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In the well-known paper of Minami1 1 1(comp.l 2 1) it bas been shown that the cross sec

tion of the scattering of a particle with spin 1/2 by a spinless target remains invariant 

under the transposition of the phase shifts of all pairs of states belonging to the same 

total angular momentum: 
s re ~ i - y, J .: s re - i + y, J • 

(1) 

Minami transformation changes, however, the sign of the transversal component of polariza• 

tion. The resulting double valuedness is therefore eliminated if this sign is known. In the 

paper of Pusikov, Ryndin and SmorodinskyiJI it has been noted that the additional inversion 

of sign*: 
s ( f - y, ) :. - s ( f + y, ) (2) 

changes neither the cross section nor the polarization and can lead to an ambiguity of 

phase shift analysis. Such ambiguity is eliminated, e.g. if polarization is rotated by a 

magnetic field or by measurements of the energy dependence of the phase shifts at small 

energies. 

In a subsequent paper Zastavenko1 4 1** discussed the possibility to generalize the 

transformation (1) to the case of higher spins and relativistic particles. However, the 

physical meaning of transformation (2) was not made clear enough. In fact, this transforma

tion reflects the symmetry of a simple type. Namely, (2) is nothing that the change of the 

sign of the helicity of the particles (i.e. the projection of the polarization of a par

ticle on the direction of its velocity). The simple fact that it is impossible to measure 

the sign of the longitudinal polarization in scattering experiments without the use of ex

ternal fields (or polarized targets) leads to this doublevaluedness. In such a form this 

statement may be easily generalized to the case of arbitrary spins. More unexpected is the 

transition to relativistic systems where "relativistic spin rotation" 'liolates the mentio

ned symmetry and leads at sufficiently large energies to a "fine structure" of the cross 

sections of repeated scatterings calculated on the basis of the results of the "complete 

set of experiments". Transformation (1) may be written in a matrix form: 

M = ( o n 1 ) M {on 1 ). (J) 

Here M is the s,cattering matrix (in the spin space), n, and n 1 are the unit v.ectors 

in the directions of the incident and the scattered particles respectively in c.m.s. Since 

*Recently this substitution bas been used by Nauenberg and Paisl 51. 

**See alsol 6 1. Paper1 7 1 contains an erroneous conclusion. 
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• 

un 1, 1 ~ expi(un 1, 1 ) 'h " = U (n 1, 1 ) is the operator of the spin rota tion by the angle 

" around the axis n 
1,1 1 then (J) is rewritten in the form: 

U-+ U + (n
1

) M U(n1 ). 
(4) 

It is obvious without calculat ions that such a transformation changes the sign of the tran$

versal polarization of the particles. Transformation (4) anticommutes with space reflectio~ 

P( u n ) ~- (un) P (5) 

( n is one of the vectors n, or n 1 • It changes therefore the parity of the state. 

It is easy t o see that the transformation (4) does not violate the condition of unitarity 

i(M+-M)- _!__ M+AI . 
2tr 

Besides , i t is obvious that (6) is invariant under the substitution 

M -+ - M +. 

(6) 

(7) 

This follows from the fac t that MM+ = M+ M due to the unitarity nature of the matrix 

S=I+2ikM+ 

Tr~nsformation (7) consists of the inversion of the sign, transition to the Hermitian 

conjugated matrix in the spin s pace and the transposition of the initial and final momenta . 

The signs of all s pin components are changed. This transformation corresponds to change 

of t he signs of a ll phase shif ts. This is easily seen if we write the scattering matrix in 

the rM representa tion in which it is symmetrical (in virtue of the time reflection 

symmetry) • 

Two successive t~ansformations: rotation of all spins at " around the respective 

momenta and transformation (7) lead to the inversion of the helicity of all particles*. 

For. a paricle with spin l/2 the inversion of helicity reduces to the substitution 

( 2). The above considerations are immediately generaljzed to the case of an arbitrary spin, 

only the form of the operators being changed. In particular, the rotation operator U(n) 

for a partic le with spin s will be equal to exp i(Sn)tr and its commutation with the space 

reflection operat or is of the form 

1 s 
UP- (-1 ) PU. (9) 

When a system consists of several particles the inversion of helicity is to be made for 

each particle. The rotation operator decomposes in this case into the product of operator 

affect i ng each particle. 

* It is worth to mention the similarity of this transformation to the so called G 

inversion in the isotopic spin space. 
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Therefore, for systems with integral spin Minami transformation and inversion of he

licity do not change the parity of states, while for systems with half-integral spin pari

ty changes. 

In considering any process occuring in a collision of an arbitrary polarized beam 
. . 

with an arbitrary pol arized target, we may conc lude that if an experiment determines only 

the absolute value of the components of polarization in the initial and final states, thmre 

exist f our sets of amplitudes satisfying all results of experiments. If in these experi-

ments the sign of the transversal polariza~ion is determined, then there remain two sets 

only • To eli~inate the remaining double-valuedness it is necessary to measure the sign 

of the longitudinal polarization. For this it is necessary to measure the pseudoscalar 

sn • This can be made by introducing either the magnetic field (measurement of the sea-

l ar ( Sn ) (lln ) of the electric field (scalar (S n ) (E • n
1 

x n 
1

) or finally, by analysing the 

energy dependence of the observed effects ( Sn 

inversion) • 

is transforms like a scalar under time 

A polarized beam is usually obtained by means of scattering by several target, the 

scattering planes be ing different. If particles are nonrelativistio the direction of pola

rization does not change in transitions from one reference frame to another and repeated 

scattering does not modify the above conclusion. This is easily seen if we take into acco

unt the fact that the cross section of the n-fold scattering started with the scattering 

of an unpolarized beam is described by the trdce of the density matrix 

p M ••• M 

n times 

+ + 
M • •• II (10) 

n times 

and that the direction of the incident particle coincides with that of the scattered par

ttcle in the previous scattering. 

The situation changes if particles are relativistic. 

Stappl 8 1 has pointed out the role of relativistic effects in repeated scattering 

processes. The polarization of the scattered particle after the first scattering (by a 

target at rest) rotates at an angle !l (in the negative direction of the scattering angle) 

in the transition to the center-of-mass system of the second scattering (See Appendix). 

Since the rotation at the angle n around the axis normal to the scattering plane does 

not commute with the inversion of helicity, this effect eliminates the above mentioned am

biguity. Iri this sense Lorentz transformation plays a role similar to that of a magnetic 

field introduction between successive scatterings. 
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For spinless particles the s ec ond scattering yields no new information compared to 

that of the first one and does not eliminate the ambiguity of the sign of the phase shifts 

connected with transformation (7). For particles with spin 1/2 the polarization resulting 

in t he soatte=ing of the unpolar l ze d beam is normal to the scattering plane. Therefore the 

1nv~riance of the a symmetry of t he s econd scattering under the transformation M _,- UM+U + 

ls not eliminat ed by the relativ istic spin rotation. This invariance is violated starting 

' from the a symme t ry of the thir d scattering*. 

For particles with spins higher than 1/2 the vector part of the polarization after 

the fir s t scattering does not changes by the relativistic rotation around the normal. But 

~ .he tensor pa r t of this pola r izat ion is not invariant under this rotation. In this case · 

the i nvar l ance i s vi olated a l r eady for t he asymme t ry of the s econd scattering**· 

Note that the i nvariance of the observables does not occur at all if condition incom

pat i ble with t he invers ion of he l icity of a ll particles are imposed. If for the scattering 

o! particles with s pi n 0 , l/2 onl y a n odd number of first 2 k + I phase shift is assumed to 

be diff erent f rom zero, then i t is impossible to make the corresponding transformation of 

phase shifts : all the resul t s of the s uccessive scatterings are different for all of the 

2 2 >+ 1 sets of phase shift ( 2k + 1 is the number of phase shifts in the order 

~Qmpatible with the cross section of the scattering of an unpolarized beaml 8 l· . ., 

APPENDIX l 

s 
I' ' P I' 

We giv~ here a simple derivation of the formula for the relativistic spin rotation 

... ) 

- 191 · 110 1 
ba sed on the formulas of hyperbol ic geometry • This formula has been derived by Stapp · 

b7 multiplying Lorentz transformation matrices. 

In order t o compare the direction of a four-vector in two different reference frames 

~e need to carry out a paral l el translation of the vector from one system of coordinates 

to another a nd compa re the direction of t he transferred vector with the vector given in 

the second systemllll. In going over from one scattering to anot her a transition is perfor

med frorr. t he rest s yst em R to t he c.m.s. c of the first scattering (in which the scatter ... 

i ng ma trix i s giv en) . Af t er t his the pol a r ization can be transformed into the system of 

the target r. (Lab .sys .). To calculate the sec ond scattering we must again transfer the 

* I t is curi ou.s that for the system of mass less particles (extreme relativistic case) 
~inami trans formation does not change the state of the particles ( they a re longitudinal) 
&nd the sta te of polarization does not c hanges by rela tivistic effects. The only essential 
transformation wi ll be (7 ) which i n this case is nothing else as charge conjugation. 

**This was found by Zasta venko!JI by means of a direct calculations • 
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polarization to the rest system. Three successive transformations R -+ c-+ L -+ R do not 

return the vector to the initial value due to the non-euclidean matric of the Lobaohev3ky 

velocity spacellll. 

we consider a space the radius-vector of which (or space point) describes the partic

le velocity. In this space the hyperboloid metric holds. The segment between the two poi~ 

determines the relative velocity of the particles: 

th a = {3; cha = ( 1- {3 2 ) -y, = y; 2ch 2_!!_ • 1 + y 
2 

The scalar product of the two velocity vectors can be written in the form 

To compare the two vectors one of them is to be displaced parallely along a geodesic line. 

The rotation under consideration is none other than the b,yperbolic defect (the difference 

betwen " and the sum of the angles of a triangle) of the hyperbolic triangle with verti

ces defined by velocities of the three systems R , c , L • Several formulas can be writ

ten for the hyperbolic defect . If we denote the sides of the triangle by a , b and c 

then stapp formula coincides with that for the defect : 

or more briefly, 

sin n = 1 + ch a + ch b + ch c ( 1 + 2 ch c ch b ch c - ch 2 a - ch 2 b- ch 2 c) y, 
8ch 2 B ch Oh ch2 C 

2 2 2 

cos E. 
2 

1 + ch a • ch b + ch c 

4 ch 7 ch -f cA -f 

In annals on Non-Euclidean geometry are usually given other formula, e.g. 

sin Jl ~ [shpsh(p- a)~Jp- b)sh(p- a))y, 
2 4 ch 1 elL~ ch y 

where 2 p =a+ b+ c , from which our expressions are obtained by means of simple tr&lnsforma-

tiona. 

The authors are grateful to R. Ryndin for valuable discussions. 

Note added in proof. After this paper was completed we received the paper by Wickl}21 

in which h" also discusses t he interpretation of 0 as a hyperbolic defect • 

APPENDIX 2 

Transformation of Scattering Matrix Elements and Observables 

We have considered the transformations: 

+ 
U -• U M U 

+ + 
I! -•- 'J .~1 U 
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1. §R!~-~~r2-~£~~1~r!~B· We put the scattering amplitude into the form 

M ~ e 1a y o 

Under the transformation (a) a~" , a~"- a the corresponding phase transformation is st~-si 

2. 2-P.iE_!Lg_• M ~a + b(on) , where 

a = 
I a - I {3 r:--;:- I {3 r:--;:-Y,y o e (e yJ+ P +e yl-P 

b • V:y o e 1a(e- 1{3 ~- e 1{3 ~ 

a is the differential cross-section, 

P is t he value of the polarization. 

Under (a): 

Under (b) : 

Under (c ) 

. 
a ... -a b ~ b .. 

1 0 ... u ' p ... -P, a ... rr-a 

a -+ a Cos () + i b Sin() , b • - i a Sin() - b Co&() - o ~ o , P ~ - P , a ~ a , {3 ~ 2 0 - {3 

a~- a• CosO+ ib*SinO , b = ia•Sin()- b*Cos() , o ~ o , P ~ P , a ~ "- a {3 .. 20- {3 

Under (c ) the transversal-longitudinal ( 1 -C J components of the tensor which connect the 

plane components of polarization before and after the scattering, change their signs. The 

1 - t and e - e components are invariant under (c). 

J • ~~!H!!r1~_Q!_J!!!£1 e ~!!-£U!!£!!2.!!§. 

M = -ffll+(o1 n)(o 1 nJ]+ 4[1- (oin)(o
1
nJ]+ fUoim)(o 2 m)+(o/J(o/Jl+ 

+ _c{_ [(o m)(o m)- (o f )(o f J) +-:[ (on)+ (o nJ) 
2 I 2 I 2.: I 2 

a = r'hyo e 1a(e- 1 f3J1 + D + !( + Q + 4P + e 1f3../t + D + [( + Q- 4P) 

b =2- y,yoe 1 (a+ y ) / t + D-f(- Q. 

c ~ r y, v (1 e I ( a +y) .J 1 - D + K - ' 
d ~2- "'va e 1 ra+tJ ,J t-D-K +Q 
e• r'h.,; o eia(e- 1 {3 .JJ+ D + K + y + 4P- e 1 f3V1 + D +X+ Q- 4P ) 

Notation: P -polarization of non-polarized beam 

Under (a): 

D -depolarization in forward hemisphere 

K -polarization in backward hemisphere 

c -normal-normal component of correlation of polarizations. 

a -+ - a• , b -+ - b •, c .... - c • , d ... - d •, e ... e •, a -+ rr - a 

P , y , s,. -change their signs 

a, D , K , Q, (3 -invariant 

Under (b) : a .. a Cos2 0 + i e Sin2 0 , e .. - i aSin20- e C8s 20, b .. b , c .. c , d .. d , 20 - f3 , P• .. - P 

others coefficients are invariants. 

Under (c): a .. - a *Cos20 + ie "Sin2 0 , e ~ ia*S•n 20 - e•cos20 ·, b .. - b• , c .. - c •, d .. - d"*, a .. 

f3 .. 20 - f3 y .. - y • s ~ - s ( ... - l others ooef~icients are invariants. 
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The corresponding phase transformation in triplet state in terms of phase matrix: 

s/, .. _1 __ Is/,+ 4i(i + 1JS~ 2+ 4,,i(i + 1) s/2 
(2j + 1) 2 

s :
2

.. 2 Jut~D- c s: ,- s )
2 

J + _4JJJ_:_!L :: _ _!_ s 1 
(2i+ 1) 2 (2 j + 1) 2 12 

I I I I s22 .. 1 l4i(i + IJ s" + 5 22 - 4 ,i i(i + 1) S12 1 
(2j + 1)' 

Using the mixing parameters < 

S 1 = Cos 
2 < • exp 2 i ii + + Sin 2 r • exp 2 i ii 

1
-

ll I I I 

I 
s22 

. + 2 
exp 2 t ii1 + Cos r • exp 2iii1 

I - + 
S 

12 
= 'h Sin 2 r • ( exp 2 i ii 

1 
- exp 2 i ii 1 ) 

we get for transformation: 
ii + .. - ii 

r -+- r + arcctg2J j(j + 1) 

The phase shifts in singlet states and in states with 

change sign under (a) and (b). 

· R e f e r e n c e s 

= f are invariant under (c) and 
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