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1. Introduction
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The dual-resonance model foind in 1968 by Veneziano as
a solution of the problem of consfructing meromorphic rpcatter-
ing amplitudeg with linearly rieing Regge trajectories and zero
width resonances congtitutes a nontrivial approach to the S-
matrix theory of strong interactions. It obeys a lot of requi-
rements to be satisfied by any recalistic scattering amplitude/z/.
This concerns lorentz invariance, crossing eymmatry; analyticity
in the Mandelstam variables, Regpe behaviour and the pompibility
to unitarize the model. Up to now two bagic dual-resonauce mo-
dels have been consitructed. The I'irst one - the generalized
Veneziano model - represents the simplest form of a duai model
without spin degrees of freedom. The second type of models in-
vented by Neveu, Schwarz and Ramon&/3’4’5/ takes such spin deg-.
rees into account and leads to unified meson-feymion amplitudes
containing different lamilies of meson trajectories in iwo-
and three- mepon channels and, mcreover, fermion trajectories.
This report gives an elementiary introduction into the Neveu-
Schwarz-Ramond (N.S.R.) model or. the tree and one-loop level
including some phenomenological epplications. Ag our intention
in this report is mostly to give some survey on the physical
content of the model we have rencunced mathematical rigour pre-
fering, if possible, heuristic argumentations in developing
the matter. Repeatedly, the properties of the model are explained
using simple examples of explicit N.S.R.-amplitudes. The reader |
interested in a more systematic repr;sentation of the dual theory
including ite algebraic and group theoretical background as
well as its string interpretation is referred to a large smount

of review articleé/6'13/.



The report is organized aps follows. In Sect.2 we recapitu-
late the propertiesg of the dual ‘our-point pion amplitude. In
Sect.3 and 4 the Ieynman-like operator rules of the Neveu-~

SChwérz (N.S.) megon model and o the unified N.S.R. fexrmion-
megon model are presenied. Sect.> 1s devoted to the unitary
correctiong to Regge trajectorien ariging from planar ona-loop
graphs. Finally, Sect.6 reviews some phenomenological applica-—
tions of the N.S5.R. model to procegses with vector and tensor
meson production in quasi-two-bodly and quasi-three-body final

states.

2. The Dunl Pion Model

Apsuming that in a {firet orior approximation the only min-
gularities of the gcattering amp’ .itude are narrow width resonan-
ces lying on linear Regge trajeclories, Veneziano/j/ proposed
an expression for the scattering amplitude of the procens

ST eI > J+ 0 in terms of Luler's beta function. Soon alter
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this work Lovelace and Shapiro proposed a gimilar awplitude
for the process j%?‘#fﬁih“Qw sl (a, b ;C: and «f are
igospin indices) shown in fig.1. The Mandelstam variableg are
defined as |

' ST: (k1 P / 24)‘5# = ( !& + /,\"r > | ) “’-3 FErle = Y H)ﬁ,,

é’ = (k’? !\v) - (J\H‘ ‘i(‘”\“ (1)
(/(, = (l(,” \.; {( + L“f)

The four-pion amplitude of fig.1 reads
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where the.- functlon F;Lx£9 is given (up to a normallzatlon) by

A% A= ason | I (7 A31(6)

F. (s ) = > = (3)
1 4 (GRS Aﬂh))
and waéo is the exchange—degenerated (linear) §- f 'traJcctory
Q) = GRS (4)

Experimentally one has the following intercept and slope values
of the trajectory OQ\ oy f<‘V<L&fwﬂ In eq.(2) the ipospin
degrees of freedom have been taken into account by treating
mesons as quark-antiquark states and associating to them “the

. . et £ \ s
Pauli matrices (T "', g a,{) as Clebsch-Gordan coellici-

Sy N
ents/15/. This methoé excludes automatically the appearance of
exotic intermediate states wiih isospin L[ =4 .

The amplitude (2) satislfics the requirement of Lorentz
invariance gince it depends only on the Mandelptam invariantas.
Iurthermore, it is invariant wiith réspect to any interchange
of the external particlesg. Thui, crossing symmétry is puaranteed
by construction because each oi’ 1he three terms of the firgt
row of eq.(2) is invariant with respect to a cyclic interchange
of the external particles and we have, finally, added the con-

tributions of the three noncyclic permutations of external par-
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ticles. As the | -functions have cnly pole singularities the

————

ansatz (3) fulfills also the requirement of analyticity. Note,

that the amplitude (2) exhibits a further property. Each single -

term, e.g. %(s’,-é), may be represented either as a sum of poles’
(resonances) in the S—channel or as a sum of poles in the T-

channel
Tntoph) 1
Fo (5€) = g&{”‘ O~ %ﬂ(“)) Z Pl m+ 4 - %)

[(n +%(ls)) 4
3@(4_—%(@ %(‘)) Z Tl net-gg

This important property which is not shared by usual Feynman
graphs is called duality. The poles of the s~ and t-channels
are sald to be dual to each other in the sense that either one
of the two descriptions containg the other and is, by itself,
complete. Fig.2 gives the graphical expression of duality. It
follows from eq.(5) that the residuum of a pole at O@(") = J

is a polynomial of degree } n or, equivalently, in cos &,
where 95\ is the scattering angle in the g-channel c.m. system.

Then, each parent resonance of spia 3 is accompanied by daughter

resonances of spin N , where (<& n & a . Let us now
- congider the high energy behaviou:» of the pion amplitude.
Introducing the amplitudeé of definite t-channel isospin and
using the Stirling formula for the asymptotic behaviour of

the __[7’ functions the following Regge behaviour (é{gmﬁ)sg’(i))
can easily be derived as |S|—=> °° (71'44 s = %) i € ']C"K'

\@ =0) J ’

<I £,s W) = 3 ( F,p/‘c N+ Bplu) - F@(S u))
foay jVEO((S)J“{OV £ & T [ q) (6)

e (5 ¢t)- 1)




(Lep1)
Ttz =2 (Bt - Fore, W)

(5{)90 o L“w/?((‘) ‘Xm( 1 +(J )l (1- q'le) + /)(\3 )

\Q?ﬂ’fﬁx/ Rl a VR (€ ”
" N oy o g ] «X(3) G
Tolbse) = Ay =6 as Qe o ,\ (6)

Thus, the apymptotic behaviour is dominated by the S f- -tra=--
.jectory of negative (positive) signature. It is worth mention-
ing that the amplitude (2) satisfies the requirements of FCAC
and current algebra which implement the vanishing of the ampli-
tude if the four-momentum of one of the external‘pions vanishes
CAdler zer&)/16/. To gee this use the experimentally obsmerved
half-spacing rule ggg(fw = 4 1'»g§ﬂ(€7 ', where (Y, /t)

ig the pion trajectory with ,Cﬁrﬁﬂﬁ%f*:‘od , and the fact that
Ci,'t((4 — Pﬁﬁﬁ/ if one of the ;xternal pion momenta vhnishes,
as well as SX (Y5K~;mﬁ,:k . Indeed, the vanishing ol the
smplitude (3) follows then due to the pole behaviour of the de-
nominator 11£11 ’(2)=, It has thus been shown that the pion
amplltude (2) patielfies most of the S-matrix requirements quoted
in the introduction. Concluding this section, We remark that

the model amplitude (2) is a meromorphic amplitude in the HMan-
delstam variables thalt does not contain unitary cufs. Thir

obvious lack of unitarity can be, however, cured by including

higher order loop contributions into the model (see. Sect.5).

3. Feynman-ILike Operator Kules for the

Neveu-Schwarz (N.S.) Model

The concept of duality has been generalized to the cnse of
N-particle processes. As a result one cobtained for the [first

time integral representations of lN-particle scattering amplitudes

AU

with reasonable analytic and asymptotic properties ~point



~amplitudes may be introduced in an economic way by using

FPeynman-like operator rules. Let as Lfirst rewrlite the function

.....

Fase = = 95 ap) B(1- w05, - Pf;;{ ( ﬂ)

"1

where Tgéx ﬁ;) ig Duler's beta functlon

3(94&) = (7(;«.3+[.>(>m Srlv » (4 M . (8)
and we have usedf) ‘ 0

&y (o) = 23k, (9)

It is now convenlent to introduce a set of "Feynman-like rules"
which allows us to rewrite the amplitude (7) as an expectation
value of proﬁagator and vertex orerators. Following Neveu and
Schwarz/3/, lef usg congider a I'ock space spanned up by two in-
finite gets of commuting and anticommuting annihilation and

creation operators

[ag,a0] = [l o] - o

4“]; H AN - rm‘ ’ )
L t(“, T (4 W‘| ( ,/’}‘ o (1 g b \ "V" [ /" P X3

sod

*
) This equality is needed in order to reproduce the Love-

lace—Shapiro amplitude (3) by operator rules. Unfortunately, it
[
~ enforces an (unphyslcal) pion massg <x»mm ~‘-j « Then we have

also jﬁgéﬁ-:511»q.> and thus, due to ~95(0): 1 theuymmesoh'of
the model is massless. The same maassg restrictions follow also
independently from the requirement that the N.S. model contains

no ghosts (comp. remarks in Sect.4).
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N N 20 IR 10
[_ C(m\, ! ,‘M‘\J =0 . a (10)
where M 1 V are Lorentz indices ( Af,y::/f‘Z L Ci s of
dimension of space-time) and (7““~; _-ér@4’¢ 9! . Here, we

admit the possibility (ﬁ*{’L for reasons that will become clear
later on. Let us furthermore introduce momentum and position

operators ); Xf ‘satisfying the usual commutation relation

[ X,M ! —1 V é- - L fvl Vs (11)
as‘well as a Hamlltonian-llke opeiator
s >
. A w-1 +_
}"' = l" + [~{ LB - \’\ V) q e C'f; T m biéﬁ) N k‘ 1) (12)
L 0 % N %) 1 :
There is also a ground state (07 = |¢ hﬂ’fohﬁ> characterized
by : ¥
. \’}i‘ . , ‘M/ . o L ; .- = .. .
(l mf-l'\\’ 10> = b“‘\ I 0o = i? o> =0 (13)
Let us, also, introduce the operator function
ro s
o, \(l( ;‘ - m 5 .
<7 &gl n lﬁ. f/“
!" (-;- vy ./' A (’) ey ;\ £ ( L-, }1 Ay ) ' ( 14‘)
Wy o = > R

The propagator, vertex and one-pion state of the N.S. model

may now be defined by (a Wu\’ - L *) )
Y T 1 A H*Wp«'%,
Propagator: eo-~---»n “p‘g ,-___ﬁ;71 = Jx—x~
e

*)

These rules correspond to the so-called

" F\-plcture"

ZA
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vertex: ---i-—— \/.Vri\(k)ﬂ'lwf( H(ﬂ\/{,\(b

NS v
J o g 1
=y LAk h () ex,( Vu:z.?,_ k- ‘7" Vao

) X Qxlo(> V':'l( u”)mp~~{kx~

1-pion gtate: =

s TS ~[0jk> =@ W o> (19
The function(7) may be represented by one of the two dual equiva-

lent operator expressions (comp. fig.2)

F (5 t) = < T(l(,,)! \/N\(kz, “W \//N\(kg) l T( UJ

/

= <l ,\,,\(t(;, D Vi (k15 (k> ~ (16)

Thies may easily be verlfled by explomtlng the fact that the expec-
tation value (16) factorigzes into an a- and b- operator part and

by taking into account eqs.(10),(11) as well aes the useful formulae |

‘(j(%ﬁ) X-k?‘f\ — X\({‘(,’( ,{ (’\~ ELYS,”\ (Q/H\_- \{“\ (’\" 1."“ ) (17)
bl (oed) = f (o) x'lie
r A A, T
e e® = et e ]
eMtB o o ¢ o 1LAR] (18)

(Eqe.(18) hold only when f/\‘7j ig a C-number).

Then, the a-operator expoctatlon value can be evaluated as

- wkzr(f 'kal}; -f\‘éa}"w % L’ T (3 fey: =tk

<§(2L. kql € S ?v"” X (:;1 CooMe ol
?i 1 o - V?ﬂ A) & ”H -
Kx\_\ {Y(A +k&) 7; \() [ (_j ::“1 )“ /( H’l e =4 ; V“ ‘ (“@1\ )
= i -
| . = '
o X ()L . R ey
x_\~. ([( +k) % ! Qﬁk Ky o T X.\ﬁ@_ < f/(,-_)(\j)“ el

(19)
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Similarly, the b-operator expectatioan value reads
..... ‘/"‘“‘"’

24" <0pl Ky (1) v e h (0100 = = ol ks e @0
The generalization of eq.(16) to the N-pion amplitude is now
straightforward., Let us congider as the next nontrivial example
the six-point function exhibited in fige3. We set (isospin traces

will be suppressed)*)

Fo = <Rl Vo (1) PVl D Vi t@’h\/m(((\(u (> (21

To obtain the‘total crossing symmetric amplitude one has to add to

eq.(21) 3:(6-1)! analoﬁous terms corresponding to all the poé—

gible noncyclic or nonanticyclic pexmutations of external particles.z
The operator reprepentation is particularly useful for stu-

dying the resonancé gpectrum of the model which arises from the

- propagator poles. To show this let us diagonalize the propagator

by the occupation number states (Lorentz indices are suppressed)

(o1 (b J vl

e} 14° 1y, e (¢ (22)
e, AL mm( YT VT o>
 which are eigenstates of H :
. . : A. : — . " h )
H{ges {8 k> = 1 Led 1eh k>
iy 2 2oy ) b
J = )’ Wy + >0 mly - (23)
- h el -
and %( are kinematical factors not to be specified here. By

*) Because the b-operators of the vertex parts h(1) have to
be contracted pairwipe in the expectation value of the amplitude,
only amplitudes with N even are pos3sible. Thus, the model exhibits
gome kind of "G-périty" congervatioa. '
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inserting the complete set of occupation number states (22) bet-
ween the vertices of expression (21) the amplitude may be facto-
rized into lower N-point functions (bootstrap condition). Facto-
rizing for example, the above six-joint function on the poles

between the particles 3 and 4 yields ( k = (ﬁkq-*k)_fl(; )',:.v)

F;C,'): ;__,(" (L, )'VN ‘(&)T)\,Nr (fg;)He“j {{j > 7 . o
: i (k

al b
x <{(Z {( } k ’ \/Nal(‘(‘f) ‘ l\)f(((c\) 0 (I‘(,) (24)
where now the resonances lie on the degenerate | W-trajectory
C‘(r w\(t) 4 0 {' appearing in the 3-pion channelp. If we

factorized, ingtead, in a two-pion shannel we would again obtain
amplltude. The 1owest-1ylng ptateg of the N.S. model can be arrang-
ed into the Chew-Fbautschi plot shown in fig.4. Here, the states
are named according to their quantun numbers spin, parity, isospin
and "G-parity" as the corregponding mesons found in nature. More-
over, in table 1 we indicate the explicit form of the occupation
number states describing the loweet regonances of positive or ne-

gative "G-parity" ( G = -(-D%" by /4]

we

Gr=1 M"— In (j P name Fock space state ( I, ~picture)
-1/2 1 0~ 'Tr > = [0 )
- ._“ -, (4 4 41 s
/e o 1+ Lo lw> = €75 k)}>%|’?r' (O
2B Ny A =dalte kb b io
Gm+1 0 1 17 S 1> = b+% 1o
+ .
1 0 2 : b ot N
. { lf)~4b)a4’~loz

o0 0o (6>

C(Bgr @) = K- by k-0 )I0>

Table 1.



11.

( EavAaT) is the levi-CGivita tensor). Using eqs.(15),(17),(18)
we obtain easily the following integral representation for the
amplitude (21) ( X; Xgh,\?,are the integration variables introduc—
ed by the propagators) *)
\ .- 1y

\
— (/X’L)d’c"\ C'{)‘(f) Xbm‘lgis:,' h E"_‘_}\'i " (\‘/.g
fo= ¢ SS e X €

== Axpd 6
° U-XXD(1- X5 500) 3

Rt ] [ on

x[/’-— XG X, /f X’,)(’ A= X3 X, A= X5 %,
L\ S e
[ T [ R
1= X3 X3 Xy | A—x;_xg:c»,h] l_ - ztjxl{”»]
- 4 - - ‘
K{ I(Q kS‘ {(z'ks “”:,:):\. ;/_f‘i-w»»»} 1‘ I/(Z 'l(s- k&f ‘(T' :3,-m_w .
‘Azé"._:f\‘v-s‘g\2~\ : . xw szsv (25)

' Az2g ‘
Here we have uged the notation (Y o etc,

Ty ® it Q(_' (/(1 *“‘)"-’z + !*"‘,4()
and .Yf is an abbrev1atlon for the expression in the bracket
raiged to the power -43 f. Note, that the le~p0lnt function (21)
factorizes on the pion pole ( h““fd”“‘ k> = [ar(kp | J”zfﬁ )
into two §nv5’;ifn nmplitudeg of the type (16). Another way to see
thieg is to expand in eq.(25) the part of the integrand without

the factor K%-wﬂfwi‘ around X% =7 | retaining the term ()(*fid)
and performing then the X% - integration. Next, the terms of

order O(X3) of the bracket {-..} yi21ld the factorizing ®-contri-

bution etc. Analogous factorization properties follow in the high

*) This expression follows also from the slightly modified

operator rules and states of the go-called " Eﬂ-picture" by killing

the pion "ancestor" state/B/.



energy region where Regge behéviour holds. Let us consider, for
example, the Regge limit shown in fig.5. It is defined by the

kinematics

e

g,

St6 | Szw Sags | Sz¢ P = 20 ‘
. RPRT Z ’
e Sir azs  Ses Lo, SE <
12 S8 €4zg‘ Ses Loy 2, Lo
3¢ E 1 Siy — -
The contributions to the asymptotic behaviour of the integral

(26)

representation (25) arise only from the neighbourhood of the point

X3 = (¢ « Expanding the integrand around this point and using the
formula

A-47 = XA
[qw go{,)c S 40 </ N(’"’ Be‘(/l_'(-o(\ /\()(

Lt

(27)

we easily ‘obtain the following factorizing contributions for the

exchange of the ', L -trajectory ( fu;_{? )
« . l
u,w{é)

F ~ L O((s,bﬂ P( Ofru(f)) X

‘SAM"%
{ \ ol Eale [(1- 1) 4% ]9'3"’”‘ 7 gv(jdh(*@)ﬂ(frx*)ulr.,])/T'W

. . L 0 (&) = .
+ 4 [..O((S%J\j\-:'.(g [ (4' Ko (€) *

{Lj(z g@-‘(‘ ( ) (kg MY W b(v))) X)) b »J.,‘é;,,;f.(‘e:)_rl_‘,

- . " ‘ iy - _ O () I'T) (28)
.‘ g ?/P(égz):\( l( W ):?»(,“)6-:’8 0{ 1)('\‘,‘) {,(LX’(’) *‘_é ,(\(‘/ j\i‘ QOA (‘t 4 (

.

J
( \-CC‘)H+7'bU"‘IOIAS )

(1)

j
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Here, 0{" )(’(‘3 and U{B(’(‘) are short-hand notations for the integ-
rands of eqs.(7),(8). The factors [(4 x) Hl”(”]a" ("W)( 1)
appear here because one of the external particles of the factorized

four-point emplitudes is a Reggeon. If we continue the variable
[}

[N i .
o({wi'f/q'ﬁ to the values Mf\,‘ff:-i or nqa,, :LL sy reppece
tively, where g{fg%(ggﬁ)-s‘C7 , o\"ﬂq(}m = these

factors will take the value one. In this case the integrals in
the first contribution to eq.(28) coincide with the four-pion

amplitude (7) whereap the second contribution yields the original

/17,

Veneziano amplitudea for the process J1+»T—-¢ T L)
Finally, we mention that the integral representation (25)

is invariant with regpect to a cyclic pe:c;mutat:ion of the external

momenta l(g -9'1(4"4_ ag can eagily be seen by performing a

change of integration variables. This important property guarantees

crossing symmetry of the total amplitude and was indeed built

f
s

|

!

into the amplitude from the very beginning due to some well-~defined i

transformation properties of the propégator D ana the vertex Vgg\
under the projective group/ﬁ'w/. Furthermore, the amplifude (25)
develops at most (N-2) = 3 gimultaneous poles in Mandelstam
variableg due to the vanipghing of some of the Y| or oi gsome

brackets I'] in the integrandf)’L‘hese properties generalize the

*) Such gimultaneous poles appear only in Mandelstam channels
that are 1ot dual to each other (see. e.gs the configuration of
' fig.3). A Mandelstam channel of & N-point amplitude corresponds toa
- partition of the external particlee into two groups by drawing a
line. Two channels are said to be dual to one another if their
associated lifes cross each other.
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duality concept discussed in Sect.2 for the four-point amplitude

to the six (N)-point case.

A. The Neveu-Schwarz-Ramond (N.S.Re.)

Meson-Fermion Model

To introduce fermions into the dual model Ramond/S/ consider-
ed besides the a-~ and b-operator algebra an additional set of anti-f§
comnuting creation and destruction operaters, now with integer

indices

) M"V r
{ OL;,%/ O{Mfg" =T 4% ng\ wyia =4, 2,020 (29)
as well as suitable generalizations of Dirac's 5’amatrices

( NQ=A'MKZ\ ?S_ﬁ‘ ’ g}( space-time dimension)

‘w(Z) 6@4— A4 r@;(d )4~M+O!ﬁ\ "VTV! (30)
Vs = g (0 am e

satisfying the anticommutation relations

'{P*ﬁw )] = 29495 (% (3-¢)) | (Z= ")
{.(.7“"(17 ey =0

Furthermore, the spectrum of the fermion sector is determined by

(31)

a generalized Dirac equation obtained by means of the following

correspondence principle
(PP -me)¢> =0
"7[/ P L Fobr = e & (32)
=(( 2)-Pl2D ~wn) > -0 o (6 - e l§2 =0
where <--+ > means an averaging procedure

AGS - % 5doA@ = § L2 AG  (s.c)
et g o yrETET) 3y
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and ?(VZ) is a generalized momentum operator of the dual model

defined by

T“(ﬂ } , r“ (on'z" s at* 2 h) (34)

I/IA

The fermion propagator is then given as usually by the inverse

of the operator appearing in the generalized Dirac equation (32)

propagator: ———9
' | i .
’\D.ﬂ - e S [r “,!“\ EU 0‘ P + 46,3‘)2-(\ (QIA d“ (35)
‘C; n’"\h }-‘)‘u \. 1
or equivalently, (LU = ~ F&?} : * CR“‘A“ 7j\

' = \* It e Cle e &2, , e
@‘H = —',?ﬂ\ (}D { Vd' “‘r”‘)l_oﬁ/ Mm'q, P\‘_..‘Z, ] ((,1 'f'an - (-Iqu_‘&l,,\}} (36)
Lu éXPWm ' h=1 /

The emission (absorption) of a meson from a fermion line is
described by the following generalized pseudoscalar megon-fermion

coupling (}§>epicture)

meson emigsgion i k
. v
vertex V(K B V‘“\(“ =l % V(O 1)

where V&(Q) was defined in eq.(15).
It is now possible Lo write down the megon-~fermion amplitude
shown in fig.6 as expectation value of a chain of propagators

and vertex operators (solid lines describe fermions)*)

*) In writing eq.(38) we have taken into account the time
direction represented by the direction of the fermion line. In
coming particle operators stand now on the right hand side of out-
going particle operators. '



'-[7(\3’* & ((0)<O P | \/m(cw’) (3 — \/m (Qmﬂ) r, Vu((l(,,) [ p r?,
X u(r)

38)
where (L(r)“4qﬂ are usual Dirac spinors.

Finally, Corrigan and Olive have found an expression for a

fermion emission vertex

fermion emiggion ;ﬁF

vertex V%17= | ?.“,1% ————

which is given by a rather complicated exponential form, quadratic
in the hesonic b=-operators and bilineaf in the d-~ and b-gperators.
The reader interested in more details is referred to their original
work/18/.

Before discussing explicit examples of mesonéfermion ampli-
tudes let us say a few words on the ghost problem of the duval-
regonance model. The operator fﬂrmalism congidered above ip mani-
festly Lorentz covariant as it was constructed using the manifestly
covariant algebra (10),(29). Then it follows that the timelike
components of the oscillator operatcrs generate unphysical negative

norm states-'"ghostg"
. . ‘ o
<Ql@.:,.) 0:«0(07 = <C)“./")m ’un [O> <Oldw dtu I()v = -1

Now we have learned from the aralogous situation in quantum
electrodynamics that Lorentz covafiance and positivity of the
norm can be reconciled by using the lLorentz gauge condition. Thig
condition restricts then the space of allowed physical states. As
has been first found by Virasbro/19/ for the conventional model -
and then by other authors also for the N.S.R..modellzo/ there

exigts an infinite set of gauge conditions in the dual-resonance

model that can be used to eliminate all the ghosts. In the N.S.Re.
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model such noéghost theorems hold for space~time dimensions .
d e dcﬁf = 40 and unfortunately only for the unphysical masses
of the~ground state particles given by'vgfhﬁ%%--ﬁ; ) 5¥'u§§ =0
Ingtead of using these theoretically consistent but unphysical
mags values it is sometimes convenient in phenomenological appli-

y :
cations to take givqgg“ itx'wﬁfr rather as free parameters

that will be adjusted to their experimental values (see Sect.6 and
below).

Examples

Let us now quote for illustration the meson-fgrmion"amplitu-
des of fig.7 a-d calculated by means of the above rules. Performing
the necéssary a,b- and d-operator algebra one easily obtains the
following expressions (the ground stetes of the N.S.R. model are

designated as " 5 " and "yv)/ 19/,

1) TN - N

Fels) = Ga Llp) -l () B( E-gtal®>, 4~ %)
Fols) = g G g ke W) BOE- 9009, ERR Y
(apm= 4+ o (smb | dle1= 4o (€1 ) (39)

11) TN >N

5(5}(‘5,'6) =5 gog CZ(F') '{‘ l(q'e(r‘lqA) [ 0 (% ~ (), ~Arw (ti)>
+ B ( 4 -du(s), ~ .9, 97;()-)]

-, ; (40)
+4 (“4)&6@(kz.:\)§é‘.\2\ HERE™S ,4~_(¥5;13\/1))3 Joup)
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111) IN—> @ N

Peitst) = g « (k) ,Vm(ue(au:\)mc«(p)x

x {-—Q@;‘i/ B (% *Q{m(&),Z*%(ﬂ) (1)

where + CJ@“S/[‘ B(d A.Q(ﬁ)(s> 4;%{"‘)) +ZA. g(g ‘%(S) ‘2“‘9&{0)‘]}

A 4 e
/C = T AG E’XSG\“Sa&\\L:
@~%(§9ﬁ3? g™

Here, ({/ (L) 1is the polarlzatlon vector of the vector medons

S( (& to helicity 3 ’ @.‘:‘," = ‘Z L@i‘ E-‘f] and B ig the bheta-

function (8). In the configurations o:’ figs7 b-d the fermion emis~ -

sion vertex \Af\ has been uged. Pinally, the amplitudes with an

external S ~or (v may be calculated by factorizing corresponding

five- and six-point amplitudes in a two or three meson channel,
respectively, or by replacing a 1‘[{) state in the operator defi=-

nition of the amplitude by the states [¢> or ](:9‘:‘) of table 1.

Note, that the respective trajectoriee appearing in the meson (t=)

or fermion (s=) channels are automatically shifted by 1ntegere
or half~integers a as it should be. These shifts guarantee that
the first poles of the amplitude appear at values (X(h«}a)) a
where a is the gpin of the lowest resonance lying on the res~
pective trajectory. The leading Regge behaviour is just restored
by the kinematical factors appearing ia front of the B-functionse
Concluding, let us say some words concerning the different coupl=-
ing schemes of the 5f y W and S mesons of the model to the
fermion-antifermion state. By inSpéCtiLO.n_of'eq.(4O) we see that
the pion couples in accord with eq.(37) by a usual pseudoscalar
u((,) im Q(P) couplmg. Let us next take the residuum at the

W~pole o({ o(% . We have

Lo ¢ S .
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S

B Res FpGs,t) =% 92 g C((o')[- 2 kare (,0)
+ 4 ke 0,) G ] gocipa2)

Brgo

e e

which may eagily be rewritten in the form }

- S SRV, 17T A
Ba 5[4 sfaFeuaf @ gnssmn - o o]

We, thus, see that the Ww-meson of the N.S.R. model Gouples

only "magnetically" to the N?J state. This situation has to be é

| contrasted with the_g meson that couples according to eq«(41) only

via the "electrical” coupling QYT')62;¢<(F) « It is worth

mentioning that the N.S.R. model yields also an interesting result
for the kjﬁlafdﬁ-amplitude/21/. The readef interested in the art
of higher level algebraic manipulations is referred to this work
which represents doubtlessly a summit in the operator investiga-

tions of the N.S.R. model.

5. Unitarity Correctiong to_ the Regge Trajectories

In the preceding sections we have discussed some properties
of the "tree" graphs of the N.S.R. model. These Were meromorphic
functions in the regpective Mandelstam variables with pole singu-

larities on the real axis that reflected the propagation of stable

one-particle intermediate states. Due to the unitarity equation
(comp. fige8) the imaginary part of a scatiering amplitude Bhould,
however, also acquire contributions from many-particle intermediate
gtates leading to normal threshold cuts in the Mandelstam variables.
To satisfy unitarity one should, therefore, include higher order

loop amplitudes into the dual model. These loop graphs should, in .
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:particular, add an imaginary part to the up %o now real Regge

. 7 L2
trajectories so that, due to J.?r'eg\t 7“‘?&(5‘“"‘*\2 y the reso-
& Wiy

nances will get a finite width. v

For simplicity, we shall restrict us in the following to
the discussion of the planar one-loop graphe. Factorizing a loop
graph on an internal line should give a tree amplitude with two
excited lines on their ends (represented by occupation number
states) as residuum, These faets suggest to construct the loop
graph by "Qewing" together the two excited lines of correspond-
ing tree amplitudes after having ingerted a propagator bétween
them (comp. fig.9). The summation over the insexrted occupation
number states is Jjust equivalent to taking the trace of the ver-
ficea and propagators appearing in 1'ig.9 (a fter having replaced
24—1 by b)/6/. It thus follows .

(1) SCM T [DVUIDVIDD VD DV | (an)

e |

If one now inserts the integral representation of the meson pro-
pagators as well as the vertex operutors into eq.(44) one ob-
taing after calculating seperately the a~ and b-operator traces

/22/

as well as the loop momentum integration the final answer
(x.Q{': %3 *) {

. ks
R0 42 £%ir ) 1 g £

k k (45)
ﬂ ?ﬁ.(’ﬂa},w) ¥ 2__ (”)" ‘] (44 = (/y‘;}ﬂﬁ/;

’16-4"‘4_'.*

*) This expression has been calculated using the operator
rules of the E#\-picture. Moreover, the calculations are done
in the "eritical" (unphysical) dimengion of space-time Ciﬁ*s 10
of the N.S.R. mode;(only in this dimension the model is ghost

. j \\.
free and consisptent on the one-loop level}. -

~—

N
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Here X“/] are the 1ntegrat10n variables of the loop prOpagators
W= X X2 Xz Xy | ~-F(fﬁb ‘7 (4 W) %ﬂ(w) f((ﬂ“( ““'/‘)
Xig = Xeth Xduz .. X and the oun
in eq.(45) is over all permutations P that group the external
particles in pairs, each pairing being counfed only once regar-
dless of the ordering in each pair. The functions r:i("(‘, w) (Xf( )

appearing in eq.(45) may be expressed by Jacobi's theta functions

?Qﬂ( vID) f23/

Ylr) = = Anew U, C“z? é:;' /9 (01~ 25€

- ¥ : a« e L) |
K (o= % U (ol ey, (o) Gy ©s( 51 ‘im (46)

[

U ( SR I ﬁ_/y\

The meson amplitude with an intermal fermlon loop is obtained .

quite analogously by inserting the fermion operators in the trace

(44)724/

_— N /1______ t:&j ) S
[ %) =5 gﬂl QQ!’)SS ’ (O{X; Z;Zu% 'f (@)f(’(}\S(}g)

(=4
"f B P I
] P ? ( 2 ! t@’?\ E‘@‘s\ KXF (’%; ik ©X47)
where P ' x Tr {4}
_Sﬂo (_C,"’) - g (/{4(/‘)&13 ’8 (
-t N O “ 8.(1 "_‘..T: o

These loop amplitudes may be most convenlently etudied by per-

forming the following change of variables (Jacobi transformation)

O - Th(onx). 0@ er (2€ice 0.0
=4 PLAN 9<9¢] 1(- cca

:ﬁ = exp (252w ) Ocqgeq

(49)

i
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As we are interested in the explicit form éf trajectory
corrections due to planar loops we heave to invesfigate the asymp-

totic behaviour of eqs.(45),(47). Uslng eq.(47) we obtain, for
example, /25/

%St)

lélfm } ﬂ’j [/(».( Og(S)) P[f-()’ {{»)) < (O/ (60

+ [Tno (a)/ﬁ(f? - (4 o((mZ (e + [7(1- egrﬂw ( i”#\ «_

= (50

X,
where Z is given by the rather complicated expression -

T
& . _))) = % (f"a \> (71—) S‘d"l CI ( f“(( L))>2/§0{§ :tf‘(@?cﬂ X
- : C)

(51)

~ and /Z)(é) ig defined by some three-i'old J.ntegral. Moreover, we

have introduced the notationg X[G ( Z“‘(}""X (X,w) ,

-

Tloq) = (- aw)- NI ((o)— Geoso (?s««em((o:;)
Note, that eq.(50) may be interpreted as the O(gu)term of a total

amplitude |
‘ y‘“(?_\g)
Aot 4
T\(%U “Z. 7(;7%(5?0\ o ‘75 C(f)ém(f)r’[/’ OX\M) (‘O((u%
=0
expanded in powers of the coupling constant g’( + The corrected

expressions for the ‘y-tra;jectory and regidue read

\

O(“@(t) = O((ﬁ) + Z(O:(g(fo + O(g%?’)

I
I
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moreover,

Z (6 = [1— 2'C ») I O(J,k‘w] (53)
As seen from eq.(51), the correctlon function 2?(@76> is badly

defined due to the singular behaviour of the integrand near 7 C .

One can give a meaning to this integral by performing a sultable %

regularization and renormalization. As a net result of the renor-
A

malization one obtains a finite correction function 2 ag

N

well as renormalized values of the cual coupling constants and

of the trajectory slope qif/25’26/.f

—

. part of (Xg (¢) and thus to [’ -0 . Moreover, the asympto-

““’“‘1
‘ Concluding, it can be shown that the correctlon function

develops normal threshold cuts in 't leading to an imaginary
—~Tes

tic behaviour of the meson loop (45) can be obtained from the‘ }

above results through the formal substitutions > <1 and |

(Zge)t = - (%, .

In writing eq.(52) we have assumed that the mulfi-loop
graphs contributing to the total mesmon amplitude (see ref./27/
for the definition of multi-loop amplitudes) possess the facto-
rizing asymptotic behaviour that is necessary to perform the sum
over m . Sﬁch factorization properties of the asymptotic expres- ;
gions of multi-loop graphes have been proved for the conventional f

Veneziano modell1o’28/.

N

P
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6. FPhenomenological Applications

We have already mentioned that the N.S5.P. mooel possesses
some yet unphysical properties conce:uning its particle spectrum.
Thus, the ghost-free version of the model zontains the pion as
a tachyon (Q("m&%"»:—”z <O) lying on a dagenerate _Z/’(.’Lg -~ trajectory.
Furthermore, tﬂé S meson and the fermion ground state are mass-
less. Finélly, unitary loop corrections can be consistently taken
into account only for a critical (unphysical) space-time dimen- |
sion dégh=40. It is the hope of maay people that a more realis—
tic dual meson-fermion model withput these defects can be const-
ructed that retainsg some similarity to the original model. A pro-
miping step towards this aim has been dbne recently by Cremmer and
Schexic /29/, Let us, however, do also jﬁstice to the present
N.S.R. model and remember some of its sound and attractive featu-
reg., First of all, the dual amplitudes of a given process con-
tain only very few parameters and offer a unified description
¢ bouh the low energy resonance region and of the high energy
region where single-or multi-Regge pole exchange is dominant.
Moreover, the same amplitudes may describe a large number of
different processes related by crossing.

These features are preserved if one replaces in phenomenolo-
gical applications the unphysical Regge trajectories appeci’ng
in the amplitudes of the present model by the experimental cnese.
furthermore, instead c¢f treating complicat:d loop exXxpressions
some amount of unitarity can be taken invc account by giving an
imaginary part to tune trajectories tolerating then the apnearance

“of "ancestor" and ghost states. The laiter cnss are generally
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believed to be unimportant in the kinematical regions considered.

In refs./30’31/ the N.S.R. model has been used as a guide for

the construction of more reallstlc dual megon-~-fermion amplitudes.
The modified amplitudes thus obtained have been applied to a
phenomenological study of the production of vector and temsor f

mesong lying on degenerated trajectories in processes of the type f
,IF—a(SO(-F'lgO)W / :E-P = QQM(A;F auof ;

/30/ e — W3

K"Pa'f\"*(?‘io,wz.o')f\l C{M(?{:KF_?,K*OQ?O)(FPH Y

Starting point for the quasi-iwo body amplitudes were formulae
of the type of eq.(40),(41) (extended to higher J==2(3 Tesonan-
ces). The amplitude of the quasi-three body reaction (comp. fig.10

where one of the three possible graphs with nonexotic quantum '}

number is shown) were calculated by factorizing a six-point

meson-fermion amplitude on the spin 1~ gstate in a two-meson ?ﬁ

channel and by further modifying this amplitude. Let us say some

words on the kind of modifications chosen in these applications.
First of all, as a prerequisite for a subsequent ghift of the

j[’-trajectory to its physical expression, one had to overcome

the unphysical degeneracy of the J; W - trajectories. The sepa-
ration of the ( 77(» ) trajectory can most easily be done by

using helicity amplitudes Pﬂ%Y"w1th definite parity exchange |
in the t-channelljz/ ( ’A is the helicity of the produced vector jf

or tensor meson)

*) applying the N.S.R. model to KN reactions mainly the ;J
spin-and parity content of the model is considered. In distinction
to J'N reactions there are then no G-parity restrictions. '
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.
H;S = /_A) F ( >& H A : ~ (54)
Ag is well known, the amplitudes (54) are dominated to leading |

order in S by the exchange of trajectories with definite natu=

rality. Hence, the unnatural spin-parity Jr-trajectory ( P--(—1W)i

was attributed to H?\\r( » whereas the natural spin-parity « -tra-
jectory ( P=+(-1)¢ ) contributes to l—j?\—_?. The N.S.R. model
wag further modified to include severt;\l baryon trajectories

( h}@ N | é )o Fig.11 shows the differential cross sections
o{@i/o{,{-and d@-&/obf for the reactions a) E—P »s°h , b) Ip --)f’h
and c)QT_:P-—DgO,\q at 17.2 GeV compared with the theoretical pre-

dictions for the natural and umnatural spin-parity exchange to

helicity ?\__/ 30/ « In particular, the unnatural spin-parity exchan- :

ge is described reasonably for all‘ measured helicities of the
produced regonances for small t . It is worth mentioning that the
dual amplitude predicts a non-zero contribution in the forward
direction for the helicity non-flip amplitude in distinction to
usual pion exchange models. Finally, the five-point meson-fermion
graph with an external vector meson contributes in the single

Regge limit (comp. fig.10) to the helicity amplitude as follows

o w{(:)
Hivess ~ €u(a) Tty ) (-t )20 s, O
where
\M_,
%m :20((&:) %\d’ C((QQ)L r,:q ( I (1), Z- Ko 2 ~dee ,é>

i
)
!

( O(G)G(/, O(‘% "“O(% 2 d‘\‘b &) +g{“+k“‘->)c(4 O/rn..,/t) 3“0(:;;;

L

= ey Llke) “—% 'ﬁ)
( o(u“) ‘ [3 ﬁ”l(s)l( f(qﬂ‘f&S)JG(ddru(d,z-% ¥ J:"(é‘s/‘)))
- MQ:)JSA“(‘W( e (Qy&sfh ] (51‘9(59 (“:24-"‘9(:;: 2-de 3D

r . Ry
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Here, the following abbreviations have been used
G(Q( gl_c }-2‘): B(/@‘CW =~ (ql ‘6, E{-C l§> |
ﬂ %@ - gfg'p

| (57)
% = &SW.O,( (l"r‘* ke)®  etc.

where [  is the Gauss hypergeometric function and B ‘the Buler

beta function (8).
Modifying this term further in the above mentioned way (and

including the remaining other graphs) one obtained predictions

for the differential cross sections of unnatural and natural spin-

parity exchange as well as for the .7*0(890) dengity matrix ele-
ments g, R T j’_&‘%’w and Juw. €7  as
functlogr:s 05{1’ TEA;,,.:; and the nucleon-pn.on mass Mil. As |
an example, Fig.12 shows the model predictions for __g@’ fifaj and
Qe <13\ compared with the data at 10 GeV/c. A better overall

agre;ment with data were found if one additionally included aB -
trajectory ( IB -model, solid curve, compared to only pion ex-
change, dashed curve).

The conventional Veneziano model has been applied in ‘the
past also to the description of inclusive single particle reac-
tions/ 33/ reproducing such experimeatal features as Feynmen
scaling behaviour and large transverse mome_ntum cutoff o One
can eagily see that similar results may be obtained also from the
N.S.R. model as it preserves the coaventional model in its é\—
operator part. The reader interested in more details of the

| phenomenological application of dﬁal models is referred to
ref./8:19+10/

S O S S U
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Figure Caption

Figela~c: The three noncyclic configurations contributing to

Fig.2:

Fig.B:}
Fig.4:
Fige5:
Fig.6:
Fig.Ta-d:

Fig.8:
Fige9:

Fig.10:

the four~pion amplitudee.
Graphical representation of duality.

Multiperipheral configuration of a dual six-pion

amplitude.

Chew-Irautschi plot of the lowest resonances of the
N.S. model.

Single Regge limit of a pix-pion amplitude. The

wiggled line visualizes the exchanged Reggeon.

(N + 2-point meson-fermion amplitude

(The solid line represents a fermion (N)).

Four-point functions of the processes

‘‘‘‘‘

TN =N (d)

Graphical representation of the unitarity relation
Sewing procedure for the planar one~loop amplitude

Single Regge limit of a graph contributing to the
process f;'P‘*’gﬁﬂfﬂ'P) « This graph. has been obtained
by factorizing a six-point function of the N.S.R.

model.

e e o 2R g =
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Fig.11 (taken from ref./BO/). Differential cross-sections for
QIp ->:°14 b)) Ip=2fu and c)'_@‘psg%
at 17.2 GeV/c compared with the model predictions for
the natural and unnatural apin-parity exchange to heli-

+ = - =
city A O_@_@ and @ﬁi‘ , in the Gottfried-Jackson system.

Fig.12 (taken from rei“./31/). The K'° (890) density matrix

elements S’Mc‘f{'l-i and FRe Sio 8as functions of _-(-.' and
W/g'@ (the solid curves are obtained from a model with
7- R exchange, the dashed curves correspond to 3 -

exchange alone).
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