V.2. Blank
 P.S. Isaev

APPROXIMATE DISPERSION RELATIONS FOR NUCIEON-NUCLEON

SCATTERING

PoSo Isaey

APPROXTMATE BISAERSION RELATIONS HOR NUCLEON-NUCLEON SCATTERING

APPROXIMATE DISPERSION RELATIONS FOR NUCLEON-NUCLEON SCATTERING

VoZ。Blank
 PoS. Isaev.

Some authors considered the dispersion relations for nusleon macle on scattering ${ }^{|1-3|}$. The relations which they obtained could not be compared with the experiment, for they involved nonobserved magnitudes and ais) unknown magnitudes connected with antinucleon -nucleon scattering.

In the present paper wi Investigated the approximate dispersion relations. The nucleon nucleon scattering in the absence of antinucleon is considered: We are proceeding from the disper\&ion relation obtained in the usual way $\mid 4$.

$$
\begin{align*}
& D(F)-\frac{1}{2}\left(1+\frac{E}{M}\right) D(M)-\frac{1}{2}\left(1-\frac{E}{M}\right) D(-M)= \\
& V^{2}-M^{2} P \int_{0}^{\infty} \frac{A\left(E^{\prime}\right) d E^{\prime}}{\left(E^{\prime}-() E^{\prime 2}-M^{2}\right)}-E^{2}-M^{2} P \int_{0}^{\infty} \frac{A\left(E E^{\prime}\right) d E^{\prime}}{\left(E^{\prime}+E\right)\left(E^{\prime 2} \cdot M_{4}^{2}\right)} \tag{1}
\end{align*}
$$

Here A and A are the real and imaginary parts of the nucleonnucleon sitt.tering amplitudes respectively, E is the scattering nu for energy in the coordinate system where the sum of the momentia of the scatterer before and after the collision equals zero. $(\bar{P}+\dot{P}(0)$. The nucleon -nucleon scattering amplitudes $D(-M)$ and $A\left(-\mathrm{F}^{\prime}\right)$ are $]$ nearly expressed by antinucleon -nucleon scattering amplitudes with positive energy. So the dispersion relation bounds the amplitudes of nucleon-nucleon and antinucleon-
nucleon soatterings．
In the considered approximetion（1）has the form：

$$
\begin{align*}
& D-(E)-\frac{1}{2}\left(l+\frac{E}{M}\right) D(M= \\
= & \frac{E^{2}-M^{2}}{\Pi} P \int_{\frac{M^{2}-\vec{p} 2}{\sqrt{M^{2}-p^{2}}}}^{\infty} \frac{A\left(E^{\prime}\right) d E^{\prime}}{\left(E^{\prime}\right)\left(E^{2}-M^{2}\right)}+C \frac{\left(E^{2}-M^{2}\right) \delta o r \delta 1 s}{E-\frac{M^{2}-\vec{p}^{2}-2 M \varepsilon}{\sqrt{M^{2}+\vec{p}^{2}}}}, \tag{2}
\end{align*}
$$

where the last term is the contribution of deutron intermediate state，δ or and $\delta_{15}-$ Croneker symbols different from zero if the total isotopic spin $T=0$ and the total ugual spin $S=1, C-$ the constant independent on energy which must be determined from the comparison with the experiment， E －the energy of deutron coupling．Such an approximation is satisfactory in the energy re－ gion where the magnitude of the integral is determined mainly by the behavior of the integrand if $E^{\eta} \sim E_{\text {。 }}$ For this the integrand $A\left(E^{\prime}\right)$ must possess a great derivative for the integration is being made in the sense of principal part。 The scattering amplitude $A\left(E^{\prime}\right)$ which is an integrand in（2）is not an observed magnitude in the region

$$
\begin{equation*}
\sqrt{m^{2}+\vec{p}^{2}} \dot{2}^{\prime}>E^{\prime} \geqslant \frac{m^{2}-\vec{p}^{2}}{\sqrt{n^{2}+\vec{p}^{2}}} \tag{3}
\end{equation*}
$$

For forward soattering $\vec{p}=0_{0}$ the non $=$ observed region is vanish－ ing。

In nucleon nucleon soattering it is necessary to take into account the identity of particies and consider not the soattering amplitude $f(\theta)$ for a certair angle θ ，but a linear combination
of the form

$$
f(\theta) \pm f(\pi-\theta)
$$

where θ is the scattering angle in the center of mass system. The non-observed region (3) remains at any θ for this amplitude. With the aim of conducting the symmetrization we write down (2) In the centre of mass system;

$$
\begin{gather*}
D\left(w, \vec{p}^{2}\right)-\frac{1}{2}\left(j+\frac{w^{2}-2 M^{2}-2 \vec{p}^{2}}{2 M \sqrt{M^{2}+\vec{p}}}\right) D\left(2 M, \vec{p}^{2}\right)= \\
=\frac{w^{4}+4\left(\vec{p}^{2}-w^{2}\right)\left(M^{2}+\vec{p} 2\right)}{\pi} P \int_{2 M}^{\infty} \frac{2 w^{\prime} A\left(w^{\prime} \vec{p}^{2}\right) d w^{\prime}}{\left(w^{2}-w^{2}\right)\left[w^{\prime 4}+4\left(\vec{p}^{2}-w^{2}\right)\left(M^{2}+\vec{p}^{2}\right)\right]}+ \\
+C^{\prime} \frac{w^{4}-4\left(w^{2}-\vec{p}^{2}\right)\left(M^{2}+\vec{p}^{2}\right)}{w^{2}-4 M(M-\varepsilon)} \tag{5}
\end{gather*}
$$

where w is the total energy of two nucleon system,

$$
c^{\prime}=\frac{c}{2 \sqrt{M^{2}+\vec{p}^{2}}} \quad \text { and } \quad \vec{p}^{2}=\frac{w^{2}-4 m^{2}}{8}(1-\cos \theta) \text {. }
$$

Non-observed region in relation (5) is in the limits

$$
2 M \leq w^{\prime}<a \cdot \sqrt{M^{2}+\vec{p}^{2}}
$$

In this region $\cos \cdot \theta^{\prime}<-$ I。 The transition, the $\theta \rightarrow \pi-\theta$ Is equivalent in (5) to the substitution:

$$
\vec{P}^{2} \rightarrow \vec{P}^{\prime 2}=\frac{w^{2}-4 N^{2}}{4}-\vec{P}^{2}
$$

To fulfil the symmetrization it is essential that
$\frac{w^{4}+4\left(\vec{P}^{2}-w^{2}\right)\left(\vec{P}^{2}+M^{2}\right)}{w^{14}+4\left(\vec{P}^{2}-w^{\prime 2}\right)\left(\vec{P}^{2}+M\right)}-\frac{w^{4}+4\left(\vec{P}^{12}-w^{2}\right)\left(\vec{P}^{12}+m^{2}\right)}{w^{\prime 4}+4\left(\vec{P}^{12}-w^{\prime 2}\right)\left(\vec{P}^{\prime 2}+M^{2}\right)} \sim w^{\prime^{2}}-w^{2}$

Besides, Cos. θ and Cos. ($\pi-\theta$)' Incorporated into (5) under the integral are equal to:

$$
\cos \theta^{\prime}: 1-\frac{8 \vec{p}^{2}}{w^{1}-4 M^{2}}
$$

and

$$
\begin{equation*}
\cos (\pi-\theta)^{\prime}=-1+\frac{85^{2}}{w^{22}} 4 m^{2}+2 \frac{w^{\prime 2}}{w^{\prime 2}-4 m^{2}} \tag{7}
\end{equation*}
$$

Therefore if the function $A\left(W^{\prime}\right)$ in the region $W^{\circ} \cdots$ changes rapidly enough in accordance with the assumption mads ativier the integral involving difference（6）may be neglected in comparison with the integral involving an anologous sum and the last term in expression（7）for cos．（ $\pi-\theta$ ）may be neglected too．Then $\bar{\circ}$

$$
\cos \circ(\pi-\theta)^{\prime}=\cos 0\left(\pi-\theta^{\prime}\right)=-\cos \theta^{\circ} ;
$$

and the performance of operation（4）turns out to be possinle． In this appriximation the non－observed region fully vanishes for forward scattering（ $\overrightarrow{\mathrm{p}}^{\mathrm{m}}=0$ ）the wo obtain

$$
\begin{aligned}
& D(k)-\frac{1}{2}\left(\frac{3}{2}+\frac{k^{2}}{M^{2}}+\sqrt{k^{2}+M^{2}}\right) D(0)= \\
& =\frac{k^{2}\left(k^{2}+M^{2}\right)}{2 \pi^{2}} \int_{0}^{\infty} \frac{\sigma\left(k^{\prime}\right) d k^{\prime}}{\left(k^{\prime 2}-k^{2}\right)\left(k^{\prime 2}+M^{2}\right)}+
\end{aligned}
$$

$$
k^{2}=\frac{w^{2}-4 m^{2}}{\frac{4}{4}} \quad+C^{\prime} \frac{3 k^{2}\left(k^{2}+M^{2}\right)}{k^{2}+M \xi}
$$

where We used the optical treormm for forward scattering．The experimental verifseation of the written dispersion relation（8） is of interest。 The existing experimental data on the total crossw section and ※ise angilar distrfoution make it possible to caloulato the integral of the totai eross－section and to compare thus obtained D with the one experimentally measured。This verification will give an answer to the problem about the limits of the application ef dispersion relation（8）。

In the very 10 w energy region（up to 6 MeV ）where the scat
texting is described well by Sowave we can use the expansion

$$
\begin{equation*}
k \cdot \operatorname{ctg} \delta=-\frac{1}{\pi}+\frac{1}{2} 2 k^{2} \tag{9}
\end{equation*}
$$

and to perform the verification of the dispersion relation (8). In this case it assumes the form:

$$
\begin{aligned}
& \frac{1}{k} \sin 2 \delta_{0,1}(k)+\left(\frac{3}{2}+\frac{k^{2}}{M^{2}}+\frac{\sqrt{k^{2}+M^{2}}}{2 M}\right) a_{0,1}= \\
& =\frac{4 k^{2}\left(k^{2}+M^{2}\right)}{\pi} \int_{0}^{\infty} \frac{\sin { }^{2} \delta_{0,1}\left(k^{\prime}\right) d k^{\prime}}{k^{\prime 2}\left(k^{2}-k^{2}\right)\left(k^{\prime 2}+M^{2}\right)}+C^{1} \frac{3 k^{2}\left(k^{2}+M^{2}\right)}{k^{2}+M \varepsilon},
\end{aligned}
$$

where $\quad a_{0,1}=\lim _{k \rightarrow 0}\left[\frac{1}{k} \sin 2 \delta_{0}(k)\right], \delta_{o}$ and δ_{1} phase-shifts of singlet and triplet Soscattering, respectively. Gabstititing expansion (9) into (10), differentiating by K^{2} and as fuming $k^{2}=0$ we get the relation involving r, and a, These mage nitudes are well -known and equal $|5|$ to: $\quad \begin{array}{ll}\tau_{0}=310^{-13} \mathrm{~cm} & \tau_{1}=170410^{1+3} \mathrm{~cm} \\ a_{0}=-23,6910^{-13} \mathrm{~cm} & a_{1}=53810^{-13} \mathrm{~cm}\end{array}$ The deutron term is absent for singlet scattering and the left-hand side of (10) 。 coincides with the right hand one with the accuracy up to $0,01 \%$ 。

One fails to solve the problem of the determination of x_{0} through a_{0}. It is due to the fact that r_{0} is very sensitive to the change of total enoss-section ${ }^{(k)}$ The bubsitution of expansion (9) instead of the total crossasection is the rough verification of the dispersion relations.

For triplet scattering if wo do not take into iuroount the deutron term，the Feft－hard side of（10）colncile with the right－ hand side with the acouracy 19 to 3%

The authors are very grateful to $N N_{0}$ ．Bogoluybov for valafile advice and $L_{0} I_{0}$ Lapidus，$A_{0} A, ~ L o g u n o v a n d ~ D o V$ o Shirkov for fruit．．． ful discussions．

> References

1．VoI．Fainberg and EoSo Fradkin，Dokl。 USSR Acado of Sci． 109， 507 （1956）。
2．BoL。Ioffe。 GETP，31， 583 （1956）。
3．FoM．Kuni Dotl．USSR Acad of Sci：III， 571 （1956）。
4。NoNo Bogoluybov，B．M．Medvedev and MoK。 Polivanov＂The prob－ lems of dispersion relation theory＂。（in press）．

NoN。Bogoluybov and D．V．Shirkov＂Introduction tot the thergy of quantized fields＂。（in press）．

5．E．E．Lampi，G。D．Freier，I。H．Williams。Phys。Rev。80， 853 （1950）．The Joint Institute for Nuclear Research．

