





Abstract

% method of writing dispersion relations in quantum electrodynamics is considered. The proof

is carried out in the lowest orders of perturbation theory improved by means of the renormalization group.



1. Infrared singularities
Dispersion relations for the photon-electron scattering in the forward direction were written as long ago as 1954/1;
However a further application of dispersion relations to quantum electrodynamics met a difficulty which is due to the
infrared singularities. The physical meaning of this difficulty is that the amplitudes of the processes in which the
charged particles and a finite number of photons are involved, equals zero, if the charged particles are scattered in the
non-forward direction and differ from zero for the forward scattering. Therefore, e.g., the vertex function in electrodyna -
mics is non-analytical one. The dependence of the scattering amplitudes on the momentum transfer is non-analytical as
well.
The cross sections of processes with the infinite number of particles (soft photons) are non-zero. As for the disper-
sion relation method, it was developed up to the present only for the amplitudes of processes with a finite number of
particles.

Meanwhile, we may also consider the amplitudes of the processes with a finite number of particles in electrodyna«

2/

mics if we use the formula of the factorization of the infrared divergences’
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where M is the matrix element calculated by introducing the mass VA into the photon propagator, and the function

F. s of the form :

A
2
Fy = -Xz a,z;a F ((prag+tp, ay) )
1< 4 (2)
where the summation is performed over all the charged particles,z, is the sign of the charge, and  a, = 1 or -1
for the outgoing or the incoming particle with the momentum  p, respectively. The function ~ F is equal to™:
‘ 2 { 2
F((p‘~p)')=_ta_ dk ([ 2p'—k _ 2p—k ) (3)
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( a is the fine structure constant) and can be represented in the form :

Fy=_L [ __ImFt)dt ) (@)
L et —t—1c )

ImF ()= &\ I=4 (2t=4+X_ o t=d3) -1) (5)
4 t t—4 A
* The svatem of units A =~ € = ( the rlectron mass ) = 1 . The vector product ab = a°b° — anB.



Considering the coefficient of nA in F, wecan show that its real part is positive in the physical region, it vanishes for
the forward scattering ( for electran-electron scattering also for backward scattering) and becomes negative in the unphysical

region. If in the limit A =0 the quantity ! is finite, this means that the matrix element M N at A = ) vanishes in the physi-

cal region, is finite for forward scattering and is infinite in a part of the unphysical region. The latter property can be connected with

existence of Coulomb bound states.
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The assumption that the quantity M in (1) is finite at A ~ O is not strictly proved but it is very plausible’ “". In the

following we shall consider the analytical properties of M at A= ) for some processes in the lowest orders of perturbation

theory improved with the aid of the renormalization group.

2. Vertex function

For the vertex with three lines corresponding to two real charged particles and a virtual photon with the squared mass ¢

the quantity ¥  in third order perturbation theory is an analytic function in the ¢ -plane with the cut from 4 to infinity.

The diagrams with intermediate photons occur starting with the seventh order. They have the cut from zero to infinity.

Thus, for the vertex function the quantity ¥ possesses ordinary normal analytical properties.

3. Compton effect

We consider the quantity M for the scattering of photons on electrons. We denote the squates of the total energies of the direct

and crossed processes by S and u respectively, and the square o the momentum transfer by ¢

(2) (2) .. .
In second order perturbation theory A  contains the terms M and ¥, which have poles at the points s=1 and u=1

respectively.
The diagrams of fourth order, besides other terms, give pole terms which depend on the additional electron magnetic moment

#° . We take these terms into account in MS(% and M;m ,by replacing the y  matrices by vt u'O"mqm( q is
the momentum transfer). The other terms of fourth order give the following contribution:
¢ 4 (2 (4) 4
MM Ca(H) tn (T=s) + y(1)] + M B+M(j’ (B() tn(T-u) +y(H]+M " ®)
~ -2 dt’
B(') = Aa—_f-— ( (7)
T4y €(t =4} t(t ~t =i
y(t) =~ et { _\,"A':_Zﬂhl_' -V -4 i dt’ . 8
27 g VH(-4) t Pt —t = ic)

(4) i4) . . .
The quantities M __and A __ ( more exactly the coefficients of the spinor terms ) are analytical functions of the variables
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s,t and vt and have only branch points as singularities and satisfy a Mandelstam representation
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We see that in fourth order there are terms with the anomalous singularities (1-s) fn(l=s) and

(1-v) tn(1-v) -
/a/

By applying the equation of the renormalization group’ ™’ with respect to S and choosing the integration constant from

corregpondence with perturbation theory (6) we get the whole amplitude near the point s =1 has a singularity of the form:

bl

(2
exp [ Bt/ fn(1~s) + (1) ] ('\’4! +) (9)

n
. N 2
anda similar one near v =1 . In (9) the terms of the pertutbation series of [a fn(l1=s)] and a order are sum-

med up. It is reasonable to assume that the amplitude M is of the form:

M =M Pexp [B(1) tn(1~5)+y (1)] M exp [ BN In(1=u)+y(1) 1+ M, (10)

(2)
where 3 and y ate the series, whose first terms are given by (7) and (8),in M . the additional magnetic moment is

taken into account and

4
M
a sa TMu, + an

is an analytical function with branch points satisfying the Mandelstam representation.
The real patt of the coefficient A(*) in (10) and (7) is negative in the physical region of the variable #( #<0, t>4)
and positive at 0 <t<4 . Thetefore the quantity M near $=1 (and analogously near u=1 ) has a singularity of

the form

-1+8(1)
(1=-s) 12)
which, in the physical region of ? , is stronger than a pole.
Finally, we consider one consequence of equation (10). Namely, we assume that quantity of the fourth order Mgy may be
neglected in the whole physical region of the energy. Then for M we have an asymptotic behaviour of the Regge type (Sa{' )
where the powet of s is -1+ B(t) ,which cortesponds ta electron positton bound states. The levels of these states in

the non-relativistic limit turn into the Coulomb ones.

4. Electron-positron scattering

For the vertex function and the Compton effect, the quantity F)\ in (1) is simply equalto  F(t) , while for electron-
positron scattering it is of the form:

F\ =2F(s) =2F(v)+2F(1), 13)

whete the variables s , vand f have the same meaning as in the previous Section. (2)

' (2)
The quantity M for electron-positron scattering in second order perturbation theory contains the terms M ¢ and M'

being polesat s =0 and t=0 respectively. As before, we shall take into account the terms of higher orders in these poles,

which depend on the additional magnetic moment.



Cuwort oot woap the {onrth or der give the following contribution

(4 (2) (4)
M= 2(D(s,0) = Dlud) ) M+ M+ (14
(2) (4)
+2{(D(ts)~ OD(us) ) M _+M
where
®(s,t)~u(st)=-u(01), (15)
J(sa) = ia [ dk(p'n =(p k)(pk)IK?) 20k
(s t)=__"%__ g '
n? k2 k 2+ 2p'k )(k *=2pk )(q *2qk +ic) (16)

p‘ and p are the electrn and positron momenta before (or after) the reaction, g is the momentum transfer.
The function @ is of the form:

O(st)=_°_ | JEﬁ’féﬁriLde — a”n
7 4 s'(s'=s-ie)

= a ' _s=4 s=2 _fn =t 50,
Im & (s,1) 5\ — [—5_4 "o b2 ‘ (183)

(4)

. (4) .
The functions M_, and M, contain no pole terms and are analytical functions of the variables s , v and tu
respectively, and satisfy a Mandelstam reptesentation.

The expression (14) can be rewritten in the form:

(4)
W= ML(B(s) =B (o) In(- )rels) —e(v) 1M,y + 1)
(2) (4)
+M, [(BM=B@Wh(-s)+e(t)=ec(w)+M,,,
where [3(#) is given by the formula (7) and €(#) is of the form:
_at [y ted [ t=2 1 oy dr
e(t) - 4f\ | P n o +% FCF—tie) (20)

Repeating the arguments of the previous Section, for M  we can write a representation as in equation (10), or the representation

M=exp [ (B(s) - B(u)in(=t) +e(s)~e(u) 1 M, +



+exp [ (B(t) ~ B(v) In(=5) +€(t) = c(v) I Mg

on
1.:ing the explicit form of thr function (13) we may represent the matrix element M A in the form
N -1
M \ = exp [(B(s)=-pB(v) tn A,_):_,_ +2F (1] My + (22)
-5
+exp[ (B(t)=B(u) fn______ +2F(s)} M
A sa
sonsider the imag’mary‘par( of the power of the first exponent of this expression in the physical region s.-4 . t<0
v Tt is equal to
-t - -
ilmB(s) tn . _ =ia e 2 In w__f» .
A Vs(s=~4) by 23

We see that the imaginary part of the singular expression in the power of the first exponent in (22) leads to a divergent phase

Ei,? ,
exp [ ia P fn 2 sHL(@] 2 )‘ ]

pE VA (24)

(in c.m.s. ) which, in the non-relativistic limit, coincides with the divergent phase of the scattering amplitude in the Coulamb field

in non-relativistic theoryr/sr’/-
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