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In a recent paper/l/ analysing various experimental data we have come to a conclusion that systems of strongly interacting
particles with the total hypercharge/z/y = ( possess special type of symmetry, namely their characteristics ate independent of

the isotopic spin value “T’.

Below we present mathematical formalism necessaty to describe this symmetry which want to call the symmetry of hyperneu-

tral systems and discuss some consequencies of it.

One of the puzzling features of the newly observed resonances in pion-pion and pion-hyperon systems is the degeneracy of

LYY
their properties in respect to isotopic spin value. The well known examples of such a degeneracy are { and 5 -mesons’ 3,4

/5/ 16/ » Y, % and v, *- resonances/ /78/ . Experiment apparently shows that the quantum numbers (mass,

p and o -mesons
spin, parity) with exception of isotopic spin coincide in each pair. This is in striking contrast with the propertiesof # - N re-
sonances to which always a single value of isospin can be ascribed and for which change of isotopic spin value means drastic

change of the resonance characteristics.

The peculiarity of the new resonances however is that all of them have hypercharge ¥ = 0, what is not the case for 7- N
resonances. We think that it might be very significant and point to a very important role which hypercharge plays in strong interac-
tions/g/. Accordingly we propose to distinguish the hypercharged and hypemeutral systems of strongly interacting particles. We
assume that the latter class of systems reveals new type of symmetry which leads to degeneracy in isotopic spin.

Experimental data now available give no exclusions from this regularity. Besides already mentioned examples we may point to

/12/

S and A particles, which are known to have spin % and nearly equal masses andto NN and X~ N systems. Many

features of the interaction of the last two systems may be explained if in conformity with our assumption we put scattering ampli-

tudes equal for T= [ and T = 0 channels ST g ST o /13/

Let us now turn to mathematical formulation of the new type of a symmetry. If there given operator S  (which may be S -

matrix, hamiltonian or mass operator), operator of hypercharge Y  and operators of isotopic spin T, then as usual we

assume
[s1,1 =0
[s¥1 =0 i
(rlr1=0 (T Y} = ey, T, (1)
[7T,¥Y1=0
Let us also postulate existence of the operators D _ such that
[D 1940 ; byl 40 (2)

[D",S ] =R
where

<Y=0/R/Y=0>=0; <YFO/R/YH0>F0

Existence of the operators D, leads immediately to the degeneracy of hyperneutral systems in respect to the isotopic spin.

That is matrix elements < ¥ = 0/ S/ Y =0> donotdependon 7T -value.

Postulating existence of Dn -operator we actually assume that in case of huperneutral system we are dealing with the

group, wider than the group of isotopic rotations R s .This extended group is reduced to R s when VY 40



Several examples of the extension can be given e &-unitary group ©  (3), group of four-dimensional rotations R + andothers
but the question which is the right one can be solved only by comparing the predictlons of different group formalism with experi-
ment . Certainly it is appealing to find a minimal group, contalning R 3 @s a supgroup and satisfying our conditions (1) and

( 2).For the further consideration we shall take R, as the nearest coming

‘ to our criterion . The group of four-dimensional

rotations R is generated by six infinitesimal operators I, B (rotations in a 3 plane a,B 1,2,3,4) satisfying following

commutation relations
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the commutation relations read
[ L, L!] = t'c”k L,

(L, 4] =1ie,4, (4)

(A,4,] =ie,L,

Especially interesting are linear combinations ¥ = % (L + 4) and IV = 1 ( E - X) which form two commuting
sets of three-dimensional rotations

(N, M1=0; [M', M!] =i('

Moi UK, NT=ie,, N (5)

1k i1k k

The R, -group has been used already by different authors/ 14/ for the classification of the elementary particles. A. Salam and
J . Polkinghome in particular proposed to identify T ; with i, and ¥ with N, . One can immediately see that

with this prescription it is impossible to find among [ g operators with the properties of D

Our prescriptions now are

1t is clear that all the conditions of (1) and (2 ) will be satisfied if we postulate the invatianceof < Y =0/S/ ¥ =0>

under R,.

The following step is to describe the elementary particles in terms of irreducible representations of R . The existence

of the degenerated quadruplets ¢ , n , p , w (further designated as (V and p , ) makes 1t plausible that they
transform as vectors in 4-space i 2. belong to the representation (Y%, %2).In analogy it is tempting to assume that = -meson
also transforms as a 4-vector thatlis it has fourth component no" similar in all respects to the 7 , besides being isosca-
lar, as it has been suggested earlier /15 by one of us (AM B.). The nondiscovery of rroo despite numerous efforts may only
indicate that its interaction with hypercharged systems is weaker than it was usually assumed. This is no wonder because in the
case of hypercharged systems our symmetry does not work. In case of hypemeutral systems (N ¥ , K TN )y 7 -meson

0
must appear on equal grounds with = ¢ . With the above prescriptions an important result readily follows: a particle (ot a
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