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Abstrac t 

Starting from the Konopinski -Mahmoud hypoth~sis, the tenn of the weak interaction through symmetrical neutral 

currents can be written 

-G(J; y 1/1 Jj y 
e p e e P 

1/1 - J; y 1/1 
e JL P JL 

i y 1/1 ) 
JL p JL 

( l) 

This interaction yie lds contributions, equal in quantity but opposite in sign, to the muon and electron bare masses . 

The idea of two types of Dira c fields (in particular, electron and muon ones) conjugate in the sense of the gen eral

ized Konopinski-Mahmoud hypothesis ( e- , JL+- particles, e+ , JL- -antiparticles, ~-, p+ particles, etc .) can more 

conven ientl y be presented and interpreted with the aid of the second order equation for four-component spinors. It i s 

equivalent to the two Dirac equations ( i p' + m) '4 = 0 and ( i p -m) 1/JII • ·0 whose field quanta are automaticall r 

connected by th e Konopinski-Mahmoud hypothesis. The quanta of the "conjugate" fields 1/J.. and t/1 I poseess equal 
I I 

bare masses. 
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l. Electron and Muon 

Many years ago a s econd order equation was proposed for the spin or fi eld (of electrons) , with a Lagrangia!l in the 

r / 1/ orm 

L J ~ a¢ Y Y a¢ 
2m ILP a X p IL a X . 

p j.L 

Both energy and charge in this theory are non-positively definite. 

m 
¢¢ 

2 ( l) 

Such a theory can describe th e electron as a particle of positive energy and negative charge e - and the positron 

as a hole in occupi ed e lectron states of negative energies. The theory also allows for another particle of positive charge 

and positive energy and for its antiparticle. The lat_ter is a hole in the distribution of levels occupied by particles of 

positive charges and negat ive energies. 

An electron may annihilate with a positron (hole) , but not with another , positively charged particle. According to 

this equation, there should exist a " s econd" electron. Its properties must be , in a sense, opposite to the electron: the 

particle is a field quantum charged positively while the antiparticle is charged negatively. 

Since there seem to be no "second" electrons in nature a question arises whether the IL + meson could be interpret-

ed as the second particle in this th eory. 

Interest in the old Konopinski-Mahmoud hypothesi s concerning the muon and electron/ 2/ ha s re cently revi ve d in con-

ne c tion with experimental evidence in favour of the existence of muon and electron neutrinos. 

According to this hypothesis the e- electron and IL + meson are treated as particles and the e+positron andtCme

son as antiparticles. This is the situation described by the above equation. 

It appears of interest to investi gate which kinds of the known (or experimentally allowable) interactions can remove 

the degeneracy with respect to th e masses of the fre e equation des cribing these particles, i. e. , lea d to miL >/m e : 

to what extent the muon and electron neutrinos can naturally be included in this scheme; and in general how uni vers al 

is such a clas sification of hare F r:rmi particles: can this scheme, for example , incorporate haryonE ? 

The second order equation for the four-component spinor is equivalent to the first order equation for th e e ight-com-

ponent function. This equation can be written in the form of two separated equations 

(i P' + m) t/1 0, 
(2) 

1 a p iy - -
11 a IIJ. 

(3) (ip-m)t/1_ o, 
ll 
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or, introducing the eight row matrices 

r,.. 0 I Y,. 

0 YIJ. 

eqs. (2) and (3) can he written as " one " equation 

(iP + f'm) 1/J 0 

jJ. 1, 2, 3, 4 , r 1
1 0 

I , 
0 -l 

.p = I .Pr 
1/JII 

p = [' p 
jJ. jJ. 

(4) 

(5) 

Dirac arrived a t his equa tion by expanding into fa ctors the operator p 2 
-m2=(i ?+m)(i? -m) and taking 

jJ. 

one of the factors as the opera tor of his equation. 

The eight-compo~ent equation (5) possesses special symmetry properties as compared with Dirac's four-component 

equation. 

2. Symmetries of the · Generalized Dirac Equation 

The Fermi fields satisfying eq. (2) shall he called fields 1 and the fields obeying eq. (3) fields II. 

Lagrangian {1) leads to the expression for the charge density p 

a.p - a.p 
p = - -- ( I. -- y y .p - .p y I. y p - - ) • 

2m C p a Xp p 4 4 p a X p 

In this respect eqs. (2) and (3) differ in tha/11 eq. (2) selects the functions .P1 for which p is negative {elect-

ron solutions ). Eq. (3) selects the functions I/J11 for which P is positive ( IJ. -meson fields). Only in this 

interrelation of eqs. (2) and (3) it is expedient to differentiate the conjugate fields 1/J 1 and .p II • 

The symmetries of the Dirac equation for the eight-component .P - function (5) are in many respects analogous to 

those for the four-component function if one puts in the latter case m "' 0. 

Indeed, in the transformations 

.Pr ... ysi/Jrt 
.p 1/J Y, (6) 

1/JII ... y S 1/J I 

eq. (2) takes on the form of eq. (3) and vice versa. 

The same holds good for the transformations 

a a 
- ... -

ax,. axil (7) .pl ... Y,. .p11 

1/JII ... yjJ. WI 
a a - ... - --

axil axil 

In this sense the four-spinor ( hi-bispinor) of eq. (5) is as much single whole as the hispinor of the Dirac equati on 

for m = 0 ; eqs. {2) and (3) are each invariant with respect to the Lorentz transformations , but in th e transforma t-

ions (6) and (7) one his pinor passes into the other. 

These n ew symmetry properties arise because and only because the masses in eqs. (2) and (3) are assumed equal. 

Naturally, only such kinds of interactions which are not invariant with re s pect to these transformations can remove the 

degeneracy over the hare particle masses. 
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The set of 8 x 8 matrices corresponding to the generalized Dirac equation (5) possesses severa l specifi c prop erties~ 

Eq. (5) can be obtained from the Lagrangian 

L 

According to eq. (8) , th e 1/J field energy-momentum tensor is given by the expression 

T11tl [' v r/J ) • 

or, to be more specific, the energy density of th e bare elec tron-meson fi e ld. 

w 1 
2i 

[(- r/J* 
e 

ar/J 
--- C!t 

at 
ar/J: . al[J ar/J* 

+ r/J ) + (-r/J * _j!._ + ___JJ, __ r/J J] . at e 11 at at 11 

Lagrangian (8) is invari ant with respect to the transformations 

Accordingly; we have two conservation laws 

ax 
II 

0 

0 

- Ia 
e 

'lite fourth component of th e vector [' =- J;f' f' r/J v v obeying eq. (14) i.e. , the quantity 

p 

can be interpreted as a quantity connected with the ele ctric charge density . 

'lit e corresponding fourth component of the ve ctor namely 

can naturally be interpreted as the lepton number density. 

Thus the electron-muon field charge is given by the expres sion ( e =I e ) . 

eQ =-e (r/J f' r'4 rjJ dv 

=- e (pdv - e ( ( r/J* r/1 
e 

r/J* rjJ ) dv 
11 11 

~8) 

1',1 

':) 

(l l ) 

( 12) 

(13) 

(14) 

(15) 

(16) 

(17) 

* Watanabe/ 3/ tndi oated -::t tbeoonoept of the l e ft~handed and ri ght-handed parti c l es can b e introduced ln the eight-compo n ent splno1 
theoxy in t.h.e case a.f a. non-z ero mass parti c l e as well . 
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and the number of leptons 

L "' (t/1 r4 t/J dv 

r 11 dv = r (t/1 * t/1 + t/1* t/1 ) dv • 
.. .. jJ. jJ. 

(18) 

After the quantization of the t/1 field the meaning of eqs. (17) and (18) is revealed in the most comprehensive 

and consistent manner. 

3. Quantization . 

In accordance with eqs. (2) and (3), the permutation relations of the t/1 and t/1 fields can naturally be determin-
e 11. 

ed 

[t/J~(x), ~"( y)]+=(-p-im)~(x-y), (19) 

jJ. -
[t/1 (x) , t/111. (y)]+ (- •p +im)~ (x-y). 

(20) 

Let us have 

- .. + - ~ - · - · !. . 
t/J=!at/f +!bt/f r ,. ,r r 

• 
t/1"=! 8.- tfJ.f + !b+ t/1.-

t , t f' 
(21) 

- jJ. jJ. 
jJ. + + - · 

t/J = ! A, t/J, + ! B, t/J, , 
- jJ. + - ~ - _':_ 
t/J =!A t/J + !B t/J r t r, r 

(22) 

where a+ is the operator of the production of e- and A+ is that of IL + 

The other operators are interpreted accordingly. a+ a- is the number of electrons ( 6 -) and A+ A-that of 

11. +-muons. 

Thus we have 

eQ 
+ 

- e I [ ! a, a, (23) ! b + b-]- [!A,+ A--! B+ B -] I , 
t r r r r 

or 

eQ =-{[!n (e-)-!n (e+)] -{!n (11.+) -!n (u-)]. , , , . ~ r-

It can readily be seen that eq. \13) leads to the conservation of some other number L 

+ - + - + - · + -
L = [! a, a, -! b, b, ] + [!A, A,. - ·! B ,B, ] , 

(24) 
or 

L = [ ! n, (e-) - ! n, ( e +) ] + [ ! n, ( 11. +) - ! n T ( 11.-)] • 

Eq. (13) gives the conservation of the number of particles ( or rather the number of particles minus the number of anti-

particles ). 
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Thus the Konopin sk i-Mah moud hypothesis ( e-; 1.1 +-particles , e+, 1.1- '-antiparti cl es ) finds its natural description in 

the above form ali sm. 

In this sense it can be supposed th at the re are Dirac fi elds different by nature: some of them are described by equ· 

ation lik e cq. (2) and others by equations like eq. (3). It is natural to extend such a classification onto baryon fi elds. 

We graduall y ge t used to the idea of considerable affinity between the doublets 

and - - -0 
( ' =. ) • 

At present there i s no explana ti on of the difference hetwe cn the masses of p+ and S - particl es. 

Naturally, analogy between e - ,1.1 +on the one hand and -- + 
=. ' P on th e other suggests itself. In the latter case 

the corresponding generalisation of the Konopin ski-\lahmoud hypo thesis is tri vial en ough: baryons of opposite el ec tric 

charges - , p + are ac tua ll y particles. 

It is possible that the interactions invol vin g p+ and are identical to the same degree as the interactions 

involving electrons and muons have so far been identical experimentally. 

Finally, the existence of ~ + and~particl es furnish es an example of the rea lization of the Konopinski-Mahmoud 

hypothesis. 

4. E!ectri cally-Ne utral Fermi Fields 

There are no general considerations on th l' basi s if which one of eqs. (2) and (3) could be des criminated for electri-

cally neutral fields. 

The existence of neutral components of the doubl ets p+, n 

confirms the possibility of such a vie wpoint. 

The neutral components of the doublets 

y and l 

can be made to correspond (?) , as is often done, to the particles 

;:::- j;
0 

and proha l>l y e , 11 
e 

l:+ and l:- . 

Two conservation laws of the type (13) an d (14) must likewise hold for electrically neutral fields. 

j.t+, II 
1.1 

The interpretation of the conserving number L (24) ( th e number of parti cles minus the number o f a nt"iparticles ) is 

universal. 

The intepretation of the second con versation law ( 23) iR also unive rsal if it is borne in mind that eq. (23) has the 

meaning of electric charge only if th e fourth compon en t ,, f the vector I~"' -0r'\:lf, i s multiplied by the electromagnetic 

interaction constant. 

The expression 

f = -f( I/J * l/1-t/J*t/1 ) , 
p 1 l 11 ll 

( n o\ ....,, 

where is a specific constant of any interac t ion which has a more general meaning than the particul ar case (23). 
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In this sense the cons tant ( ~ G imparts to eq. ( ~S) a mo r e 1tni ve ro.a l meanin g qf th e conse rvati on of weak charge for both 

ele c tri call y charged a nd e le ctri ca ll y neutral Fe rmi fi e lds*. 

N - G{ [ n ( e- J- n (e+ ) j - [ n ( ~< + ) - n (~< - ) ] l. 
(26) 

5. Neutrino 

From th e viewpoint o f th e two types o f Dirac fie lds , t wo t ype s o f neutr ino fields a re only a part icul a r manifesta ti on 

of the general law. 

The baryon doublets 

+ 
( p ' n) 

'6/ can be assumed to correspond to the lepton doublets ' 

+ ) 
( li ' v li 

r= = 0 

( e v ) . 

It is natural to suppose that for the neutrino fiel d as well th ere can be wri tten two diffe rent equa tions sim ila r to eq s . 

(2) and (3) 

, , , e 
(I p + mv ) 1/Jv ~ 0 (27) 

• ,, /.1 
( 1 p - m v ) 1/J v ~ 0 , (28) 

(iP+f'm) l/J ~ O, 
v v 

(29) 

where 'llv is the bare mas s of the muon and electron neutrino. Neutrino bare masses can in principle have an y 

values. In particular, th e bare masses of, for example, a ll leptons and even fennions might be equa l. 

As for the real masses of the physical neutrinos
1
it is only kno wn a t present that 

e 10 -J < m v me 
and 

,.,. 
m 

v < 8 m ~ 

For the time being it is not ruled out, o f course, that the physi cal neutrinos have no proper mass. Nor is it ruled out, 

generally s peak in g, th a t bare masses are also zero for neutrinos. The la tter case deserves a special analysis. 

( a ) Case m f, 0 v 

The case of non-zero bare masses for el ectron and muon neutrinos is trea ted before the introduction of the interaction 

also as a bare free electron-muon field. 

Here in a fonn analogous to eq. (24) we write the conservin g number 

*Diffe re n t ••n e utri n o .c harge s " for an el ec t ron and {1. - meson were Intro du ce d by Ya . B.Z e l do vi o h1 41 and G. Marx / 5/ ,Neutrlno 

c h arges w ere introduc ed to obtain res tri c tion s for e ffects o f the type {1..,... e+y e tc. 
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the interaction 

/ .Neut rino 

I 
' I 

' ( 

I 

l 
f . 
I 
( 

f , 

"' L 1, "' [ n ( 11• ) - n ( 11 • ) ] + [ n ( 11 fJ. ) - n ( 11 fJ. ) ] • (30) 

and in a form analoll;o ns to eq. (26) the cons e rving number o f the weak charge 

N,1 : - G [ n ( ve ) - n ( ,: ) J - [ n ( 11(.1. ) - n ( ;; fJ.) ] • 
(31) 

If it is assumeJ that a ll leptons fo r~1 an iE~o l ateJ sys ten1 of fermion s, that the Lagrangia n is invariant with respect 

to the tran s fom1a ti ons (11) having the same form for all lepton functions 

the gene ra lized lep ton numbe r conserva ti on law is of t he fol"ll 

\ssu1ni ng tha t the tra ns fom1ati on of the type (1 2) o f a ny lep ton fun ction 

also lea ves th e Lagra ngian un cl•anged , we obta in th e generaliza tion of the weak charge conservation law 

N 

0wing to the identity 

this means that th e field s 

G I [ n (e + + 
)-n( e ) ] -[n(f.J. )-n(f.J. ) ] + 

+ [n( ll )-n( ;; ) ] -[n( ll )-n(;; Jll 
e e (J. (J. 

-t,BC 
( 1 + r ) e 

"!:, t .B 
e (J+r;, 

e- ' lie , (J. - · ( an ti muon) , v(J. ( anti L! (J. - ·field ) are transfonned by the law 

-t .B 
-+ e .p 

and e + ( antielectron one ), ( anti v e -field ) and vf.J. , fJ. + ( mu on one ) by the law 

If the numbers L and N/ G are added and subtracte d, two conserving num bers can be obtained 

+ ~ 

L fJ. : [ n ( fJ. ) - n ( IL- ) ] + [ n ( 111-L ) - n ( 111-L ) l · 

Hence the v e neutrino is always connecte d wi th ele c trons an d the v fJ. neutrino with muons . 

By the conservation law (331 and (35) or (39) and (40) processes of the t ype 
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+ + 
rr ... e + 1/ 

e 

+ + 
1T ... II. + 1/ 11. 

+ + 
II. ... e + 1/ + VII. ' e 

+ v + p -+ n + II. II. 
"' 
1/11. + n ... p +II. 

e tc. 

are allowed, and the processes 

+ 
v 

II. 
+ p ... n + e 

+ + 
II. ... e + y 

' 
are forbidden. 

+ + - + 
II. -· e + e + e etc. 

It may happen that the physical masses of muon and electron neutrinos m: and m~ will vanish as a result 

of the interaction. The muon and electron neutrinos will still be physicall y distinct if the interactions do not violate 

the gauge -properties of the t/J -function (37), (38) and (11) leading to the conservation laws (33) and (35). 

The muon and electron neutrinos differ by th e sign of the charge of the weak vector interaction G -constant. 

In this sense the generalized Konopinski-Mahmoud hypo thesis is fonnulated similarly for a muon and a muon neutri-

no, on the one hand, and an electron and an electron neutrino , on the other. 

In other words, the sign of the weak charge for 11. + and v particles is opposite to that for e-and v 
II. e 

particles. ·The antiparticles of these particles are 11.-;fl ande+, {J respectively. The analysis has not touched so 
II. e 

far on the polarization of muon and electron neutrinos. The study of these properties of vII. and v e neutrinos requi-

res a further elaboration of the theory and in particular the introduction of interactions. 

6. Interactions 

(a) Electromagnetic Interactions 

According to the interpretation of the vector I' (14), (17) the interaction between the electron-muon and elec-
1/ 

tromagnetic fields is of the form 

ef v e A I' p p 
-eA~rr.p p p 

-e [A t/J y t/J - A t/J y t/J], 
pepe PII.PII. 

(41) 

(42) 

The fonn (42) contains the Konopinski-Mahmoud hypothesis treating 11. and 

electrical charges of opposite signs. 

e -particles as particles carrying 
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(b) Four-Fermion Interactions 
I 

It can hardly be claimed as yet that there is a complete theory of weak interactions. It is inexpedient, for example, 

to postulate that the Lagrangian of weak interactions should not contain neutral currents. Th; B!udman' scheme /
7

/ al-

lowing neutral currents in the Lagrangian of weak interactions is as valuable heuristically at this stage of the develop

ment of the theory as the Sudarshan-Marshak and Ge!l-Mann-F eynman schemes. 

For the following it is sufficient that among the possibilities for four-fermion interactions satisfyin g the requ ire

ments of invariance with respect to the transformatims of the r./1 - -function (371, (38) and (32) we can at a ny rat e 

write the vector interaction analogous to eq. (42) 

v 

or 

G 1' 1" 
p p 

(43) 

(44) 

The interaction (44) introduces in the Lagrangian the so-called "neutral currents" i.e. , currents neutral with respect 

to electric charge. In the G -charge these currents are also of opposite signs. 

7. Case m =m 6 =m~'=O. v v v 

Suppose the neutrino field bare masses mv = 0 . Suppose the physical neutrino masses m ~ and m~ O too. 
v 

Let the gauge transformation (ll ) 3S well as (12) hold good for the neutrino field. This means that the muon and 

electron neutrinos are different in this case. In other words, just as in the case m: .f 0 

tion laws are formulated in the form (33) and (35) or (39) and (40). 

m 1L f. 0 th e conserve~ 
v 

If me = 0 and miL c 0 the interactions introduced should not violate the additional invariant properties of 
v v 

the Lagrangian 

Let us have 

r./1 e 
v 

r/Je 
v 

rjJ IL 
v 

IL e 
V' = - G ( r./1 y r./1 )( r./Je yp r./Jv ) ' 

J1. p v 

i.e., only a vector interaction is introduced. 

The transformation (45) can be re-written as 

+ e 
IS 1 

( _ _:y..L) 
2 

+ 

(45) r./JIL 
v 

(46) 

l r./1~ . (47) 

The interaction (46) is invariant with respect to the transfonnations of th e neutrino fun ction (45) if th e electron and 

muon functions transform simultaneooJsly by eq. (ll) or by eq. {12). 



or 

Th en o and m eq. (45) ca nnot be arbitrary. But on e c:an choose, fo r e xamp le. 

0 = a 

0 ( :,.. - I} 

If one a s sume s eq. (49) then we have 

t/1. y p t/1: 
I (:3 10 . 

t/1 e y [ e ( 
1 ~X-'- ) 

e p 2 
-1 0 ( 1- !:.L ) l t/11/ 

+ e 2 

t/1 y t/1 jJ. 
jJ. p v 

1 +y, • 
t/1 )' (-----· j t/1 

• p 2 1/ 

t/1 r c0..l.J t/1 11 

jJ. p 2 1/ 

( 4.q) 

(49) 

(50) 

(51) 

The requirement of in variance of the interaction with respe ct to th e tra ns forma tions (45) leaves in the in t era ction 

(51) only two component neutrinos: 

t/1 
v L 

e 
1 + Y 5 l .1. 0 

(_- '~'v 
2 

(52) 

t/1 jJ. ~ ( 1 - y .Ll t/1 jJ. 
vR 2 v 

(53) 

Two two-component neutrinos arise in the theory presented: left-polariz ed electron neutrino and right-polari zed 

muon neutrino. 

Geneti cally the 
1/1 e 

vL 
jJ. 

and .Pv R 
neutrinos origina te from different Dirac fi elds 

ferent transformation properties (37) and (38). But for pola ri zed neutrinos the identi ty 

(1:;: Ys) e- l y s f3 
±1 {3 -

e ( 1 +y
5

) . 

1/1 e 
v 

and ,P IJ. 
v 

with dif-

(54) 

is essential. Because of eq. (54) the transforma tions (37, a nd (38) for pol ari zed neutrinos coin ci de with th e transformat

ions (45) under the condition (49). The latter circums tance makes i t pos sible to unite formally the two two-compon ent 

spinors into on e four-component fun c tion wi th th e properties*. 

* On th e oth e r hand, the s ituation c an be presented in thi s way : In th e case m e = mIL v v = 0 for the two · componen t function s r./J ~ 

and t/J /f t wo equ ation s a re written at/Jt . - - v 
- -- + 1f7 p t/J 1 = 0 

- a t at/Jv· . v 
__!1. - Ia _p'V11 ~ 0 , ( B) 

(A) 

a t 
t/J V and t/J 11 are two fi e lds wi t h d i ff e r e nt t r ans!o nnatio n p rop e rtie s ( t/1 11

-+ e - l {3 1/J V ; 1/J 
11 

-+ e + 
1 

{3 1/J V ). Th ose 
I II I I II II 

fi e lds d iffer in th e s am e s ense a s the fi e ld s t/J and t/.1 de s c ri b e d by th e four· compon e nt fun c tio n s . In th e repre s e ntation i n 

whi c h e q s. (A) a nd (B ) a re wri tte n the y -ma:rlx I s d l a~on al y =I I IO I In th i s c a se y p l ays t h e sam e ro l e ( 12) 
5 6 0 - 5 

as the matrix r (4) !or the el ec tro n -m u on fi e ld . 
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( 4S) 

(49) 

(SO) 

(51) 

the interaction 

(52) 

(53) 

right-polarized 

t/J II. with dif-
v 

(54) 

with the transformat-

two two-component 

:>mponent functions 1/J ~ 

I {3 1/J v )· These 
II 

~he representation in 

lays the same rol e ( 12) 

I 

I 
t 

\ 
I 
l 

1/1 ... 
v 

-1 {3y 
e SljJ 

v (55) 

In this form the theory coincides with the theory of two types of neutrinos as presented by Kawakam/ 8/ . 

In this interpretation / a / the ideas of two neutrinos are presented most distinctly for the case m e "' m I' .. . 0 

As a matter of fact these ideas are contained in earlier works by Schwinge/
91 

and Nishijima flO/ and ~an be ~raced to 

the old papers by Fier/ 11/ . 

It is noteworthy that starting in eqs. (50) and (51) from the vector variant of the interaction of fermion fields under 

the condition (45) i.e., under the condition one can arrive at the intera ction in th e fom1 contain-

ing vectorial and axial variants. 

The view making the peculiar properties of the neutrino entirely responsible for the non-cons ervat ion of parity in 

weak intera ctions remains quite ·a,tractive. 

It is not ruled out that the existence of weak non-lepton decays is not an unsurmountable obstac le for such a 

view/ ! 21 

8. m11 =/me Problem 

If the bare electron and bare muon are described by the same equati on, th en with th e identity of all muon and elec-

tron interactions it is impossible to understand the origin of the differenc e in the masses of th ese particles in terms 

of field theory. 

In the Konopinski-Mahmoud hypoth esi s the muon is for the first time interpreted not as jus t a heavy electron. A 

question suggests itself whether it is possible to understand on the basis of the Konopinski-Mahmoud hypothes is, es-

tablishing new differences in the properties of the muon and electron, the differences in the masses of these particle s 

as well. 

In the form (2) and (3) of the equations for the bare electron and muon ( ) i t is desira ble, for 

example to indicate an interaction the inclusion of which in the generalized Dirac equation (5) would give rise to con

tri butions to the mass of the particles of the same sign. Then we would have 

m =-m-8m. 
IL 

(56) 

With a bare mass of particles equal to, say, half of the real mass of the muon andl)mclose to this value we could 

in principle explain the differences in the muon and electron masses. 

In the search for the interaction removing the degeneracy with respect to the masses of the generalized Dirac equat

ion (5), a specific property of s uch interactions viz. violation of the invariance o f the Lagrangian with respect to the 

transformation (6) mus t be the clue. 

The interaction of electrons and muons with elec tromagnetic field 

is non-invariant with respect to the transformation (6). This expression changes its sign in the trans formation (6). 

True, by "accidental" circumstances the electromagnetic interaction in simple Feynman graprs does not actually 

violate the symmetry under discussion since all contributions to the mass from the terms with the odd powers of 

13 



electric charge vanish*. An entirely different situation i s created when interactions of the type (44) are introduced. 

In the vector interaction (44) as well the graph correspo ndin g to th e form 

....---., 
J; .IJ. y p t/J IJ. JIJ. y p t/J IJ. ' 

yields no contribution to the proper energy of the particles. 

On the other hand, the graph corresponding to the form 

,....-, 

"if;IL y p J/1 1l r/J, y 1/; 
,.. p IL 

leads Just as in the scalar variant of interaction to non-z ero expressions, viz., 

or 

c - . ,, . f 
G 1/; y S (0) y tjJ = - G t/J y ( i ~~~ dp y t/J , 

e P e p e e p p:l + m 2 P " 

+ i~" G m 

4 
d p 

( ---- t/J 2 2 .. 
p + m 

8m 
m 

--2 
(271) 

tfJ. 
m G 2 

(271/ . K.,ut/Je 

G K
2 

, 
max 

where K max is the upper value of the momentum in the integral (60). 
c 

Taking into account another form of the meson field SIJ. function 

ip.- m 
-r----2 
p + m .. 

-+ 
i p + m __ )!. ____ _ 

2 2 
p + m 

IL 

(57) 

(58) 

(59) 

(60) 

(61) 

(62) 

one obtains for 8 m in accordance with eq. (56) an expression of the same sign as in th e case of electron fi eld. 
IL 

8 m IJ. 
2 m GK 
max 

(271)
2 

The pseudo-vector interaction of the type ( e, e ) ( • e, e ) does not lead, any more than the scala r or pseudo-

scalar one, to the removal of the degeneracy under discussion; they a ll equally change the initial values m 0 an d m~ ~ 
IJ. e 

It is the identity of all known manifestations of the interactions for the ele c tron and muon that is enigmatic in the 

problem m/.1 -me 

The possibility in principl e of solvin g the m iL - m 
e 

riddle takes shape in th e interactions (44). It ap-

pears impossible to obtain the correspon din g nume ri ca l values a t the present s tage of the th eo ry. 

The fa ct is that along with the graph of the type ( l) 

Q (I) 

I 
* Evidently, an e l ectri cally neutral vecto r ri e l d can no-t y i e ld an essential contribution to the mass of th e e l e menta ry parti c l es: th e 

mas s term s o ri ginating from these fields d ep end on l y lo gari thmi c ally o n th e upp e r limit or th e inte rm e diate mo m e ntum- thi s re qul· 

res the introdu c tion of l e n g th s s mall e r than the gravitation ra dius o f th e parti c l e s . 

**Provide d, o f c oure e , th e s ign s of the specific constants In these Interactions are the sam e for the e l e c tron and muon . 
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uced. 

'ie ld . 

0 -

~ m ~ ~ 
e 

n th e 

ap-

t h e 

q ui -

l 

discussed above there may be indicated graphs o f the type (II) 

(II) 

wh ere the in termittent line corresponds to the photon; or a graph of the fonn (II I) 

iiT' 

n.e interac tion can be taken in s uch a fomt of " nomlal" product which ex cludes , fo r exampl e graph l from consi -

derat ion. 

The graph of the type (II) yie lds corre8pmding additions to th e masses of bare particle s in th e form* : 

om "' - . mGa 
( 63) ---- -

( 2 rr)3 

~1u t the main thing is that if G K ~ax "' 1 infinite chains of wide ly different graph s have to be summed up. At the 

current stage of the theory ( di ver~enc e , l!l ck of rational method o f estimatin g h i~h er graphs) it does not ttppear pos -

sibl e to perform corre ctly such calcu l ~tt i o ns. 

An unsatisfac tory feature of ell !lu.• .h theories i s the introduction of the hare masses of the particles of unknown 

origins. 

'J'he s ituation in the four-f,1rmion !r; tP.ract ion theory is e s s enti ally di fferent : the theoty ino::nqiQr,.te s a priori a 

length cons tan t wh ic h could in particular act the ro le o f a bare mas s ( see eq. (64) ) . 

It can rea dily be seen that on ly the graphs of odd powers of G 

The graph s o f th e form IV 

can lead to m f m 
IL e 

(I V) 

even in the powers of G yielcl the same contribution to the masses of bare particles, decreasing, as is shown by 

cal cul ations , their bare mas s. 

----------------
* G r aph ( ll ) lo r tl. e V - A in t e rac tio n ts e v aluated 

whe r e 
Ga 

m - ·a 
------~- :~,' 

( 1 + a/3 ) v 1 - ( - --) 
l +a/3 

1 K 1 
K 1 ma x 

-----.,- m a x n - m 1 
- ( 2 rr) 

a = + 



The graphs even in the powers of G may de.crease considerabl y th e absolute value of the bare mass even if it 

exceeds a great deal the real mass of the muon* and is directl y co nnected with , for example, fundamental length 

m = -~ when A = 1, m = .XlOGev. 
f 

In th e attempts to solve th e ml!-me problem by the introduc tion, along with known interac tions, unknown 

ones specific only for the muon , th e es timation of the corrections to th e an<' ~lalous magn etic moment of the muon is a 

rather rigid criterion. From this point of view it is difficult to draw unambiguous conclusion s for the possi bility under 

discussion. 

The interaction (44) is included as an interaction between bare particles. Query: in which effectiv e fonn should this 

1 
interaction be written for non-bare particles. 

Essentiall y, the Dirac equation written for the interacti on (44) is th e genera lized Heisenberg equation (64 )-(65). 

I s 1t necessary in this equation to write along with th e term (44) th e e lectromagneti c interaction ** with bare particles? 

()r the electromagnetic interaction may arise by itself in th e equation for non-bare particles as a peculiar manifestation 

of the four-fermion interactions of bare particles in the sense of Heisenberg's we ll-known ideas. In th e latter case there 

can be no specific corrections at all to the anomalous magn etic moment of the particles caused by th e interaction (44) / ~ 2/ 
* 

* * 
The idea of the existence of two types of Dirac fi elds as a genera lization of the Konopinski-Mahmoud hypo th esis is 

adequately reflected mathematically in the second order equation for sp inors or , which is the same, in the Dira c equation 

for eight-component functions. Analysi s of these equations may logicall y lead to the Konopinski-Mahmoud hypothesis. 

But once the idea of two Dirac fields originated it can be and is ac tuall y described in tenns of the same type of the Di

rac equation for four-component functions. The physical differences of the fields: the intepretation of the particles and 

antiparticles of different fields and the signs of the vector constants of the interactions (44) must in such a description 

be introduced by additional propo!.ition-.. 

The contemplated existence of the two types of Dira c fie lds may also prove useful for the generalization of Heisen-

berg's equations. 

Essentially, the two equations 

* The oonslderatlon o f c harged c urrents ha s been o mitted for th e s ak e o f simplicity. Some of them may lead to m 
11 

=/ m in 
G I ,.. e 

the graphs of the odd powers in beginning from G 3 ( graph s III ). Graphs IV also dec rease the bare mass common for IJ. and 

e . There ari ses a considerabl e number of graphs IV if the interactio n s with bare baryons are tak en into account. 

** ln thi s case a graph of th e type 

I 

{h 
could make a con tributi on to the anomalous magnetic mom ent of the e l ectro n and muon 

me 
Oi! = --~ 

m 

a 
-~ 

When m _J._ 
f 

-7 
"' 300 GeV, 0 11."' 10 The co n ectlon (graph II) l eads to the d iff erence ln the muon and electron 

masses 
me"'40me mil. 

These rough estimates are pure ly illustrative, of course. 
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a t/J r :z A y - e Yv t/J ( t/JI y t/J ) + t/JI 0 v ax v I V I e 
and 

a t/J 11 2 
A y --- + e yv t/JII (t/JII YV t/JII) - t/JII v axv r I 

where A is a numerical constant have been implied throughout the above discussion. 

Apart from other difficulties of Heisenberg's th eory, it should be noted thet one fundamental 

have too poor possibili~ies for the description of a large variety of particles . 

The author i ~o~ indebted to A .. A.Komar for numerous stimulating discuss ions . 
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