

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Лаборатория ядерных проблем

Б.М.Головин, В.П. Джелепов, Р.Я. Зулькарнеев, Цуй Ва-чуан

Д - 1073

УГЛОВАЯ ЗАВИСИМОСТЬ КОРРЕЛЯЦИИ ПОЛЯРИЗАЦИЙ С_{лп} И восстановление модулей амплитуд Для *PP*-рассеяния при энергии 640 мэв

оценка синглетных фаз II поэта, 1963, т44, вып. 1, с 142-147.

Б.М.Головин, В.П. Джелепов, Р.Я. Зулькарнеев, Цуй Ва-чуан

Д - 1073

УГЛОВАЯ ЗАВИСИМОСТЬ КОРРЕЛЯЦИИ ПОЛЯРИЗАЦИЙ С_{лп} И восстановление модулей амплитуд Для *рр*-рассеяния при энергии 640 мэв

ОЦЕНКА СИНГЛЕТНЫХ ФАЗ ІІ

Дубна 1962 год.

Описана постансвка опытов по тройному рассеянию протонов и приводятся результаты измерения коэффициентов спиновой корреляции С_{пп} при упругом рассеянии протонов с энергией 640 Мэв протонами для ряда углов с.ц.м., отличных от 90[°].

На основе анализа полученного и имеющегося в литературе для данной энергии опытного материала восстановлены количественно в широком интервале углов 50° < θ <180° модули амплитуд *pp* -рассеяния и даны их относительные вклады. Определены также значения синглетного и триплетнего сечений для некоторых углов; произведена оценка фазовых сдвигов для *pp* -системы при данной энергии в синглетных состояниях.

1. Введение

Настоящая работа является одним из исследований набора опытов, выполняемого на синхроциклотроне ОИЯИ в соответствии с намеченной программой полного опыта по *при pp* -рассеянию ^{/1,2/} для восстановления матрицы нуклон-нуклонного рассеяния при энергии 640 Мэв. В то же время она представляет вторую часть проводящейся нами работы по измерению при указанной энергии корреляции нормальных поляризаций /параметр *С*_{пр} / в *pp* -рассеянии.

В первой части этого исследования значение С_{лл} было найдено для угла 90⁰ с.ц.м.^{/3/}; в данной работе этот параметр определен для углов 54⁰ и 72⁰ и соответствен но для дополнительных к ним 126⁰ и 108⁰.

Являясь к настоящему времени экспериментом, в известном смысле завершающим определенный этап программы опытов по pp -рассеянию при 640 Мэв, опыт по измерению C_{nn} вместе с другими данными позволяет, как будет видно из дальнейшего, уже сейчас, не прибегая еще к фазовому анализу данных, получить значительную новую информацию о pp -рассеянии при указанной энергии. В то же время, так как каждое из значений C_{nn}, приближенно говоря, дает независимое соотношение между фазовыми сдвигами воли, участвующих в рассеянии, то в будущем при проведении фазового анализа всей совокупности данных о pp -рассеянии данные о параметре C_{nn} могут дать ценные сведения о фазах рассеяния, а также явиться критерием для выбора наи более вероятного решения.

2. Постановка эксперимента

Схема установки для измерения параметра С_{пп} приведена на рис. 1. Неполяризованный пучок протонов с энергией 640 Мэв, сформированный квадрупольной линзой и двумя коллиматорами /6 20 мм/, падал на первую мишень / H₂ /-цилиндрический сосуд с жидким водородом. Плотность потока протонов в месте расположения мишени обычно составляла /3 ± 3,5 /. 10⁸ см² сек⁻¹; при этом, как показали контрольные опыты, проводившиеся в процессе подготовки каждой серии измерений, пучок в месте падения на мишень был достаточно однороден.

3

Протоны, упруго рассеянные на первой мишени, проходили коллимирующие щели в локальной защите, регистрировались счётчиками l_L и l_R и после рассеяния на мишенях - анализаторах T_L и T_R детектировались группами счётчиков $2_L 3_L 4_L$ и $2_R 3_R 4_R$. Геометрия вторых рассеяний, материал и толщины рассеивателей T_L и T_R указаны в таблице 1.

Т	a	бл	ица	a 1
---	---	----	-----	-----

	Пороговые телескопов	энергии /Мэв/	Материал вторых ра в г	и толщина оссеивателей /см ²	Углы рас	второго сеяния
θ [°] с.ц.м.	E _L	E	T _L	T _R	θ L	θ_R^0
54 <u>+</u> 3	270	140	· Al 38	C; 8,0	10 <u>+</u> 2,5	14 <u>+</u> 2,5
72 <u>+</u> 3	390	130	C 21	С, 8,0	11 <u>+</u> 2,5	14 <u>+</u> 2,5

Использованное в настоящей работе перекрестное включение счётчиков l_R и l_L с телескопами 2_L 3_L 4_L и 2_R 3_R 4_R , как это показано на рис. 1, позволяло более эффективно, чем при включении, применявшемся нами ранее $^{/3/}$, выделять случан упругого pp -рассеяния на фоне интенсивных процессов неупругого рассеяния. Параметры схем совпадений CC_L , CC_R и CC_s остались, в основном, прежними.

3. Калибровочный опыт

При упругом рассеянии протонов протонам с энергией 640 Мэв оба протона имеют довольно высокое значение поляризации. Это обстоятельство было использовано для калибровки анализирующих способностей мишеней T_L и T_R , проводившейся одновременно с измерениями корреляционной асимметрии. Анализирующие способности P_L и P_R мишеней T_L и T_R второго рассеяния определялись обычным методом наблюдения право-левой асимметрии во вторых рассеяниях. При вычислениях величин P_R и P_R использовались данные по поляризации в *pp* -рассеянии, полученные в работе $^{/4/}$. Найденные значения P_L и P_R приведены в таблице 3.

4. Корреляционная асимметрия и коэффициент С.

Величина корреляционной асимметрии находилась по известной формуле

$$\epsilon' = \frac{N_{LL} + N_{RR} - N_{LR} - N_{RL}}{N_{LL} + N_{RR} + N_{LR} + N_{RL}}$$

где N_{LL} , N_{RR} и т.д.-исправленные на фон скорости счёта схемы-совпадений СС₃ при соответствующих положениях телескопов, измеряющих скорости счёта во вторых рассеяниях. Фон установки при измерениях величин N_{LL} , N_{RR} и т.д. определяется аналогично тому, как это делалось в нашей предыдущей работе $^{/3/}$. При этом поправка

4

на случайные совпадения в схеме CC_3 измерялась при включении линии задержки в один из её каналов. Случайные совпадения в схеме CC_3 при введении задержки в каналы I_L или I_R были пренебрежимо малы и при вычислениях не учитывались X'. Определенный таким путём суммарный фон при измеренияхи величин N_{LL} , N_{RR} , под разными углами колебался в пределах 15-30% от полной скорости счёта схемы CC_3 .

Для определения истинных корреляционных асимметрий є в экспериментально найденные значения є¹ вносились небольшие поправки на ложные корреляции є ложн обусловленные геометрией установки. Величины ложной корреляционной асимметрии для различных углов приведены в таблице 2.

Таолица	2	
---------	---	--

9°с.ц.м.	54	72	.!	90	
< (θ) ложн.	-0,01 <u>+</u> 0,01	0,01 ± 0,01	0,01	<u>+</u>	0,004

В таблице 3 приведены значения корреляционной асимметрии $\epsilon(\theta) = \epsilon^{1}(\theta) - \epsilon(\theta)_{\text{ложн.}}$ и величины коэффициэнта $C_{nn}(\theta)$, вычисленные по формуле $C_{nn} = \frac{\epsilon}{P_{L}P_{R}}$. Там же дано значение C_{nn} для угла $\theta_{C.U.M.} = 90^{\circ}$, найденное нами ранее. Приведенные в таблице величины $C_{nn}/126^{\circ}/$ и $C_{nn}/108^{\circ}/$ приняты равными $C_{nn}/54^{\circ}/$ и $C_{nn}/72^{\circ}/$, соответственно, вследствие свойств симметрии параметра $C_{nn}(\theta)$

Та	блица	3
----	-------	---

θ° с.ц.м.	C _{nn} (θ)	ε(θ)	$P_{L}(\theta)$	$P_{R}(\theta)$
54	0,57 <u>+</u> 0,14	0,15 + 0,04	0,40 <u>+</u> 0,03	0,88 <u>+</u> 0,05
72	0,65 <u>+</u> 0,15	0,22 + 0;03	0,55 <u>+</u> 0,07	0,62 <u>+</u> 0,07
90	0,93 ± 0,21 ^{/3/}	0,26 + 0,04	0,51 <u>+</u> 0,06	0,54 + 0,06
106	0,65 + 0,15			
126	0, 57 <u>+</u> 0,14			

5. Обсуждение результатов

В связи с завершением измерений угловой зависимости параметра C_{nn} , доступными для анализа оказываются данные уже значительного количества независимых экспериментов по *pp* -рассеянию, выполненых при энергии протонов 640 Мэв: $\sigma(\theta)^{/5/} C_{nmp}(\theta^{4/} L(\theta), K(\theta)^{/6/}, C_{kp} 90^{0/7/}, R(\theta)^{/3/}$ и др. Это обстоятельство, а также определенный успех, достигнутый в работах Казаринова и Силина^{/9/}, осуществивших фазовый

х / При измерениях фона случайных совпадений длины вводимых линий задержки импульсов выбирались, исходя из известной временной структуры выведенного из ускорителя пучка протонов.

5

анализ данных по нуклон-нуклонному рассеянию в области энергий ниже порога мезонообразования, позволили начать осуществление фазового анализа всей совокупности опытных данных при 640 Мэв /Зулькарнеев, Лапидус, Силин/.

Однако, на данной стадии опытов на основе обработки имеющегося материала и до проведения фазового анализа удается уже определенным образом продвинуться вперед и приступить к непосредственному восстановлению элементов матрицы рассеяния при указанной энергии. Ниже излагаются результаты проведенного анализа данных.

<u>1. Определение значений квадратов модулей амплитуд *pp* -рассеяния В представлении Оме^{/10/} амплитуда упругого *pp* -рассеяния записывается в виде:</u>

$$M = \frac{1}{2} \{ (a+b) + (a-b)\vec{\sigma_1} \ \vec{n}\vec{\sigma_2} \ \vec{n} + e(\vec{\sigma_1} + \vec{\sigma_2})\vec{n} + (c+d)\vec{\sigma_1} \ \vec{m}\vec{\sigma_2} \ \vec{m} + (c-d)\vec{\sigma_1} \ \vec{l} \ \vec{\sigma_2} \ \vec{l} \} \}$$
(1)

При такой записи *М* измеряемые на опыте величины сечения упругого pp-рассеяния и параметров Вольфенштейна *С_{пп}*, *D* и т.д. описываются следующими выражениями /1/:

$$\sigma(\theta) = \frac{1}{2}(|a|^{2} + |b|^{2} + |c|^{2} + |d|^{2} + |e|^{2}); \quad P(\theta^{1}) = \frac{Reae^{*}}{\sigma(\theta)};$$

$$C_{nn} = \frac{1}{2\sigma(\theta)}(|a|^{2} - |b|^{2} - |c|^{2} + |d|^{2} + |e|^{2});$$

$$D(\theta) = \frac{1}{2\sigma(\theta)}(|a|^{2} + |b|^{2} - |c|^{2} - |d|^{2} + |e|^{2});$$

$$K(\theta) = \frac{1}{2\sigma(\theta)}(|a|^{2} - |b|^{2} + |c|^{2} - |d|^{2} + |e|^{2}).$$

Совместное решение этой системы уравнений с использованием опытных данных и указанных ранее работ позволило вычислить квадраты модулей амплитуд *pp* -рассеяния и найти их относительные вклады в сечение при различных углах. Результаты расчётов приведены в таблице 4.

 ₿ ⁰ ,	$\frac{ a ^2 + e ^2}{2\sigma(\theta)}$	$\frac{\left b\right ^{2}}{2\sigma\left(\theta\right)}$	$\frac{ c ^2}{2\sigma(\theta)}$	$\frac{\left d\right ^{2}}{2\sigma\left(\bar{\theta}\right)}$	$\frac{ a-e ^2}{2\sigma(\theta)}$
54	0,78 + 0,09	0,21 + 0,08	0,00 + 0,08	0,00 + 0,08	0,42 + 0,08
72	0,66 + 0.07	0,19 + 0,07	-0,02 + 0,07	0,17 +_0,07	0,53 + 0,07
90	0,95 + 0,08	0,02 + 0,05	0,02 ± 0,05	0,02 ± 0,08	0,95 ± 0,08
108	0,66 + 0,07	-0,02 ± 0,09	0,19 + 0,09	0,17 ± 0,07	0,79 ± 0,07
126	0,78 <u>+</u> 0,09	0,00 ± 0,07	0,21 ± 0,07	0,00 ± 0,09	1,14 + 0,08

Таблица 4

Можно видеть, что сильно преобладающий вклад в сечение pp-рассеяния во всем рассматриваемом интервале углов дают члены $|a|^2 + |b|^2$, где *e* - член, ответственный за спин-орбитальное взаимодействие. При этом для угла 90[°] вклад члена е особенно велик /порядка 90%; это ранее уже отмечалось ^{/2/} /. Вклад членов $|d|^2$ практически на всех углах, а |с|² на углах $\theta \leq 90^{\circ}$, мал. Это приводит к тому, что для углов 90[°] ≥ θ ≥ 50[°] амплитуда pp-рассеяния /1/ приближенно может быть определена лишь тремя первыми членами, что в дальнейшем может упростить анализ.

2. Определение модулей матричных элементов. Имеющиеся опытные данные позволяют также найти для некоторых углов рассеяния модули матричных элементов $|M_{ss}(\theta)|$ матрицы рассеяния /представление Стаппа / и при энергии 640 Мэв определить сечения синглетного pp-рассеяния $\sigma_s(\theta) = \frac{1}{4} |M_{ss}(\theta)|^2$. Для угла 90° это сечение непосред ственно определяется также из соотношения $\sigma_s(90^\circ) = \frac{1 - C_{pp}(90^\circ)}{2} \sigma_{pp}(90^\circ)$ и составляет

 $σ_s/90^\circ/ = /0.07 \pm 0.2 /.10^{-27} \text{ см}^2$, так как согласно нашим данным /таблица 3 / $C_{nn}/90^\circ/ = 0.93 \pm 0.21$, а $σ_{pp}/90^\circ/ = /2.1 \pm 0.2 / 10^{-27} \text{ см}^2$ /5/. Сечение в триплете $σ_{tr}(90^\circ) = σ_{pp}(90^\circ) - σ_s(90^\circ) = (2.0 \pm 0.3) 10^{-27}$.

Заметим, что недавно при анализе опытных данных по рр-рассеянию, включающих измерения параметра R /90°/, для $|M_{ss}$ /90°/ при 640 Мэв, была получена величина /0,24 \pm 0,11/.10⁻¹³ см^{/8/}. Это приводит к сечению σ_s /90°/ = /0,14 \pm 0,13/ 10⁻²⁷ см², в пределах погрешностей, согласующемуся с найденным непосредственно по C_{ns} /90°/.

Так как согласно опыту $^{/6/}$ параметр деполяризации D для угла 54° близок к единице / D / 54° / = 0,99 ± 0,25/, то полагая в выражении Стаппа $^{/11/}$ для C_{nn} и D через матричные элементы D / 54° / = 1 получаем возможность оценить величину синглетного матричного элемента для этого угла. В этих условиях получаем:

$$|M_{ss}(54^{\circ})|^{2} \approx |1-C_{nn}(54^{\circ})| \cdot \sigma_{pp}(54^{\circ})$$

Отсюда, используя определенное нами значение С_{лл} /54⁰/, находим

 $/M = /54^{\circ} / = /0.40 \pm 0.07 / .10^{-13} \text{ cm}$.

Это дает сечение в синглете $\sigma_s /54^\circ / = 0.4 \pm 0.14 / .10^{-27} \text{ см}^2$. Сечение pp-рассеяния в триплетных состояниях для этого угла составляет $\sigma_{tr} /54^\circ / = /3.3 \pm 0.2 / .10^{-27} \text{ см}^2$ /так как $\sigma_{pp} /54^\circ / = /3.7 \pm 0.2 / 10^{-27} \text{ см}^2 / 5'$. Заслуживает быть отмеченным факт существенного возрастания вклада синглетного рассеяния в полное сечение рассеяния под данным углом, наблюдаемого при уменьшении угла рассеяния от 90° к 54°. <u>3. Оценка синглетных фаз.</u> Далее мы попытались оценить фазы синглетного pp-рассеяния при энергии 640 Мэв. Это было сделано в предположении, что вклад парциальных волн с $\ell \geq 4$ может быть вычислен в одномезонном приближении. При этих расчётах фазы 'S₀, 'G₄ и т.д. принимались вещественными, а модуль S -матрицы для $\ell = 2$ был взят из теоретической работы Сороко^{/12/}, выполненной ранее в нашей Лаборатории и

посвященной обработке данных, полученных при изучении реакций $p + p = \pi^{+} d \pi^{+} n + p \pi^{0} + p + p$ на поляризованном и неполяризованном пучках протонов. Численные значения вещественных частей фазовых сдвигов волн 'S₀ и 'D₂ в обозначениях работы ^{/9/}, определенные на основании приведенных выше величин $|M_{ss}(\theta)|^2$ для углов 54[°] и 90[°], даны в таблице 5^{×/}. Для иллюстрации изменения этих фаз с энергией в той же таблице приводятся их значения при энергиях, меньших порога мезонообразования/набор 1 из работы^{9/}/

Более подробное описание методики расчёта указанных фазовых сдвигов будет дано в особой статье, посвященной попытке проведения фазового анализа всей совокупности имеющихся опытных данных для pp-рассеяния при 640 Мэв.

Таблица 5

Coc-			Энерг	гия в Мэв			
то						6	40
	40	90	147	210	310 310	а-решен.	б-решен.
's,	44,5 ⁰ <u>+</u>	29,2 [°] <u>+</u>	16,80 ⁰ <u>+</u>	4,52 [°] <u>+</u>	-7° <u>+</u>	-30 [°] ±	40 [°] <u>+</u>
·	<u>+</u> 1',9 ⁰	<u>+</u> 1,6°	<u>+</u> 0,63 [°]	<u>+</u> 0,50 [°]	<u>+</u> 1,8°	<u>+</u> 7 ⁰	<u>+</u> 6,5 ⁰
	1,48°±	1,12 [°] +	7, 0 7° <u>+</u>	7,14 [°] +	11° <u>+</u>	7,5° <u>+</u>	7,5° <u>+</u>
' D 2	<u>+</u> 0,18 ⁰	<u>+</u> 1,98 ⁰	<u>+</u> 0,23 ⁰	<u>+</u> 0,19 ⁰	<u>+</u> 0,6 ⁰	<u>+</u> 5°	<u>+</u> 5 ⁰

В заключение отметим, что найденное нами экспериментально значение параметра $C_{nn}/72^{0}$ / не согласуется с расчётной оценкой его величины, данной в работе ^{/8/}. Это, по-видимому, указывает на недостаточную обоснованность предположений, сделанных авторами указанной работы при вычислении параметра C_{nn} .

Авторы пользуются случаем выразить благодарность Н.И.Солнцеву за помощь при проведении измерений.

Литература

- 1. Л.Пузиков, Р.Рындин, Я.Смородинский, ЖЭТФ, <u>32</u>, 592, 1957;
- 2. Б.Головин, В.Джелепов, В.Надеждин, В.Сатаров, ЖЭТФ, <u>36</u>, 433, 1959.
- 3. Б.М.Головин, В.П.Джелепов, Р.Я.Зулькарнеев, ЖЭТФ, 41, 83, 1961.
- 4. М.Г.Мещеряков, С.Б.Нурушев, Г.Д.Столетов, ЖЭТФ, 33, 37, 1957.
- 5. Н.П.Богачёв, И.К.Взоров, ДАН, <u>99</u>, 931, 1954.
- 6. Ю.П.Кумекин, М.Г.Мещеряков, С.Б.Нурушев, Г.Д.Столетов, ЖЭТФ, <u>38</u>, 1451, 1960.
- 7. В.И.Никаноров, Г.Петер, А.Ф.Писарев, Х.Позе, Препринт ОИЯИ, Р-863, Дубна
 - 3/1961/; ЖЭТФ /влечати/.
- 8. Ю.П.Кумекин, М.Г.Мещеряков, С.Б.Нурушев, Г.Д.Столетов, ЖЭТФ / в печати /.
- 9. Ю.М.Казаринов, И.Н.Силин, препринт ОИЯИ Р-970, 1962; ЖЭТФ / в печати /.
- 10. R. Oehme, Phys. Rev. <u>98</u>, 147 (1955).
- 11. H. Stapp, Phys. Rev. 105, 302 (1957).
- 12. Л.М.Сороко, ЖЭТФ, <u>35</u>, 276, 1958.

Рукопись поступила в издательский отдел 16 августа 1962года.

Рис. 1. Схема опыта.