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In a recent pape/
11 

analysing various experimental data we havt come to a conclusion that systems of strongly Interacting 

particles with the total hypercharg/
21 Y = 0 possess special type of symmetry, namely their characteristics are Independent of 

the isotopic spin value 'T' . 

Below we present mathematical formalism necessary to describe this symmetry which want to call the symmetry of hyperneu

tral systems and discuss some consequencies of it . 

One of the puzzling features of the newly observed resonances in pion-pion and pion-hyperon systems is the degeneracy of 

their properties in respect to isotopic spin value. The well known examples of such a degeneracy are ' and "' -meson / 3/ ,i-4 / 
/ 5/ /6/ / 7//8/ p and cu -mesons , Y

1 
*, and ~ *- resonances . Experiment apparently shows that the quantum numbers (mass, 

spin, parity) with exception of isotopic spin coincide In each pair. This is in striking contrast with the properties of 11 - N re

sonances to which always a single value of isospin can be ascribed and for which change of isotopic spin value means drastic 

change of the resonance· characteristics. 

The peculiarity of the new resonances however is that all of them have hypercharge Y = 0 , what is not the case for 11- N 

resonances. We think that it might be very significant and point to a very important role which hypercharge plays in strong interac

tion/91. Accordingly we propose to distinguish the hypercharged and hypemeutral systems of strongly interacting particles. We 

assume that the latter class of systems reveals new type of symmetry which leads to degeneracy in Isotopic spin . 

Experimental data now available give no exclusions from this regularity. Besides already mentioned examples we may point to 

~ and A particles, which are known to have spin ~ and nearly equal masse/121 and to N N and J( - N systems. Many 

features of the interaction of the last two systems may be explained if In conformity with our assumption we put scattering ampli-
T= r T = 0 /13/ 

tudes equal for 1 = 1 and T = 0 channels S = S 

Let us now tum to mathematical formulation of the new type of a symmetry. If there given operator S (which may be S-

matrix, hamiltonian or mass operator), operator of hypercharge Y and operators of isotopic spin T 1 then as usual we 

assume 

[Sl1 1 0 

[S,Y ] 0 

[ 1 ,
2
Y ] 0 

{1) 

[ 1 3>y] 0 

Let us also postulate existence of the operators D such that 
n 

[DY ]=/ 0 
n• 

( 2 ) 

R 
where 

< Y = 0 / R / Y = o > = o; < Y =I 0 I R/ Y =I o > =I 0 

Existence of the operators D" leads immediately to the degeneracy of hyperneutral systems in respect to the isotopic spin. 

That Is matrix elements < Y = 0 I S I Y = 0 > do not depend on T -value. 

Postulating existence of D 
n 

-operator we actually assume that in case of huperneutral system we are dealing with the 

group, wider than the group of Isotopic rotations RJ . This extended group is reduced to ,'( when 
3 

y =I 0 
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Several examples of the extension can be given e i. unitary group u (3), group of four-dimensional rotations R 
4 

and others. 

but the question which is the right one can be solved only by comparing the predictions of different group formalism with experi

ment. Certainly it is appealing to find a minimal group, containing R 3 as a suogroup and satisfying. our conditions ( l ) and 

( 2 ) . For the further consideration we shall take R 4 as the nearest coming to our criterion. The group of four-dimensional 

rotations R 
4 

is generated by six infinitesimal operators 1 a {3 (rotations in a .8 plane a, {J 1, 2, 3,4 ) satisfying following 

commutation relations 

[la{3•1 y8] 

If we form 

the commutation relations read 

i [ 8 a y I {3 8 + 8 {3 8 I':! y - 8 {3 y Ia 8 - lJ a 5 l {3 y ] 

la[J "" -1 {Ja 

-+ ... ...... ..... 
1~ = et[23 + e2[31 + e3[I2 

-+ ..... -+ .... 
A= el +el + e.I 3 • 

1 14 2 24 ~ • 

(T, I L,] "' i( Ilk Lk 

[ Ll A,] ,. i( IJkA k 

[ A 1 A 1] = i€1/kLk 

.... ..... .... .... ..... .... 
Especially interesting are linear combinations M = lh ( L + A ) and N = lh ( L - A ) 

sets of three-dimensional rotations 

.. .. 
[N,t.!)=O; [M

1
,M

1
]=h

11
k Hk; [N

1
,N

1
] c i(

11
k Nlr 

( 3) 

( 4) 

which form two commuting 

( 5) 

The R
4 

-group has been used already by different author/141 for the classification of the elementary particles. A. Salam and 

] • Polkinghorne in particular proposed to identify T 1 with M 1 and Y with N 3 • One can immediately see that 

with this prescription it is impossible to find among l a 8 operators with the properties of D n 

Our prescriptions now are 

T
1 

= L
1 

; D
1 

= A
1 

It is clear that all the conditions of ( 1 ) and ( 2 ) will be satisfied if we postulate the in variance of < Y = 0 I S I Y = 0 > 

under R4 • 

The following step is to describe the elementary particles in terms of irreducible representations of R . The existence 
4 

of the degenerated quadruplets ( , TJ , p , w (further designated as ( v and p v ) makes it plausible that they 

transform as vectors in 4-space i.e. belong to the representation ( Y,, Y, ) . In analogy it is tempting to assume that rr -meson 

also transforms as a 4-vector that Is it has fourth component rr 0 similar in all respects to the rr , besides being lsosca-
/ 15/ 

0 

lar, as it has been sug&ested earlier by one of us (AM .B.). The nondiscovery of rr: despite numerous efforts may only 

Indicate that Its interaction with hypercharged systems is weaker than it was usually assumed. This is no wonder because in the 

case of hypercharged systems our symmetry does not work. In case of hyperneutral systems ( N !/ , T(- N ) rr: -meson 

must appear on equal grounds with rr 0 • With the above prescriptions an important result readily follows: a particle (or a 
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system) which transforms as a 4-vectcr cannot decay (go) in two particles transforming as 4-vectors . This statement based on 

the fact that the direct product of two 4-vectors, being reduced, does not contain 4-vector in itself. The formulated selection 

rule forbids decays of t; and p -mesons in two 11 -mesons ( ( and p -modes ) but allows three pion decays 
II II 

( TJ and w modes). The latter however may have smalJ probability due to the small phase space as it has been discussed 

recently in the literature1161 . In this way we can explain the narrow wi dths of t; , TJ , w -resonances. The broad width 

of the p 

ween p 

-resonance from this paint of view must be caused by the external reasons, such as electromagnetic transitions bet- . 
/ 17 I 

and w -mesons wliich is possible when their mass-splitting is taken into account. 

If we go further and assume that both I'* , Y * and ~ , A 
1 0 

form 4-vectors then the same selection rule will forbid 

decays of hyperon resonances into }' (A) and 11 ( 11:) 
118/ 

and explain the narrowness of their widths . 

Among general consequences of the discussed symmetry one of the most curious is that the reaction channels connected with 

each other according Mandelstam suggestion (substitution law) from our point of view belong to different groups (hypercharged 

and hyperneutral) and hence must have different symmetry proper ti es. This conclusion is in agreement with the available experi

mental data. Let us take reactions 

11 + N ... 77 1 + 11 I (1 ) 

p + n ... p 1 + n 1 ( 3) 

!! + N ... 11 + 11 
II II 

p+p-+n+n 

( 2 ) 

( 4) 

The cross-sections of the reactwns ( 2 ) and ( 4 ) are known to be very small whereas that of ( 1 ) and ( 3 ) are large 

enough. In the framework of our symmetry it is easily understable. The absence of ( 4 ) follows from equality S T = 1 = S T = 0 

If we ascribe to the N N system the transformation properties of the 4-vector we shall immediately forbid reaction ( 2 ) and 

analogous reactions 

N +N ... /\ + A N +1'.'-+~ +"f; N+N-+p +11 
II II 

N+N-+p +p 
II II 

etc. Whether it is possible to understand the properties of these reactions on the basis of substitution law and principle of ana

licity is an open question. May be new symmetry implies severe limitations on the various amplitudes. 

Up to this point we discussed different selection rules following from the new symmetry and said nothing about accuracy with 

which symmetry works. The estimate of the accuracy may be obtained from the measured masses of the quadruplet components . 

Everywhere the ratio m 1 - _~~·: 0 ( m 
1 

-mass of the triplet, m
0 

-mass of the singlet) is of the order of a few percent, 
m1 

and only in the case of :£ , A it reaches 6,7% . This means in particular that the mass of the 11° must differ from 11 , by 
0 

several MeV. The relations between cross-sections (squares of matrix elements ) must be observed with the accuracy of about 

10%. The cross-sections of the forbidden reactions must be approximately several hundreds times smaller than the allowed ones 

what is realized in the best measured case of the reaction p + p -+ 11 + + 11 

An additional constraint on the symmetry comes from the condition that kinetic energy of the process must be large in compa

rison with mass splitting of quadruplet components. The nonobservance of the last condition may be of importance in considera

tion of the inelastic channels of 1( p interaction at small energies. 

Recently the interests to the different types of generalyized symmetries have rev! ved IZJI_ 

The symmetry discussed above has in our opinion an advantage of being nearly as accurate as the isotopic in variance and having 

well defined domain of validity ( Y = 0 ) . 

The authors are thankful to Profs. A.A . Logunov and Yu .M. Shirokov for stimulating discussions. 
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