}\right)-n\left(\nu_{0}\right)\right]+\left[n\left(\nu_{\mu}\right)-n\left(\nu_{\mu}\right)\right] . \tag{33}
\end{align*}
$$

Assuming that the transformation of the type (12) of any lepton function

$$
\begin{equation*}
\psi_{L} \rightarrow e^{-1 \beta \Gamma} \psi_{L} ; \psi_{L}^{*} \rightarrow \psi_{L}^{*} e^{+i \beta \Gamma} \tag{34}
\end{equation*}
$$

also leaves the Lagrangian unchanged, we obtain the generalization of the weak charge conservation law

$$
\begin{align*}
N= & -G\left\{\left[n\left(e^{-}\right)-n\left(e^{+}\right)\right]-\left[n\left(\mu^{+}\right)-n\left(\mu^{-}\right)\right]+\right. \\
& \left.+\left[n\left(\nu_{0}\right)-n\left(\nu_{e}\right)\right]-\left[n\left(\nu_{\mu}\right)-n\left(\tilde{\nu}_{\mu}\right)\right]\right\} . \tag{35}
\end{align*}
$$

$\cap_{\text {wing to the identity }}$

$$
\begin{equation*}
(1 \mp \Gamma) e^{-i \beta \Gamma}=e^{ \pm i \beta}(1 \mp \Gamma) \tag{36}
\end{equation*}
$$

this means that the fields $e^{-}, \nu_{\mathrm{e}}, \mu^{-i}\left(\right.$ antimuon), $\quad \tilde{\nu}_{\mu} \quad$ (anti $\nu_{\mu}-$-field) are transformed by the law

$$
\begin{equation*}
\psi \rightarrow e^{-: \beta} \psi \tag{37}
\end{equation*}
$$

and e^{+}(antielectron one), $\tilde{\nu}_{e} \quad$ (anti $\quad \nu_{e}$-field) and ν_{μ}, μ^{+}(muon one) by the law

$$
\begin{equation*}
\psi \rightarrow e^{t \beta} \psi \tag{38}
\end{equation*}
$$

If the numbers L and N / G are added and subtracted, two conserving numbers can be obtained

$$
\begin{align*}
& L_{0}=\left[n\left(e^{-}\right)-n\left(\mathrm{e}^{+}\right)\right]+\left[n\left(\nu_{0}\right)-n\left(\nu_{0}\right)\right], \tag{39}\\
& L_{\mu}=\left[n\left(\mu^{+}\right)-n\left(\mu^{-}\right)\right]+\left[n\left(\nu_{\mu}\right)-n\left(\nu_{\mu}\right)\right] . \tag{40}
\end{align*}
$$

Hence the ν_{e} neutrino is always connected with electrons and the ν_{μ} neutrino with muons.
By the conservation law (33l and (35) or (39) and (40) processes of the type

$$
\begin{aligned}
& \pi^{+} \rightarrow e^{+}+\nu_{0}, \\
& \pi^{+} \rightarrow \mu^{+}+v_{\mu}, \\
& \mu^{+} \rightarrow e^{+}+\nu_{0}+\nu_{\mu}, \\
& \nu_{\mu}+p \rightarrow n+\mu^{+}, \\
& \tau_{\mu}+n \rightarrow p+\mu
\end{aligned}
$$

etc.
are allowed, and the processes
are forbidden.

$$
\begin{aligned}
& \nu_{\mu}+p \rightarrow n+e^{+}, \\
& \mu^{+} \rightarrow e^{+}+\gamma, \\
& \mu^{+} \rightarrow e^{+}+e^{-}+e^{+}
\end{aligned}
$$

etc.
It may happen that the physical masses of muon and electron neutrinos m_{ν}^{e} and ${ }_{m}^{\mu}{ }_{\nu}^{\mu}$ will vanish as a result of the interaction. The muon and electron neutrinos will still be physically distinct if the interactions do not violate the gauge-properties of the ψ-function (37), (38) and (11) leading to the conservation laws (33) and (35).

The muon and electron neutrinos differ by the sign of the charge of the weak vector interaction G -constant.
In this sense the generalized Konopinski-Mahmoud hypothesis is formulated similarly for a muon and a muon neutrino, on the one hand, and an electron and an electron neutrino, on the other.

In other words, the sign of the weak charge for μ^{+}and ν_{μ} particles is opposite to that for e-and ν_{e} particles. The antiparticles of these particles are $\mu-; \nabla_{\mu}$ and θ^{+}, ν_{e} respectively. The analysis has not touched so far on the polarization of muon and electron neatrinos. The study of these properties of ν_{μ} and ν_{e} neutrinos requires a further elaboration of the theory and in particular the introduction of interactions.

6. Interactions

(a) Electromagnetic Interactions

According to the interpretation of the vector $I_{\nu}^{\prime}(14),(17)$ the interaction between the electron-muon and electromagnetic fields is of the form

$$
\begin{align*}
& V^{\ell l}=e A_{\rho} I_{\rho}^{\prime} \quad=-\theta A_{\rho} \bar{\psi} \Gamma \Gamma_{\rho} \psi \tag{41}\\
& =-\theta\left[A_{\rho} \bar{\psi}_{\rho} \gamma_{\rho} \psi_{\rho}-A_{\rho} \bar{\psi}_{\mu} \gamma_{\rho} \psi_{\mu}\right], \tag{42}
\end{align*}
$$

The form (42) contains the Konopinski-Mahmoud hypothesis treating μ and e-particles as particles carrying electrical charges of opposite signs.
(b) Four-Fermion Interactions

It can hardly be claimed as yet that there is a complete theory of weak interactions. It is inexpedient, for example, to postulate that the $L_{a g r a n g i a n ~ o f ~ w e a k ~ i n t e r a c t i o n s ~ s h o u l d ~ n o t ~ c o n t a i n ~ n e u t r a l ~ c u r r e n t s . ~ T h e ~ B l u d m a n ' ~ s c h e m e ~}^{\text {e } / \text { / al- }}$ lowing neutral currents in the Lagrangian of weak interactions is as valuable heuristically at this stage of the development of the theory as the Sudarshan-Marshak and Gell-Mam-Feynman schemes.

For the following it is sufficient that among the possibilities for four-fermion interactions satisfying the requirements of invariance with respect to the transformations of the ψ-function (371, (38) and (32) we can at any rate write the vector interaction analogous to eq. (42)

$$
\begin{equation*}
V^{w}=G I_{\rho}^{\prime} I_{\rho}^{\prime \prime} \quad=-G \bar{\psi} \Gamma_{\rho} \psi \bar{\psi} \Gamma \Gamma_{\rho} \psi, \tag{43}
\end{equation*}
$$

or

$$
\begin{equation*}
V^{m}=-G\left(\vec{\psi}_{\rho} \cdot \gamma_{\rho} \psi_{\hat{\psi}} \gamma_{\rho} \psi_{0}-\vec{\psi}_{\mu} \gamma_{\rho} \psi_{\mu} \vec{\psi}_{\mu} \gamma_{\rho} \psi_{\mu}\right) \tag{44}
\end{equation*}
$$

The interaction (44) introduces in the Lagrangian the so-called "neatral currents" i. e., currents neutral with respect to electric charge. I_{n} the G-charge these currents are also of opposite signs.
7. Case $m_{\nu}=m_{\nu}^{e}=m_{\nu}^{\mu}=0$.

Suppose the neutrino field bare masses $\quad m_{\nu}=0$. Suppose the physical neutrino masses $\quad m_{\nu}^{\mu}$ and $m_{\nu}^{e x} 0$ too.
Let the gauge transformation (11) as well as (12) hold good for the neutrino field. This means that the muon and electron neutrinos are different in this case. In other words, just as in the case $m_{\nu}^{e} \neq 0, m_{\nu}^{\mu} \neq 0$ the conservation laws are formulated in the form (33) and (35) or (39) and (40).

If $m_{\nu}^{e}=0$ and $m_{\nu}^{\mu}=0$ the interactions introduced should not violate the additional invariant properties of the Lagrangian

$$
\begin{equation*}
\psi_{\nu}^{\bullet} \rightarrow e^{1 \delta \gamma_{s}} \psi_{\nu}^{\bullet} ; \quad \psi_{\nu}^{\mu} \rightarrow e^{1 \epsilon \gamma_{s}} \psi_{\nu}^{\mu} \tag{45}
\end{equation*}
$$

Let us have

$$
\begin{equation*}
\nabla^{\prime}=-G\left(\bar{\psi}_{\mu} \gamma_{\rho} \psi_{\nu}^{\mu}\right)\left(\bar{\psi}_{\nu} \gamma_{\rho} \psi_{\nu}^{\bullet}\right) \tag{46}
\end{equation*}
$$

i.e., only a vector interaction is introduced.

The transformation (45) can be re-written as

$$
\begin{align*}
& \psi_{\nu}^{0} \rightarrow\left[e^{1 \delta}\left(\frac{1+\gamma_{E}}{2}\right)+e^{1 \delta}\left(\frac{1-\gamma_{s}}{2}\right)\right] \psi_{\nu}^{0}, \\
& \psi_{\nu}^{\mu} \rightarrow\left[e^{1 \epsilon}\left(\frac{1+\gamma_{s}}{2}\right)+e^{1 \epsilon}\left(\frac{1-\gamma_{s}}{2}\right)\right] \psi_{\nu}^{\mu} \tag{47}
\end{align*}
$$

The interaction (46) is invariant with respect to the transformations of the neutrino function (45) if the electron and muon functions transform simultaneausly by eq. (11) or by eq. (12).

Then δ and ϵ in eq. (45) cannot be arbitrary. But one can choose, for example,

$$
\begin{equation*}
\delta=\epsilon=a \tag{48}
\end{equation*}
$$

$$
\begin{equation*}
\delta=\epsilon--\beta \tag{49}
\end{equation*}
$$

If one assumes eq. (49) then we have

$$
\begin{gather*}
\bar{\psi}_{0} \gamma_{\rho} \psi_{\nu}^{\theta} \rightarrow \bar{\psi}_{0} e^{i \beta} \gamma_{\rho}\left[e^{i \delta}\left(\frac{1+\gamma_{s}}{2}\right)+\bar{e}^{i \delta}\left(\frac{1-\gamma_{s}}{2}\right)\right] \psi_{\nu}= \tag{50}\\
=\bar{\psi}_{\theta} \gamma_{\rho}\left(\frac{1+\gamma_{s}}{2}\right) \psi_{\nu}^{\theta} \\
\bar{\psi}_{\mu} \gamma_{\rho} \psi_{\nu}^{\mu} \rightarrow \bar{\psi}_{\mu} \gamma_{\rho}\left(\frac{\left.1-\gamma_{s}\right)}{2} \psi_{\nu}^{\mu}\right. \tag{51}
\end{gather*}
$$

The requirement of invariance of the interaction with respect to the transformations (45) leaves in the interaction (51) only two component neutrinos:

$$
\begin{gather*}
\psi_{\nu L}^{e}=\left(\frac{\left.1+\gamma_{s}\right)}{2} \psi_{\nu}^{0},\right. \tag{52}\\
\psi_{\nu R}^{\mu}=\left(\frac{\left.1-\gamma_{s}\right)}{2} \psi_{\nu}^{\mu}\right. \tag{53}
\end{gather*}
$$

Two two-component neutrinos arise in the theory presented: left-polarized electron neutrino and right-polarized muon neutrino.

Genetically the $\psi_{\nu \Sigma}^{e}$ and $\psi_{\nu_{R}}^{\mu}$ neutrinos originate from different Dirac fields $\psi_{\nu}{ }^{e}$ and ψ_{ν}^{μ} with different transformation properties (37) and (38). But for polarized neutrinos the identity

$$
\begin{equation*}
\left(1 \mp \gamma_{s}\right) e^{-1 \gamma_{5} \beta}=e^{ \pm 1 \beta}\left(1 \mp \gamma_{s}\right) \tag{54}
\end{equation*}
$$

is essential. Because of eq. (54) the transformations (37) and (38) for polarized neutrinos coincide with the transformations (45) under the condition (49). The latter circumstance makes it possible to unite formally the two two-component spinors into one four-component function with the properties*.

 as the matrix Γ (4) for the eleotron-muon fleld.

$$
\begin{equation*}
\psi_{\nu} \rightarrow \mathrm{e}^{-i \beta \gamma_{s}} \psi_{\nu} \tag{55}
\end{equation*}
$$

In this form the theory coincides with the theory of two types of neutrinos as presented by Kawakami ${ }^{18 /}$.
I_{n} this interpretation $/ 8 /$ the ideas of two neutrinos are presented most distinctly for the case $\quad{ }_{m p}{ }_{\nu}^{e}=m_{\nu}^{\mu}=0$ As a matter of fact these ideas are contained in earlier works by $\mathrm{Schwinger}^{/ 9 /}$ and $\mathrm{N}_{\text {ishijima }}{ }^{10 /}$ and can be traced to the old papers by $\mathrm{Fierz}^{111 /}$.

It is noteworthy that starting in eqs. (50) and (51) from the vector variant of the interaction of fermion fields under the condition (45) i. e., under the condition ${\underset{\nu}{\nu}}^{e}{ }^{e}{ }_{m}{ }_{\nu}^{\mu}=0$ one can arrive at the interaction in the form containing vectorial and axial variants.

The view making the peculiar properties of the neutrino entirely responsible for the non-conservation of parity in weak interactions remains quite actractive.

It is not ruled out that the existence of weak non-lepton decays is not an unsurmountable obstacle for such a view $/ 12 /$.
8. $m_{\mu} \neq m_{e}$ Problem

If the bare electron and bare muon are described by the same equation, then with the identity of all muon and electron interactions it is impossible to understand the origin of the difference in the masses of these particles in terms of field theory.
I_{n} the Konopinski-Mahnoud hypothesis the muon is for the first time interpreted not as just a heavy electron. A question suggests itself whether it is possible to understand on the basis of the Konopinski-Mahmoud hypothesis, establishing new differences in the properties of the muon and electron, the differences in the masses of these particles as well.
I_{n} the form (2) and (3) of the equations for the bare electron and muon ($m_{\mu}^{\circ}=m_{e}^{\circ}=m$) it is desirable, for example to indicate an interaction the inclusion of which in the generalized $\mathrm{D}_{\text {irac }}$ equation (5) would give rise to contributions to the mass of the particles of the same sign. Then we would have

$$
\begin{equation*}
m_{0}=m-\delta m ; m_{\mu}=-m-\delta m . \tag{56}
\end{equation*}
$$

With a bare mass of particles equal to, say, half of the real mass of the muon and δm close to this value we could in principle explain the differences in the muon and electron masses.

In the search for the interaction removing the degeneracy with respect to the masses of the generalized $\mathrm{D}_{\text {irac }}$ equation (5), a specific property of such interactions viz. violation of the invariance of the Lagrangian with respect to the transformation (6) must be the clue.

The interaction of electrons and muons with electromagnetic field

$$
-\mathrm{e} A_{\rho}\left(\bar{\psi}_{\rho} \gamma_{\rho} \psi_{0}-\bar{\psi}_{\mu} \gamma_{\rho} \psi_{\mu}\right)
$$

is non-invariant with respect to the transformation (6). This expression changes its sign in the trensformation (6).
True, by "accidental" circumstances the electromagnetic interaction in simple Feynman graphs does not actually violate the symmetry under discussion since all contributions to the mass from the terms with the odd powers of
electric charge vanish*. An entirely different situation is created when interactions of the type (44) are introduced.
In the vector interaction (44) as well the graph corresponding to the form

$$
\begin{equation*}
\bar{\psi}_{\mu} \gamma_{\rho} \psi_{\mu}{\widetilde{\psi_{\mu}} \gamma_{\rho} \psi_{\mu}} \tag{57}
\end{equation*}
$$

yields no contribution to the proper energy of the particles.
O_{n} the other hand, the graph corresponding to the form

$$
\begin{equation*}
\vec{\psi}_{\mu} \gamma_{\rho} \psi_{\mu} \psi_{\mu} \gamma_{\rho} \psi_{\mu}, \tag{58}
\end{equation*}
$$

leads just as in the scalar variant of interaction to non-zero expressions, viz.,

$$
\begin{align*}
& =-G \bar{\psi}_{0} \gamma_{\rho} S_{0}^{c}(0) \gamma_{\rho} \psi_{0}=-G \bar{\psi}_{0} \gamma_{\rho} \int i \frac{i \hat{\rho}}{p^{2}+m^{2}} d^{4} \gamma_{\rho} \psi_{0}, \tag{59}\\
& =+i \psi_{0} G m \int \frac{d^{4} p}{\rho^{2}+m^{2}} \psi_{0} ;=\psi_{0} \frac{m}{(2 \pi)^{2}} G K_{m a x}^{2} \psi_{0} \tag{60}
\end{align*}
$$

or

$$
\begin{equation*}
\delta m^{0}=-\frac{m}{(2 \pi)^{2}} G K_{m a x}^{2} \tag{61}
\end{equation*}
$$

where $K_{\text {max }}$ is the upper value of the momentum in the integral (60).
Taking into account another form of the meson field $\quad S_{\mu}^{c} \quad$ function

$$
\begin{equation*}
i \frac{i \hat{p}_{0}-m}{p_{0}^{2}+m^{2}} \rightarrow i \frac{i \hat{p}_{\mu}+m}{p_{\mu}^{2}+m^{2}} \tag{62}
\end{equation*}
$$

one obtains for δm_{μ} in accordance with eq. (56) an expression of the same sign as in the case of electron field.

$$
\delta m^{\mu}=-\frac{m}{(2 \pi)^{2}} G K_{m a x}^{2}
$$

The pseudo-vector interaction of the type (e,e) ($-e, e$) does not lead, any more than the scalar or pseudoscalar one, to the removal of the degeneracy under discussion; they all equally change the initial values m_{μ}^{0} and ${\underset{m}{e} \text { *. }}_{e}^{*}$

It is the identity of all known manifestations of the interactions for the electron and muon that is enigmatic in the problem $\quad m_{\mu}-m_{\theta}$.

The possibility in principle of solving the $\quad m_{\mu}-m_{e}$ riddle takes shape in the interactions (44). It appears impossible to obtain the corresponding numerical values at the present stage of the theory.

The fact is that along with the graph of the type (1)

[^2]discussed above there may be indicated graphs of the type (II)

(II)
where the intermittent line corresponds to the photon; or a graph of the form (III)

or

The interaction can be taken in such a form of "rormal" product which excludes, for example graph 1 from consi deration.

The graph of the type (II) yields corsespanding additions to the masses of bare particles in the form*:

$$
\begin{equation*}
\delta m=-\frac{m G_{\alpha}}{(2 \pi)^{3}} K_{\pi \in x}^{2} \tag{63}
\end{equation*}
$$

Sut the main thing is that if $G K{ }_{\text {max }}^{2}=1$ infinite chains of widely different graphs have to be summed up. At the current stage of the theory (divergence, linck of rational method of estimating higher graphs) it does not appear pos sible to perform correctly such calculations.

An unsatisfactory feature of oll sqr, theories is the introduction of the bare masses of the particles of unknown origins.

The situation in the four-fermion interaction theory is essentially different : the theory incorporites a priori a length constant \mathcal{E} which could in particular act the sule of a bare mass (see eq. (64)) .

It can readily be seen that only the graphs of odd powers of G can lead to $\quad m_{\mu} \neq m_{e}$.
The graphs of the form IV

even in the powers of G yield the same contribution to the masses of bare particles, decreasing, as is shown by calculations, their bare mass.

* Graph (II) tor the $V-A$ interaction is evalusted
where

$$
m_{\mu}^{0}=\frac{m-a}{(1+a / 3) \sqrt{1-\left(\frac{a / 3}{1+a / 3}\right)^{2}}}
$$

$$
a= \pm \frac{G_{a}}{(2 \pi)^{3}} K_{\max }^{2} \ln \frac{K_{\max }^{2}}{m^{3}}
$$

The graphs even in the powers of $\quad G$ may decrease considerably the absolute value of the bare mass even if it exceeds a great deal the real mass of the muon* and is directly connected with, for example, fundamental length

$$
m=\frac{A}{l} \quad \text { when } \quad A=1, \quad m=300 \mathrm{Gev}
$$

In the attempts to solve the $\quad m_{\mu}-m$ problem by the introduction, along with known interactions, unknown ones specific only for the muon, the estimation of the corrections to the ancmalous magnetic moment of the muon is a rather rigid criterion. From this point of view it is difficult to draw unambiguous conclusions for the possibility under discussion.

The interaction (44) is included as an interaction between bare particles. Query: in which effective form should this ? interaction be written for non-bare particles.

Essentially, the Dirac equation written for the interaction (44) is the generalized Heisenberg equation (64)-(65). Is it necessary in this equation to write along with the term (44) the electromagnetic interaction** with bare particles? Or the electromagnetic interaction may arise by itself in the equation for non-bare particles as a peculiar manifestation of the four-fermion interactions of bare particles in the sense of Heisenberg's well-known ideas. I_{n} the latter case there can be no specific corrections at all to the anomalous magnetic moment of the particles caused by the interaction (44) $12 /$

The idea of the existence of two types of Dirac fields as a generalization of the Konopinski-Mahmoud hypothesis is adequately reflected mathematically in the second order equation for spinors or, which is the same, in the Dirac equation for eight-component functions. Analysis of these equations may logically lead to the Konopinski-Mahmoud hypothesis. But once the idea of two $D_{i r a c}$ fields originated it can be and is actually described in terms of the same type of the D_{i} rac equation for four-component functions. The physical differences of the fields: the intepretation of the particles and antiparticles of different fields and the signs of the vector constants of the interactions (44) must in such a description be introduced by additional propositions.

The contemplated existence of the two types of Dirac fields may also prove useful for the generalization of Heisenberg's equations.

Essentially, the two equations

[^3]These rough estimates are purely illustrative, of course.

$$
\begin{equation*}
\gamma_{\nu} \frac{\partial \psi_{I}}{\partial x_{\nu}}-\ell^{2} \gamma_{\nu} \psi_{I}\left(\bar{\psi}_{I} \gamma_{\nu} \psi_{I}\right)+\frac{A}{l} \psi_{I}=0 \tag{64}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma_{\nu} \frac{\partial \psi_{I I}}{\partial x_{\nu}}+\ell^{2} \gamma_{\nu} \psi_{I I}\left(\bar{\psi}_{I I} \gamma_{\nu} \psi_{I I}\right)-\frac{A}{\ell} \psi_{I I}, \tag{65}
\end{equation*}
$$

where A is a numerical constant have been implied throughout the above discussion.
Apart from other difficulties of Heisenberg's theory, it should be noted thet one fundamental ψ-field seems to have too poor possibilities for the description of a large variety of particles.

The author is indebted to A.A.Komar for numerous stimulating discussions.
References

1. M.A.Markov. JETP 7, 608 (1937).
2. E.Konopinski and H.Mahmoud. Phys. Rev. , 92, 1045.(1953).
3. S. Watanabe. Nuovo Cim. VII, 187 (1957).
4. Ya. B. Zeldovitch. Doklady Akademis Nauk SSSR, 91, 1317 (1953).
5. G.Marx. Acta Phys. Hung., 3, 55 (1953).
6. Ya. B.Zeldovitch. JETP, 36,964 (1959).
7. S.A.Bludman. Nuovo Cim., IX , 433 (1958).
8. I.Kawakami. Progr. Theor. Phys. 19, 459 (1958) :
M.Konuma. Nuclear Physo, 5, 504 (1957);
H.Umezawa and A. Visconti. Nuclear Phys., 4, 224 (1957).
9. J.Schwinger. Ann. of Phys., 2, 407 (1957).
10. N.Nichijima. Phys. Rev., 108, 907 (1957).

11, M.Fierz, Helv. Phys. Acta, 12, 3 (1939); 13, 45 (1940); see also De-Wet. Phys. Rev. ,58, 236 (1940).
12. M.A. Markov. Neutrino, a survey, preprint JINR P-1269, p. 69 (1963).

[^0]: Watanabe $/{ }^{\text {W }}$ indioated that theoonoept of the left-handed and right-handed partioles oan be introduoed in the elght-oomponent apinoi theary in the oses of n non-zero masapartiole as well.

[^1]: *Different "neutrino eharges" for en eleotron and μ-meson were introduoed by Ya.B. Zaldovioh/4 and G.Marx/5/.Neutrino oharges were Introduced to obtain restrictions for effeots of the type $\mu \rightarrow e+\gamma \quad$ etc.

[^2]: * Evidently, an electrically neutral vector field cannot yleld an essential contribution to the mass of the elementary particles: the mass terms orfginating from these flelds depend only logarithmically on the upper limit of the intermediate momentum - this foquires the introduction of lengthe smaller than the gravitation radius of the particles.
 ** Provided, of course, the signs of the specific oonstants in these interaotione are the ame for the electron and muon.

[^3]: * The oonsideration of oharged currents has been omitted for the sake of simplioity. Some of them may lead to $\quad m_{\mu} \quad \neq \mathrm{m} \quad$ in the graphs of the odd powers in G beglnning from G^{3} (graphs III'). Graphs IV also decrease the bare mass common for μ and e . There arisea a conaiderable number of graphs IV if the interactions with bare baryons are taken into account.
 ** In this oase a graph of the type

 could make a contribution to the anomalous magnetio moment of the electron and muon

 $$
 \delta \mu \approx \frac{m^{e}}{m} \quad-\frac{a}{2 \pi}
 $$

