$$
\mathbf{5} 2-2-89-791
$$

ДЕПОНИРОВАННАЯ ПУБЛИКАЦИЯ

$52-2-89-791$

QED ANALYSIS OF STRUCTURE FUNCTIONS

R. Lednicky

Abstract

The influence of various; approximations and theoretical uncertienties on the determination of the QCD mass-scale parameter $\Lambda_{\overline{M S}}$, and, - on the QCD tests is studied with the help of the EOLMS hydrogen data. A small (negative; contribution of higher twists in the proton structure function $F_{2}\left(x, Q^{2}\right)$ is obtained in the region of moderate x and $Q^{2}>10 \mathrm{GeV}^{2}$, and, in agreement with theoretical models, it is well described in terms of one parameter $\dot{k}^{2}=$ $0.02-0.04 \mathrm{GeV}^{2}$ - the parton transverse momentum squared generated dynamically: This allows one to use the BCDMS data for a stringent QCD test and a reliable determination of $\Lambda_{\overline{M S}}$. The theoretical uncertienty in $\Lambda_{\overline{M S}}$ is dominated by the one due to the higher-order corrections.

$$
23 \quad 11.89
$$

Diana, 1989

ИНФОРМАЦИОННАЯ КАРТА

Р: ЈІедницки

бликании: 耳епонированное сообщение ОИЯД тематич.категория:

Іширение названия:

ИНФОРМАЦИОННІАЯ КАРТА

торы: Р.ЈІедницки

п публикаии: Депонированное сообщенле ОИЛІД тематич.категория:

(No	ключевые слова	указат. связи	ДЕСКРИПТОРЫ	тематич. рубрики
1	квантовая хромопинамита			
2	структурная функпия			
3	анализ данных			
	.			

расширение названия:

карту составил: Р. ЈедНицки
дата: IO.IT.I989

С помощью водородныу: данных сотрудничества ВЦДиС изучено влияние различных приолижєний и теоретических неопределенностей на определение масштабногс параметра КХД и - на проверку Кхд. В области средних x и $Q^{2}>I 0$ Гэ 2 найден небольшой (отрицательнь вінад высших твистов в прстонную структурную функцию $F_{2}\left(x, Q^{2}\right)$, который, в соответствии с теоретическими моделями, хорошо описыває с помощью одного параметрє $k^{2}=0,02-0,04$ ГэВ ${ }^{2}$ - квадрата партс ного поперечного импулься, генерируемого за счет динамики. Это позволяет использовать данные ВЦДй для чувствительной проверки кХД и достоверного определения \wedge. Преобладаюиий вклад в теоретичес неопределенность в \wedge дают поправки от более высоких поряднов теори

реферат составил: Р. Је ПНИіџи

1. Introduction

The pointike and struetureless nature of leptons has been extensively exploited to study the irternal strueture of the nucleon with the help of lepton-nuoleon soattering. First the proton size was measured by electron soattering at the momentum transfer squared $Q^{2} \sim 0.1 \mathrm{GeV}^{2}$ and, later on, the nuoleon composite structure was discovered at SIAO at righer values of Q^{2}. The presence of pointilke oonstituents (partons $=$ quaris) in the nucleon reveals itsely as an approxima;e Bjorken scaling of the measured structure functions $F_{k}\left(x, Q^{2}\right)$. Inus, in the model of free collinear partons, the nucleon structure functions depend on the Bjorken scaling variable x only, e.g.

$$
\begin{align*}
& F_{2}^{e p}\left(x, Q^{2}\right)=x \cdot \sum_{i} e_{i}^{2}\left[q_{i}(x)+\bar{q}_{i}(x)\right] \\
& F_{2}^{u p}\left(x, Q^{2}\right)=2 x \cdot[a(x)+s(x)+\bar{u}(x)+\bar{c}(x)+\cdots] \tag{1}
\end{align*}
$$

where $q_{i}=d, u, s, c, 0, \ldots$ represent the probability densities to find a quark of flavour i and electric charge e_{i} (in the units of the proton electric charge) carrying a fraction x of the proton momentun. The interpretation of partons as quarks is strongly supported by the fulfilment of Gross-lilewellyn Smith, Adler and Gottfried sum rules for the number of valence quarks in a nucleon $(3=3.0 \pm 0.2)$, the difference betweer. rumbers of valence u - and d-quarks in a proton $(1=1.1 \pm 0.2)$ and $e_{u}^{2}-e_{d}^{?}(1 / 3=0.24 \pm$ 0.11), respectively (see, e.g. reis. [1,2]).

It follows from the momentum sum rule that only about half of the proton momentum is carried by quarks. The unprobed neutral partons are identified as gluons - carriers of the interaction between colour charges in quantum chromodynamics (QCD). This identification is supported by a weak (logarithmic) violation of Bjorken scaling, related in QCD to tre gluon bremsstrahlung and quark-antiquark pair production. The predicted softening of the parton x-distributions with Q^{2} agrees with the character of saling violations observed experimentally, though, there is some discrepancy between the most precise high energy data of EMC and BCDMS [2-4].

Since the QCD effective coupling $\alpha_{s}\left(Q^{2}\right)$ logarithmically vanishes with Q^{2} (asymptotic freedom) the scaling violations should do the same. Present deep-inelastic scatterins data are not accurate enough to check runaing of α_{s}. However, the precission and the Q^{2}-range of recent BCDMS data [5-11] appear to be sufficient to quantitatively heck the QUD predictions for soaling violations, to reliably determine α_{s} (or QCD mass-soale parameter Λ), and, to cheok consistercy of the predictions ion various targets (same α_{s}). These data heve also important implicetions for predicting W and Z production rates on $\bar{p} p$ colliders and thus placing limits on the number of light neutrinos and, possibly, on the mass of the top quark [12].

In this paper we use the BCDMS hydrogen data $[8,9]$ to study the influence of various approximations and theoretical uncertienties on the determination of the QCD mass-scale parameter Λ and - on the QOD tests. Basic formulae of perturbative QCD for deep-inelastio scattering, including $\alpha_{s}{ }^{2}$-correotions to the longitudinal struoture Iunction, are reviewed in Section 2. In Section 3 we discuss various methods for solving the QOD evolution equations, in particular - the simple and convenient method of Jacobi polynomial reconstmetion of structure functions. In this Section we also study the uncertienties of QOD fits due to finite reconstruction accuracy ant limited flexibility of parton parametrizations, and, disclss the problem of QCD teste. The uncertienties due to various preasymptotio correations to the perturbative OUD predictions, including higher-order-, ilavour threshold- and higher twist-comeotions, are discussed in Section 4. The conclusions are summarized in Section 5 .

2. Perturbative QCD predictions for inclusive leptoproduction

2. 1 trose sections and struct ire funct tons

The cross sections of deep-inelastic inclucive lepton seattering on unpolarized nucleons, $l^{ \pm} N \rightarrow l^{ \pm} X$ and $\gamma_{l^{\prime}} \bar{\nu}_{l} N \rightarrow$ $l^{-}, l^{+} X$, in the one-boson exchange aproximation, are expressed
through the nucleon structure functions $F_{k}\left(x, Q^{2}\right)$ in the form $\left(m_{l}{ }^{2}\right.$ s $\dot{Q}^{2}<m_{W, z}{ }^{2}$):

$$
\begin{align*}
& \frac{d \sigma^{\mu, e}}{d x d Q^{2}}=\frac{4 \pi \alpha^{2}}{x \cdot Q^{4}}\left[x y^{2} F_{1}\left(x, Q^{2}\right)+\left(1-y-\frac{M x^{\prime}}{Z E}\right) F_{2}\left(x, Q^{2}\right)\right] \tag{2}\\
& \begin{aligned}
\frac{\mathrm{d} \sigma^{v / \bar{v}}}{\mathrm{~d} x \mathrm{~d} y}= & \frac{G^{2} d E}{\pi}\left[x y^{2} F_{1}^{v / v}\left(x, Q^{2}\right)+\left(1-y-\frac{M x y}{\overline{2 E}}\right) F_{2}^{v / \bar{v}}\left(x, Q^{2}\right) \pm\right. \\
& \left. \pm\left(1-\frac{y}{2}\right) x y F_{3}^{v / v}\left(x, Q^{2}\right)\right]
\end{aligned}
\end{align*}
$$

where $\alpha \simeq 1 / 137, G \simeq 1.156 \cdot 10^{-5} \mathrm{GeV}^{-2}, x=\frac{Q^{2}}{Z M \nu}$ is the Bjorken scaling variable, M is the nucleon mass, $y=\nu / E, v=E-E^{\prime}, E$ and E^{\prime} are the energies of the initial and the scattered lepton. To exctract these cross sections from the measured ones the radiative corrections should be applied. They are known quite precisely. E.g., for the charged lepton scattering, in the region of large y (small x) covered by BOLMS data, they introduce an uncertienty in $F_{2}\left(x, Q^{2}\right)$ less than 1%, otherwise, the uncertienty is much smaller [13].

In the parton model approximation, the Callan-Gross relation $F_{2}=2 x F_{1}$ is valid at $Q^{2}>M^{2}$ as a consequence of vanishing coupling of longitudinally polarized photcns to quarks. The violation of this relation is measured by the longitudinal structure function

$$
\begin{equation*}
F_{L}\left(x, Q^{2}\right)=(1+\varepsilon) F_{2}\left(x, Q^{2}\right)-2 x F_{1}\left(x, Q^{2}\right), \quad \varepsilon=4 M^{2} x^{2} / Q^{2} \tag{4}
\end{equation*}
$$

or, by the ratio of the cross sections of the absorption of longitudinally and transversally polarized photons on a nucleon target:

$$
\begin{equation*}
R\left(x, Q^{2}\right)=\frac{\sigma_{L}}{\sigma_{T}}=\frac{F_{L}}{\varepsilon x F_{1}}=\frac{F_{L}}{(1+\varepsilon) F_{2}-F_{L}} \tag{5}
\end{equation*}
$$

In terms of the structure functions $F_{2}\left(x, Q^{2}\right)$ and $R\left(x, Q^{2}\right)$, the cross section in eq. (2) can be rewritten in the form

$$
\begin{equation*}
\frac{d \sigma^{\mu, e}}{d x d Q^{2}}=\frac{4 \pi \alpha^{2}}{x \cdot Q^{4}}\left[1-y-\frac{1}{4} \varepsilon y^{2}+\frac{1}{2} y^{2} \frac{1+\varepsilon}{1+K\left(x, Q^{2}\right)}\right] \cdot F_{2}\left(x, Q^{2}\right) \tag{6}
\end{equation*}
$$

It may be seen that the sross section is sensitive to the structure function $R\left(x, Q^{2}\right)$ oniy at sufficientiy large y-values.

2.2 Q^{2}-evolution of structure functions

According to the QCD jactowiastion theorem, the structure functions are given as tre convolution of quark and gluon densities q_{i} and G with the coefficient functions C_{k} (which are proportional to the corresponding cross sections of the hard process - the absorption of the intermediate boson by a parton):

$$
\begin{gather*}
f_{k}\left(x, Q^{2}\right)=\int_{x}^{1} \frac{d y}{y}\left[C_{k}^{N S}\left(\frac{x}{y}, Q^{2}\right) A^{N S}\left(y, Q^{2}\right)+C_{k}^{S I}\left(\frac{x}{y}, Q^{2}\right) A^{S I}\left(y, Q^{2}\right)+\right. \\
 \tag{7}\\
\left.+C_{k}^{G}\left(\frac{x}{y}, Q^{2}\right) A^{G}\left(y, Q^{2}\right)\right]
\end{gather*}
$$

where $f_{2}=F_{2} / x, f_{1}=\frac{1}{2} F_{1}$ ard $f_{3}=F_{3}$. The funotions $A^{G} \propto G, A^{S I}$ and $A^{N S}$ are certain flavour singlet and nonsinglet combinations of the parton densities. E.g., in the case of charged lepton scattering, assuming $f / 2$ douklets of zero mass quarks,

$$
\begin{equation*}
A^{G}=\frac{5}{18} G, A^{S I}=\frac{5}{18} \sum_{i=1}^{f}\left(q_{i}+\bar{c}_{i}\right), A^{N S}=\frac{1}{6}(u-\bar{a}+\bar{u}-\bar{a}+c-s+\bar{c}-\bar{s}+\ldots) . \tag{8}
\end{equation*}
$$

The coefficients $\frac{5}{18}$ and $\frac{1}{6}$ are nothing else but half the sum and the difference of the electric charges squared of the quarks in a doublet, respectively.

It should be noted that both the coefficient functions and parton densities are dependent on the renormalization (factorization) scheme and on the renormalization scale parameter μ (the choice $\mu=Q$, assumed in eq. (7), introduces Q^{2}-dependence of the parton densities). Of course, their convolution, being a physical quantity, must be independent on the renormalization procedure provided both the factors are calculated in the same scheme. In the following, we use the results obtained in the modified minimal subtraction (MS) scheme [14]. Ir particular, the parton densities defined in ohis soheme satisty the usual momentum sum rule:

$$
\begin{equation*}
\left\langle x_{q}\right\rangle+\left\langle x_{G}\right\rangle=\int_{0}^{1} \mathrm{~d} x \cdot x \cdot\left\{\sum_{i=1}^{f}\left[q_{i}\left(x, 2^{2}\right)+\bar{q}_{i}\left(x, Q^{2}\right)\right]+G\left(x, Q^{2}\right)\right\}=1 . \tag{9}
\end{equation*}
$$

The parton densities are often cefined in a different way $[15,16]$ by demanding $F_{2}^{\nu N}\left(x, Q^{2}\right)$ to maintsin the same form as in the parton model. Such a modification of the scheme slightly simplifies the calculation of this particular structure function, but has no preference in other cases.

The coefficient functions san be expanded in powers of the muning coupling constant $\alpha_{s}\left(Q^{2}\right)$:

$$
\begin{equation*}
C_{k}\left(x, Q^{2}\right)=C_{k}^{(0)}(x)+\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} C_{k}^{(1)}(x)+\left[\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi}\right]^{2} C_{k}^{(2)}(x)+\ldots, \tag{10}
\end{equation*}
$$

where $C_{k}^{S I(O)}(x)=C_{k}^{N S(O)}(x)=\delta(x-1), C_{k}^{G(O)}(x)=0$ and $C_{k}^{S I(1)}(x)=$ $C_{k}^{\text {NS }}{ }^{(1)}(x), k=1.2 .3$. The functions $C_{k}^{(k)}(x)$ are Q^{2} independent in the limit of massless quarks. At $\alpha_{s} \rightarrow 0$, eq. $\cdots(7)$ yields the parton model result, e.g., eqs. (1).

The effective coupling $\alpha_{s}\left(Q^{2}\right)$ obeys the QCD beta function renormalization group equation

$$
\begin{equation*}
4 \pi \mathrm{~d}\left(\frac{1}{\alpha_{s}}\right)=\left[\beta_{0}+\frac{\alpha_{s}}{4 \pi} \beta_{1}+\left(\frac{\alpha_{s}}{4 \pi}\right)^{2} \beta_{2}+\ldots\right] \operatorname{din} Q^{2}, \tag{11}
\end{equation*}
$$

where β_{i} are the beta function expansion coefficients, e.g.

$$
\begin{equation*}
\beta_{0}=11-\frac{2}{3} f, \quad \beta_{1}=102-\frac{38}{3} f, \quad \beta_{2}=\frac{2857}{2}-\frac{5033}{18} f+\frac{325}{54} f^{2}, \tag{12}
\end{equation*}
$$

f is the number of active flavours. The coefficients β_{0} and β_{1} are independent on the renormalization scheme, β_{2} in eq. (12) corresponds to the $\overline{\mathrm{MS}}$ scheme [17]. Eq. (11), in the leading order (LO) of α_{s} on the rhs yields

$$
\begin{equation*}
\alpha_{s}^{(O)}\left(Q^{2}\right)=\frac{4 \pi}{\beta_{c} \ln \left(Q^{2} / \Lambda^{2}\right)}, \tag{13}
\end{equation*}
$$

and, in the next-to-leading order (NLO), $\alpha_{s}=\alpha_{s}^{(1)}\left(Q^{2}\right)$ is given by the implicit equation [18]:

$$
\begin{equation*}
\ln \frac{Q^{2}}{\Lambda^{2}}=\frac{4 \pi}{\beta_{0} \alpha_{s}}-\frac{\beta_{1}}{\beta_{0}^{2}} \ln \left[\left(\frac{4 \pi}{\beta_{0} \alpha_{s}}+\frac{\beta_{1}}{\beta_{0}^{2}}\right) / C\right] \tag{14}
\end{equation*}
$$

where Λ is an umbon incesation constant (Q0D mass scale parameter) to be determined irom experiment. The constant C on the rhs of eq. (14) indicates that the detinition of the scale Λ is. merely a matter of convention. The commonly used choice is $C=1$ [14,19], though other choices are sometimes prefered, e.g., $C=$ $\beta_{1} / \beta_{0}^{2}[18]$ or $C=2 \beta_{0}[20]$. The scales at different C-values are related by:

$$
\Lambda\left(C^{\prime}\right)=\Lambda(0) \cdot(0 \cdot / 0)^{\beta,} / 2 \beta_{0}^{2}
$$

The solution of eq. (11) cai be represented as a series of the terms $2 n^{m}\left[C \cdot \ln \left(Q^{2} / \Lambda^{2}\right)\right] / l n^{n}\left(Q^{2} / \Lambda^{2}\right), m=0,1, \ldots n$. In particular, at $C=1$ we have in the NLO:

$$
\begin{align*}
\alpha_{s}^{(1)}\left(Q^{2}\right) & =\alpha_{s}^{(O)}\left(Q^{2}\right) /\left[1+\frac{\alpha_{s}^{(0)}\left(Q^{2}\right)}{4 \pi} \beta_{1}^{1} \ln l n \frac{Q^{2}}{\Lambda}\right] \cong \\
& \cong \alpha_{s}^{(O)}\left(Q^{2}\right) \cdot\left[1-\frac{\alpha_{\varepsilon}^{(O)}\left(Q^{2}\right)}{4 \pi} \beta_{1} \ln l n \frac{Q^{2}}{2}\right]
\end{align*}
$$

and, in yet the higher-order:

$$
\begin{align*}
& \alpha_{s}^{(2)}\left(Q^{2}\right)=\alpha_{s}^{(0)}\left(Q^{2}\right) /\left\{1+\frac{\alpha_{s}^{(0)}\left(Q^{2}\right)}{4 \pi} \beta_{1} \ln \ln \frac{Q^{2}}{\Lambda} 2+\right. \\
&+\left[\frac{\alpha_{s}^{(0)}\left(Q^{2}\right)}{4 \pi}\right]^{2}\left[\left(\frac{\beta_{1}}{\beta_{0}}\right)^{2}\left(1+\ln \left(n \frac{Q^{2}}{\Lambda}\right)-\frac{\beta_{2}}{\beta_{0}}\right]\right) \tag{15}
\end{align*}
$$

In the BCDMS Q^{2}-range and at. $\Lambda \approx 200 \mathrm{MeV}$ eqs. (14 4^{\prime}) and (14.'), as compared with the equally valid NLO expression (14), give the α_{8}-values higher by 3% and lower by 2%, respectively. Eqs. (14'), (14'') and (14) yield the same α_{s} as the second order eq. (15) at the Λ-values lower by 15 MeV and higher by 25 MeV and 10 MeV , respectively.

The Q^{2} dependence of the parton densities $A^{i}\left(x, Q^{2}\right)$ is governed by solutions of the generalized Altarelli-Parisi-Lipatov evolution equations:

$$
\begin{align*}
& \frac{\partial A_{ \pm}^{N S}\left(x, Q^{2}\right)}{\partial \ln Q^{2}}=\int_{x}^{1} \frac{d y}{y} A_{ \pm}^{N S}\left(y, Q^{2}\right) P_{ \pm}\left(\frac{x}{y}, Q^{2}\right), \\
& \frac{\partial A^{S I}\left(x, Q^{2}\right)}{\partial \ln Q^{2}}=\int_{x}^{1} \frac{d y}{y}\left[A^{S I}\left(y, Q^{2}\right) P_{q q}\left(\frac{x}{y}, Q^{2}\right)+A^{G}\left(y, Q^{2}\right) P_{q G}\left(\frac{x}{y}, Q^{2}\right)\right], \\
& \frac{\partial A^{G}\left(x, Q^{2}\right)}{\partial n Q^{2}}=\int_{x}^{1} \frac{d y}{y}\left[A^{S I}\left(y, Q^{2}\right) P_{G q}\left(\frac{x}{y}, Q^{2}\right)+A^{G}\left(y, Q^{2}\right) P_{G G}\left(\frac{x}{y}, Q^{2}\right)\right], \tag{16}
\end{align*}
$$

where the splitting functions $P_{i j}$ are the probabilities of $j \rightarrow i$ $\left(P_{q G}\right.$ is sometimes redefined by $\left.P_{q G} \rightarrow 2 f P_{q G}\right)$. The index $+(-)$ in the NS-equation denotes the evolution of a crossing even (odd) combination of parton densities, i.e. of a one containing $q_{i}+\bar{q}_{i}$ $\left(q_{i}-\bar{q}_{i}\right)$.

The Q^{2} dependence of the splitting functions is determined by the expansion in powers of the running coupling constant $\alpha_{s}\left(Q^{2}\right)$:

$$
\begin{equation*}
P_{i j}\left(x, Q^{2}\right)=\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} P_{i j}^{(0)}(x)+\left[\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi}\right]^{2} P_{i j}^{(1)}(x)+\ldots . \tag{17}
\end{equation*}
$$

Note that $P_{+}^{(l)} \neq P_{-}^{(l)}$ for $l \geqslant i$ due to the $q \leftrightarrow \bar{q}$ mixing terms which arise in the next-to-leading and higher orders. Both the coefficient and the splitting furctions have been calculated up to the next-to-leading order (see reviews [21,22], references therein and refs. $[23,24])$.

2.3 Analytical solutions of evolution equations in moment

 representationThe Mellin transformation

$$
\begin{equation*}
f(n)=\int_{0}^{1} \cdot d x \cdot x^{n-1} f(x) \tag{18}
\end{equation*}
$$

allows one to transform the convolution integrals into simple multiplications. Thus, e.g., eq. (7) becomes

$$
\begin{align*}
f_{k}\left(n, Q^{2}\right)=C_{k}^{N S}\left(n, Q^{2}\right) A^{N S}\left(n, Q^{2}\right) & +C_{k}^{S I}\left(n, Q^{2}\right) A^{S I}\left(n, Q^{2}\right)+ \\
& +C_{k}^{G}\left(n, Q^{2}\right) A^{G}\left(n, Q^{2}\right) . \tag{7'}
\end{align*}
$$

By tradition, the expanbion $O O_{k}\left(n, Q^{2}\right.$) in powers of a_{s} is defired differently trian in eq. (10):

$$
C_{k}\left(n, Q^{2}\right)=B_{k, n}^{(O)}+\frac{\alpha_{e}\left(Q^{2}\right)}{4 \pi} B_{k, n}^{(1)}+\left[\frac{\alpha_{s}\left(Q^{2}\right)}{4 \pi}\right]_{B_{k, n}(2)}^{4}+\ldots
$$

i.e. $B_{k, n}^{(l)}=2^{l} C_{k}^{(l)}(n)$.

The solution of the Mellin transformed evolution equations is straightforward:

$$
\begin{align*}
& A_{ \pm}^{N S}\left(n, Q^{2}\right)=\phi_{ \pm}^{N S}\left(n, Q^{2}, Q_{0}^{2}\right) A_{ \pm}^{N B}\left(n, Q_{O}^{2}\right) \\
& A^{S I}\left(n, Q^{2}\right)=\phi_{Q Q}\left(n, Q^{2}, Q_{O}^{2}\right) A^{S I}\left(n, Q_{O}^{2}\right)+\phi_{Q G}\left(n, Q^{2}, Q_{O}^{2}\right) A^{G}\left(n, Q_{O}^{2}\right), \\
& A^{G}\left(n, Q^{2}\right)=\phi_{G Q}\left(n, Q^{2}, Q_{O}^{2}\right) A^{S I}\left(n, Q_{0}^{2}\right)+\phi_{G G}\left(n, Q^{2}, Q_{O}^{2}\right) A^{G}\left(n, Q_{O}^{2}\right) \tag{19}
\end{align*}
$$

Here the initial moments $A^{t}\left(i, Q^{2}\right)$ at some reference point Q_{O}^{2} are not predicted by perturbative: QCD. The ϕ-functions are determined by the Mellin transform of the splitting functions. Introducing

$$
\gamma_{i j}\left(n, Q^{2}\right)=-2 P_{i j}\left(n, Q^{2}\right)=\frac{\alpha_{s}}{4 \pi} \gamma_{i j}^{(0)}(n)+\left(\frac{\alpha_{s}}{4 \pi}\right)^{2} \gamma_{i j}^{(1)^{\prime}}(n)+\ldots\left(17^{\prime}\right)
$$

then, e.g., the nonsinglet ϕ-function reads as follows:

$$
\begin{align*}
& \phi_{ \pm}^{N S}\left(n, Q^{2}, Q_{0}^{2}\right)=\left[\frac{a_{s}\left(Q^{2}\right)}{\alpha_{s}\left(Q_{0}^{2}\right)}\right]_{ \pm}^{(0)}(n) / 2 \beta_{0} H_{ \pm}^{N S}\left(n, Q^{2}, Q_{0}^{2}\right), \\
& H_{ \pm}^{N S}\left(n, Q^{2}, Q_{0}^{2}\right)=1+\frac{1}{4 \pi}\left[\alpha_{s}\left(Q^{2}\right)-\alpha_{s}\left(Q_{0}^{2}\right)\right] \cdot Z_{ \pm}^{N S}(n), \\
& Z_{ \pm}^{N S}(n)=\left[\gamma_{ \pm}^{(1)}(n)-\gamma_{ \pm}^{(0 \cdot}(n) \beta_{1} / \beta_{0}\right] / 2 \beta_{0} . \tag{20}
\end{align*}
$$

Similar expressions for the singlet ϕ-functions can be read out from eqs. (2.138) - (2.143) of the review [25]. The solutions of the evolution equations should not depend on the reference point $Q_{O}{ }^{2}$. The ϕ-function in eq. (20) fulfils this requirement only in the NLO in $\alpha_{s}\left(Q_{O}{ }^{2}\right)$. Therefore, it becomes unvalid if $Q_{O}{ }^{2}$ has been chosen too low. The $Q_{0}{ }^{2}$-independence in the $10 w-Q_{O}{ }^{2}$ region can be recovered by solving the NLO Mellin transiomed evolution equations exactly, i.e. replacing the H-runction in eq. (20) by [26]:

$$
H_{ \pm}^{N S}\left(n, Q^{2}, Q_{0}^{2}\right)=\left[\frac{\left.1+\frac{\left.\beta_{1} \alpha_{0} \cdot Q^{2}\right)}{\beta_{0}} \frac{\beta_{i}}{\left.1+\frac{\beta_{1}}{\beta_{0}} \frac{\alpha_{0} Q_{0}{ }^{2}}{4 i}\right)}\right] \frac{\beta_{0}}{\beta_{1}} Z_{ \pm}^{N S}(n)}{}\right.
$$

In fact, the QCD predicticns in terms of the Mellin moments have been originally obtained w. th the help of the Wilson operator product expansion (OPE); $\gamma_{ \pm}\left(n . Q^{2}\right)$ at even/odd n are just the anomalous dimensions of the spin- n nonsinglet operators. Both $C_{k}\left(n, Q^{2}\right)$ and $\gamma\left(n, Q^{2}\right)$ are known up to the next-to-leading order. In particular, the anomalous dimensions have been caloulated in [27] and represented in a simple analytical form in [28,29]. Note that the gluon-gluon anomalous dimension of refs. [27,28] slightly differes from the generally accepted result of refs. [29,30].

Recall that the anomalous dimensions beyond the leading order predict only even/odd moments of the crossing even/odd structure functions [31]. To find out the evolution of the moments at any n, an analytical continuation should be performed for even and odd n separately. As a result, the re.evant moments defined in eq. (17') are related to the OPE anomalous dimensions $\gamma_{n}^{N S}$ and $\gamma_{\pi}^{S I}$ by the following expressions:

$$
\begin{align*}
& \gamma_{ \pm}^{(l)}(n)=\gamma_{n}^{N S(l)}+\eta_{ \pm}(n) \Delta \gamma_{i 2}^{i J S}(l) \\
& \gamma^{(l)}(n)=\gamma_{n}^{S I(l)}+\eta_{+}(n) \Delta \gamma_{i 2}^{i S I(l)} \\
& \eta_{ \pm}(n)= \pm 1-(-1)^{n} \tag{21}
\end{align*}
$$

where $\Delta \gamma_{n}^{(0)}=0$, and, the corrections $\Delta \gamma_{n}^{(1)}$ are known to be quite smail and vanishing very fasti with $n\left(\Delta \gamma_{n}^{N S_{\infty}} 1 / n^{6}\right)$ [31]. The corrections in the crossing even/odd case can be simply taken into account by the following replacements in the OPE anomalous dimensions $[26,32]:$

$$
\left.\begin{array}{l}
(-1)^{n} \rightarrow \pm 1 \\
S_{2}^{\prime}\left(\frac{1}{2} n\right) \rightarrow(-1)^{n}\left\{ \pm S_{2}^{\prime}\left(\frac{1}{2} n\right)+\eta_{ \pm}(n)\left[-2 S_{2}(n)+\zeta(2)\right]\right\} \\
S_{3}^{\prime}\left(\frac{1}{2} n\right) \rightarrow(-1)^{n}\left\{ \pm S_{3}^{i}\left(\frac{1}{2} n\right)+\eta_{ \pm}(n)\left[-4 S_{3}(n)+3 \zeta(3)\right]\right\} \\
\tilde{S}(n) \tag{22}
\end{array}\right),(-1)^{n}\left[\pm \tilde{S}(n)+\eta_{ \pm}(n) \frac{5}{8} \zeta(3)\right],
$$

where the series $S_{m}(n)$ and the alternate serieses $S_{m}\left(\frac{1}{2} n\right), \stackrel{N}{S}(n)$ are defined in [28] and $\zeta(z)$ is the Riemann zeta function, $\zeta(2)=$ $\pi^{2} / 6, \zeta(3) \cong 1.202056903159594$.

2.4 NLO calculation of longitulnal structure function

The QCD prediction for the longitudinal structure function, defined in eq. (4), is given, at $Q^{2}>M^{2}$, by eq. (7), where

$$
f_{L}\left(x, Q^{2}\right)=F_{L}\left(x, Q^{2}\right) / x, \quad C_{L}\left(x, Q^{2}\right)=O_{2}\left(x, Q^{2}\right)-C_{1}\left(x, Q^{2}\right)
$$

Since $C_{L}^{(O)}(x)=O$, due to the helicity conservation, the leading order QCD prediction for $F_{L}\left(x, Q^{2}\right)$ is proportional to α_{s} :

$$
\begin{equation*}
F_{L}\left(x, Q^{2}\right)=\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} x \int_{x}^{1} \frac{d y}{y}\left[C_{L}^{N S(1)}\left(\frac{x}{y}\right) \frac{F_{2}\left(y, Q^{2}\right)}{y}+C_{I}^{G(1)}\left(\frac{x}{y}\right) A^{G}\left(y, Q^{2}\right)\right] \tag{23}
\end{equation*}
$$

Here

$$
\begin{equation*}
C_{L}^{N S(1)}(x)=C_{L}^{S I(1)}(x)=\frac{3}{3} x, \quad C_{L}^{G(1)}(x)=4 f x(1-x) \tag{24}
\end{equation*}
$$

being the LO quantities, are independent on the renormalization scheme (eq. (23) is sometime:; confusingly called as the NLO one, though it is understood that it should be used with α_{s} and the parton densities calculated in the LO [25]). To get the NLO QCD predictions, the $\alpha_{3}{ }^{2}$-terms $C_{. j}{ }^{(2)}(x)$ in the coefficient functions $C_{L}\left(x, Q^{2}\right)$ are needed. Analytic results for $C_{L}^{N S(2)}(x)$ and $C_{L}{ }^{S I(2)}(x)$ have been obtained in refs. [23,24]. The Mellin moments of the $\alpha_{s}{ }^{2}$-terms were calculated partly numerically in the nonsinglet case [23] and, recently, in an analytical form for all the nonsinglet-, singlet- quark and gluon coelficient functions [33]. The results contain the altermate serieses $K_{m}(n)=$ $S_{m}(n)-S_{m}^{\prime}\left(\frac{1}{2} n\right) / 2^{m-1}$ and $Q(n)=-\tilde{S}(n)$ which should be continued from even to odd n by the replacements (22) for the crossing even case (see eqs. (43) of ref. [35]). The coefficients $B_{L . n}^{i(2)}$ in the expansion (10') are given in きqs. (35), (38) and (41) of ref. [33] through the ratios $R_{L, n}^{(2)}=B_{L, \eta}^{(2)} B_{L, n}^{(1)}$, where $B_{L, n}^{(1)}=2 C_{L}^{(1)}(n)$,

$$
\begin{equation*}
B_{L, n}^{N S(1)}=B_{L, n}^{S I(1)}=\frac{16 / 3}{n+1}, \quad B_{L, n}^{G(1)}=\frac{88}{(n+1)(n+2)} . \tag{25}
\end{equation*}
$$

We can invert the Mellin moments of a longitudinal structure function, given by eq. (7^{\prime}), with the help of the methods discussed in sect. 3.1 , or, neglect a small difference between the NS and SI values of $R_{L, n}^{(2)}$, which is essential ($>10 \%$) only at small $n(n \leqslant 3)$, i.e. only at small x, and write $F_{I}\left(x, Q^{2}\right)$ in the form similar to eq. (23) (see also ref. [34]):

$$
\begin{align*}
F_{L}\left(x, Q^{2}\right)=\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} x \int_{x}^{1} \frac{d y}{y} & \left\{C_{L}^{N S(1)}\left(\frac{x}{y}\right)\left[1+\frac{\alpha_{s}\left(Q^{2}\right)}{4 \pi} R^{q}\left(\frac{x}{y}\right)\right] \frac{F_{2}\left(y, Q^{2}\right)}{y}+\right. \\
+ & \left.C_{L}^{G(1)}\left(\frac{x}{y}\right)\left[1+\frac{\alpha_{s}\left(Q^{2}\right)}{4 \pi} R^{G}\left(\frac{x}{y}\right)\right] A^{G}\left(y, Q^{2}\right)\right\}, \tag{26}
\end{align*}
$$

where the functions $R^{q}(x)$ and $R^{G}(x)$ are defined by the relations:

$$
\begin{align*}
& B_{L, n}^{N S}(1) \tag{27}\\
& \left(R_{L, n}^{N S}(2)\right. \tag{28}\\
& \left.B_{2, n}^{N S(1)}\right)=2 \int_{C}^{1} d x \cdot x^{n-1} C_{L}^{N S(1)}(x) R^{q}(x), \\
& B_{L, n}^{G(1)} R_{L, n}^{G(2)}-B_{L, n}^{N S(1)} B_{2, n}^{G(1)}=2 \int_{C}^{1} d x \cdot x^{n-1} C_{L}^{G(1)}(x) R^{G}(x) .
\end{align*}
$$

The approximation $R_{I, n}^{S I}=K_{I, n}^{N S}$, assumed in eq. (26), l'eads to $\sim 4 \%$ overestimation of $F_{L}\left(x, Q^{2}\right)$ in the lowest BCDMS x, Q^{2}-bins. The overestimation becomes less than 1% for $x>0.3$. At $f=4$, the following simple but sufficiently accurate parametrizations for the R^{i}-functions can be used:

$$
\begin{equation*}
R^{q}(x)=36.5 x^{2}, \quad R^{C}(x)=240.9 x^{5} \tag{29}
\end{equation*}
$$

They satisfy eqs. (27) and (28) with an accuracy better than 1% (2 $<n<11)$ and $2 \%(3<n<11)$, :espectively, i.e. - underestimate $F_{L}\left(x, Q^{2}\right)$ by $3-7 \%$ for $x=0.07-0.14$, and, overestimate it by $4-11 \%$ for $x=0.35-0.75$.

The $\alpha_{s}{ }^{2}$-corrections to the longitudinal coefficient functions are quite large. Thus the neglect in reis. [8,9,11] of the correction terms in square breckets in eq. (26) underestimates $F_{L}\left(x, Q^{2}\right)$ in the NLO by about 30%. At the same time, they are compensated, to a large extent, by the NLO corrections to $\alpha_{s}\left(Q^{2}\right)$ and to the parton distributions. As may be seen from fig. 1 the net NLO correction remains positive but it is less than 10% in
major part of the BCons hinenatio region. The uncertienty in F_{L} due to the higher-order corrections is expected to be of similar size (see Section 4.1).

3. Calculation and fit procedures

3.1 Calculating QCD predictions for structure functions. Survey of methods.

The comparison of the theoretical and the experimental moments of the structure functions is technically very easy. However, due to the necessity of an interpolation of the data into the unmeasured regions $x \rightarrow$ (1, 1 , such a comparison is commonly considered to be less reliable than a direct $Q C D$ analysis of the measured structure functions. Thus the evolution equations (16), as well as the convolution (7), effectively require only an interpolation, to $x=1$ which introduces a negligable uncertienty (due to rapidly vanishing pa:ton densities with x) provided the structure Iunctions are reliakly measured up to $x \sim 0.8$.

The evolution equations allow one to calculate the parton densities $A^{i}\left(x, Q^{2}\right)$ provided they are given at some reference point $Q_{O}{ }^{2}$. The densities $A^{i}\left(x, Q_{O}{ }^{2}\right)$ are not predicted by perturbative QCD. They are usually parametrized based on plausible theoretical assumptions concerming their behaviour near the end points $x=0$, 1, e.g.

$$
\begin{align*}
& x A^{N S}\left(x, Q_{0}{ }^{2}\right)=a_{N S} x^{\mu_{N S}}(1-x)^{\nu N S}\left(1+\gamma_{N S} x\right) \text {, } \\
& x A^{S I}\left(x, Q_{0}{ }^{2}\right)=a_{S I}\left[x^{\mu_{S I}}(i-x)^{\nu_{S I}}+a_{S E A} x^{\mu_{S E A}(1-x)^{\nu}}{ }^{v E A}\right], \\
& x A^{G}\left(x, Q_{0}{ }^{2}\right)=a_{G} x^{\mu_{G}}\left(1-x,{ }^{\nu_{G}} .\right. \tag{30}
\end{align*}
$$

At low $Q_{0}{ }^{2}$, we expect from Regge theory and the quark counting rules: $\mu_{S I} \approx \mu_{N S} \geqslant 1-\alpha_{\rho}(0) \cong 0.5, v_{S I} \approx v_{N S} \approx 3, \mu_{S E A} \approx \mu_{G} \approx 0, v_{G}$ $\geqslant v_{S I}+1$ and $v_{S E A} \geqslant v_{G}+1$. QCD evolution increases (decreases) the exponents $v_{i}\left(\mu_{i}\right)$ with $Q^{2}: \nu_{i} \rightarrow \infty, \mu_{N S} ; \mu_{S I} \rightarrow 1-\alpha_{\rho}(0)$ and $\mu_{S E A}, \mu_{G}$ $\rightarrow \mu_{\infty}$, where $-1<\mu_{\infty}<0$. The high $-x$ behaviour of the gluon
distribution, compatible with QCD at suriciently high $Q_{0}{ }^{2}$, is, in fact, of the form [35]:

$$
x A^{G} \propto\left(1-x, v_{S I}+1, n_{1-x},\right.
$$

which suggests a x-dependence of the exponent v_{G} in eq. (30), e.g.

$$
v_{G}(x)=v_{S I}+1+\operatorname{lr}\left(1+v_{o} \ln \frac{1}{1-x}\right) / \ln \frac{1}{1-x}
$$

In the limit $x \rightarrow 1$ the quantity v_{0} is related to $v_{S I}$ by [36]:

$$
v_{0}=\left[\gamma-\frac{3}{20}+\psi\left(2+v_{S I}\right)\right]^{-1},
$$

where γ and $\psi(z)$ are the Euler, constant and ψ-function, respectively; $v_{0}=0.5-0.4$ at $v_{S I}=3-5$. In the region of moderate or low x, however; the effective value of v_{0} may substantially differ from this estimate $\left(\nu_{O}=1\right.$ is simply assumed in ref. [35]). Eq. (30') yields $v_{G}(x)$ decreasing with x from $v_{S I}+v_{O}+1$ to $v_{S I}+1$, the decrease being quite slow except for regions near the end points $x=0$ (at $v_{0} \gg 1$) and $x=1$.

It is important to provide a sufficient flexibility of the parton x-parametrizations at $Q^{2}=Q_{O}{ }^{2}$ in order to not bias the comparison of the QCD predictions with data. In particular, number of parameters describing the quark densities should be comparable with the number of measured x-intervals. Concerning the gluon density, its contribution to tre structure functions and to the scaling violations rapidly vanishes with x and becomes small at x >0.3. Thus the simple parametrization in eq. (30), even with $\mu_{G}=$ 0 (at not too high $Q_{0}{ }^{2}$), apperres to be sufficient at present experimental errols.

The evolution equations ($1 \in$) can be solved numerically using a suitable algorithm [37-39]. A]though straitforward, this method is not cheap in terms of compl.ter time and meets a problem of accumulation of the rounding errors when evolving at very large scales. Therefore a number of aralytic methods has been developed to solve these equations with lover price.

The simplest and fastest possibility is to use plausible parametrizations for the parton x, Q^{2}-distributions and determine
the parameters in such a way that the evolution equations are approximately satisfied. Thus in refs. [40-42] the parameters are determined by minimizing deviations of the first 10-20 Melin moments of these distributions irom the QOD predictions, while in refs. $[35,43,44]$, the parameters responsible for the Q^{2} dependence are calculated exactly in the limits $x \rightarrow 0$, 1. The achieved acouracy, several \% (0.5%) in former (latter) case in the kinematic region of interest, is satisfactory for many purposes but it may be insufficient when the most precise data are analyzed. A drawback may be also limited flexibility of the parametrizations.

Another method [16] exploj.ts the inverse Mellin transform

$$
\begin{equation*}
f(x)=\frac{1}{2 \pi i} \int_{-i \infty}^{+i \infty} \mathrm{~d} n x^{-n} f\left(n, Q^{\dot{c}^{\prime}}\right) \tag{31}
\end{equation*}
$$

which is performed numerically in finite and carefully chosen bounds allowing one to achiere the required accuracy. A minor drawback is that analytical expressions for the moments of the parton densities must be provicied.

The other methods are based on the expansion of a structure function or parton densitiəs in a series of orthogonal polynomials. In principle, they allow one to solve the evolution equations with any reasonable ciccuracy.

Originally, Bernstein polynomials were used in ref. [45] to expand a structure function with the expansion coefficients expressed through its Mellin moments given by QCD eqs. (7') and (19). The convergence of this series appeares however quite slow. The method was further developed and applied in refs. [28,46] the structure function was represented by a convolution of the parton densities $A^{i}\left(x, Q_{0}{ }^{2}\right)$ with the integration kernels given in a form of fast converging serieses.

In reis. $[47,48]$, Laguerwe polynomials were used to expand the densities $A^{i}\left(x, Q^{2}\right)$. The evolution of their Laguerre moments is known in an analytical form. The densities at a reference point $Q_{0}{ }^{2}$ are represented by their Laguerre moments which has an advantage (however minor) as compared with the usual apriori parametrizations of their x-dejendence.

An important variation of the polynomial reconstruction method - Jacobi polynomial expension - was proposed in ref. [49] and further studied, developed and applied to the analysis of experimental data in refs. [50-5,4,6,8,10]. It j.s discussed in some detail in the next Seotion.
3.2 Jacobi polynomial reconstrustion of structure functions

Given the Jacobi moments $x_{m}\left(Q^{2}\right)$, a function $f\left(x, Q^{2}\right)$ may be reconstructed in a form of the series

$$
\begin{equation*}
x f\left(x, Q^{2}\right)=\lim _{: \nmid \rightarrow \infty} x^{\beta}(1-x)^{\alpha} \sum_{m=1)}^{M} a_{m}\left(Q^{2}\right) \theta_{m}^{\alpha \beta}(x) \tag{32}
\end{equation*}
$$

where the Jacobi polynomials

$$
\theta_{m}^{\dot{\alpha} \beta}(x)=\sum_{j=0}^{m} c_{j}^{m}(\alpha ; \beta) x^{j}
$$

satisfy the orthogonality relation with the weight $x^{\beta}(1-x)^{\alpha}$. The Jacobi moments are just linear sombinations of the Mellin ones:

$$
\begin{equation*}
a_{m}\left(Q^{2}\right)=\sum_{j=0}^{m} z_{j}^{m}(\alpha, \beta) f\left(j+2, Q^{2}\right) \tag{33}
\end{equation*}
$$

Their Q^{2}-dependence thus simply follows from the $Q C D$ eqs. (7') and (19). It was shown that a fast convergence of the reconstruction series can be achieved when appropriately, choosing the weight function to factor out an essential part of the structure function x-dependence. As a result, not only the first $N_{\text {max }}=M+1$ Jacobi or Mellin moments of the truncated series are exactly equal to the given (QCD) values (due to the orthogonality relation) but also higher moments approximately satisfy this equality [50] (the weight function causes a rapid vanishing of the Jacobi moments).

Originally, a Q^{2}-dependen; weight function (with $\alpha=\alpha\left(Q^{2}\right)$) was proposed. Later on, it was recognized $[50,52,53]$ that a good reconstruction accuracy (better than 1%) can be obtained with constant values of α and β; and, a reasonable number $N_{\max }$ of the terms retained in the series. 1 s expected, the choice $\alpha \approx 3$ and β
≈ 0.5 for the weight function paraneters appears to be optinal in the nonsinglet case. For a singlet structure function given in eq. (30) with $\mu_{S I}=0.25, v_{S I}=3$, $\mu_{S E A}=0$ and $v_{S E A}=8$, two sets of optimal α, β values have been found [53]: $\alpha \approx 3, \beta \approx 0.2$ and α $\epsilon(-0.8,3.3), \beta \approx-0.8$. The relation $\beta_{1} \approx \beta_{2}+1$ between the two β-values is merely consequence of the polynomial expansion.

The accuracy analysis of ref. [53] does not take into account a rapid Q^{2}-evolution of the sea quarks and gluons. Since the evolution effectively leads to the appearance of a negative power of x in their x-distributions [35], we may expect decreasing the optimal β-value with Q^{2}. This is indeed confirmed (fig. 2) by the analysis of the r.m.s. relative reconstruction accuracy

$$
\begin{equation*}
\Delta_{2}^{M}\left(Q^{2}\right)=\left\{\sum_{N}^{1} \sum_{i=1}^{N}\left[\frac{F_{2}^{M}\left(x_{i}, Q^{2}\right)-F_{2}\left(x_{i}, Q^{2}\right)}{F_{2}\left(x_{i}, Q^{2}\right)}\right]^{2}\right\}^{1 / 2} \tag{34}
\end{equation*}
$$

of the BCDMS proton structure function ($N=11$). The index M indicates that the structure function was reconstructed from the first $M+1$ moments. We have approximated the structure function by

$$
\begin{equation*}
F_{2}\left(x, Q^{2}\right) \cong \sum_{j=1}^{3} c_{j} x^{\beta_{j}(1-x)^{\alpha_{j}}} \tag{35}
\end{equation*}
$$

where the parameters $c_{j}, \alpha_{j}, \beta_{j}, j=1,2$ and 3 , are calculated from the first three evolved NLO-moments of the NS, SI and gluon densities, respectively. The QCD mass-scale parameter Λ, as well as the parameters in eqs. (30) defining the initial densities at $Q^{2}=5 \mathrm{GeV}^{2}$, were determined by a QCD fit of the BCDMS proton structure function [8]. The approximation (35) is surficient for studying the reconstruction ascuracy, and, as the moments of its rhs are exactly known, it aroids the necessity of the "exact" solution of the evolution equations for this purpose.

It may be seen from figures 2 and 3 that an optimal choice of the weight function parameters α and β in the case of a proton structure Iunction would be $0 \in(0,4)$ and β close to -1 or $\beta \approx$ -0.15. In the BCDMS kinemati= range this choice garanties $\Delta_{2}^{11}<$ 0.3%. This is more than one order better result as compared with
the case of the constant weight function (Legendre polynomial expansion). For the longitudincl structure function, due to a substantial gluon contributior, the reconstruction accuracy appears to be much worse: $\Lambda_{L} \approx 50 \Lambda_{2}$ at the optimal values α as 6 and β close to -1 . Such an inaccuracy is still acceptable since it is comparable with the uncertienties due to the higher-order correotions, and, it is compensa;ed by a small $F_{L^{-c o n t r i b u t i o n ~}}$ to the cross section (up to several $\%$ in a few high-y BCDMS points). Figures 2 and 3 also indicate, in contrast with the nonsinglet case [52], the sensitivity of the reconstmuction accuracy to the analyzed Q^{2}-interval. Clearly, this is a consequence of a fast singlet evolution in the low-x region.

The dependence of the reconstmuction accuracy on the number $N_{\max }$ of the terms in the reconstruction series and on the length of the IBM computer word is displayed in fig. 4. It may be seen that the single precission is sufficient.up to $N_{\max }=8$, the double precission - up to $N_{\max }=22$, and, that the reconstruction accuracy blows up at $N_{\max }=44$ even if the maximal word length of REAL*16 has been used. It also follows from fig. 4 , that the IBM double precission allows one to achieve the reconstruction accuracy by about one order better than in the case of the single one, while further doubling of the word length is less effective. We may conclude that the computer precission practically limits the number of the retained terms to $N_{\max }<20$. Due to rapidly increasing computer time with $N_{\max }$, an optimum seems to be $N_{\max }=$ 10-15. In this case, as may be seen from fig. 4, there is only a minor difference in reconstruction accuracies corresponding to the exact and numerical calculations of the initial moments from eqs. (30).

It should be noted [32] that the convergence of the reconstruction series destroyes at $N_{\text {max }}>10$ if the $Q C D$ moments have been calculated neglecting the corrections to the OPE next-to-leading anomalous dinensions arising from the substitutions (22).

We may conclude that a simple and a cheap tuning of the Jacobi polynomial reconstruction of both the transverse and the longitudinal structure functions is possible to make the
reconstruction uncertienties in the predicted cross section less than a fraction of $\%$, i.t. negligatle even in the case of presently most precise BCDMS data.

3.3 QCD fits

The Jacobi moments $a_{m}\left(G^{2}\right)$, unlike the Mellin ones, rapidly vanish with m and represent in independent, and, in the limit of precise data over the whole x-range, uncorrelated piece of information. It is therefore convenient to parametrize a nonsinglet structure function at a reference point $Q_{0}{ }^{2}$ in texms of a few first Jacobi moments [50]; the required parametrization of the corresponding Mellin moments is merely given by the inverse of eq. (33). Of course, in the singlet case, two sets of the initial Jacobi moments should be given, corresponding to the quark singlet and the gluon part of the structure function. In principle, it is possible to consider the Mellin moments of the parton densities at $Q_{O}{ }^{2}$ as iree parameters [53]. This is however of a little practical use due to a large number of such parameters (increasing with $N_{\text {max }}$) and large correlations among them. The starting values of the Mellin moments can be also parametrized with the help of eqs. (30). This parametrization apyears to be sufficiently flexible for the analysis of present data and is used in the following.

To periorm the complet $Q C D$ fits, we have modified the computer code used in ref. [53] for a Lo singlet analysis of the EMC iron data, and, in ref. [6], for a NLO, essentially nonsinglet, analysis of the BODMS carbon data.

Thus the parameters in eqs. (30) are determined together with the QCD mass-scale parameter Λ by fitting the QCD predictions to the cross section data points. These points are sometimes given in a form of the function (see, e.g. [5,9,55]):

$$
\begin{equation*}
F_{2}^{O}\left(x, Q^{2} ; E\right)=\frac{K\left[x, Q^{2} ; E, R\left(0, Q^{2}\right)\right]}{K\left(x, Q^{2} ; E, O\right)} F_{2}\left(x, Q^{2}\right), \tag{36}
\end{equation*}
$$

which coincides with the strusture function $F_{2}\left(x, Q^{2}\right)$ at $R\left(x, Q^{2}\right)=$ 0. The K-function is the fastor in square bracket in eq. (6).

Approximate procedures are often used assuming $R\left(x, Q^{2}\right)=0$ or parametrizing it in a simple form (see, e.g., the oritics raised in ref. [56]). We compare the cross section data with the complete next-to-leading order QCD predicjion containing both the structure functions F_{2} and F_{I} calculated in the $\overline{M S}$ renormalization scheme. Different weight functions are used to optimize the Jacobi reconstruction of these structure functions - the corresponding exponents α, β may be treated ais free parameters of the fit. The procedures are also included into the code allowing one to take into account the preasymptotic corrections (flavour threshold-, target mass- and higher twist- ones) to the leading twist massless theory (see Sect. 4).

The new code has been already applied for QCD fits of the BCDMS hydrogen data $[8,10]$. The reference point was chosen at a value $Q_{0}{ }^{2}=5 \mathrm{GeV}^{2}$ and the NLO mass-scale parameter Λ was defined by eq. (14^{\prime} '). An excellent agreement of the QCD predictions with the data is demonstrated in figs. 5 and Table 1. The results of

Table 1. The results of NLO leading-twist QCD fits to the BCDMS hydrogen data [9] ($\Lambda_{\overline{\mathrm{MS}}}$ in MeV), assuming four massless flavours and parametrizing the parton densities according to eqs. (30) at a reference point $Q_{0}{ }^{2}=5 \mathrm{GeV}^{2} ; \mu_{S E A}=\mu_{G}=0$, the momentum sum rule is used. The kinematic cuts of ref. [10] are applied; in particular, $x>0.06$ (0.25) in a SI+NS (NS) fit.

Fit	$\mu_{N S} v_{\text {NS }}$	$\gamma_{N S}$	$a_{\text {NS }}$	$\mu_{\text {SI }}$	$v_{S I}$	$\left\langle x_{q}\right\rangle$	$v_{\text {SEA }}$	$a_{\text {SEA }}$	v_{G}	$\Lambda_{\overline{M S}} \frac{\chi^{2}}{} \frac{1}{D O F}$
SİNS	$\begin{array}{r}0.5 \\ \hline 0.5 \\ \pm 0.2 \\ \hline 0.2\end{array}$	10 ± 2	1.1 ± 0.2	0.8 ± 0.1	4.5 ± 0.6	0.45 ± 0.08	13 ± 4	0.17 ± 0.05	9.5 ± 1.5	205258 ± 21270 188
NS	$\begin{array}{rr} 0.6 & 3.5 \\ \pm 0.2 & \pm 0.3 \end{array}$	$\begin{array}{r} 0.1 \\ \pm 0.8 \end{array}$	$\begin{array}{r} 2.2 \\ \pm 0.7 \end{array}$	-	-	-	-	-	-	$\begin{array}{r} 198 \frac{178}{198} \\ \pm 20 \end{array}$

the fits well agree with the onos $[10,11]$ obtained by a different method (based on a numerical sclution of the evolution equations [39]), except for a slight systematic difference of $10-15 \mathrm{MeV}$ in the NLO Λ-values. Almost half of this difference is due to $\sim 30 \%$ underestimation of the R-function (see discussion at the end of Section 2.4) in latter fits. The two methods would be fully
equivalent provided [52] the exact solution of the NLO equation (14) for $\alpha_{s}\left(Q^{2}\right)$ is used instead of the equally valid NLo approximation in eq. (14''); in the former method, also the exact solutions of the NIO Mellin transiormed evolution equations should be used, e.g. the nonsinglet H-function in eq. (20) should be replaced by the one in eq. (20'). These equations may substantially differ if a reftrence point $Q_{0}{ }^{2}$ has been chosen too low. It apppears, however, thet the fits are not sensitive to this difference even at $Q_{0}{ }^{2}$ as low as $5 G G^{?}$.

Since a "Iine tuning" of the x-parametrizations was applied in the second method, a gocd agreement of the χ^{2}-values also indicates a sufficient flexitility of the quark parametrizations in eqs. (30). We have confimed this with the help of polynomial modifications of these parametrizatjons and found that the subsequent change of Λ is negligable ($<2 \mathrm{heV}$).

Note that the large errors of the parameters of the quark densities arise due to sufistantial correlations amons them. However, these parameters, keing determined essentially by the x-dependence of the structure functions averaged over Q^{2}, are practically decorrelated fron the $Q O D$ mass-scale parameter Λ, which measures the size of the scaling violations. This circunstance makes the deep-inelastic lepton scattering a good place for testing QCD (see Sertion 3.4).

A surprisingly soft glucn distribution has been obtained in the NLO. Thus, parametrizing the giuon density according to eq. (30) with $\mu_{G}=0$, the fitted exporent $v_{G} \approx 10$ is about twice the one expected from the quark counting rule and found in the lo analysis. Note that the neslect of the longitudinal structure function ($R=0$) would lead to still a softer gluon distribution (v_{G} by $30-40 \%$ higher) and to Λ higher by 15 MeV . The gluon parametrization should be hovever considered only as an effective one in the range $0.06 \leqslant x \leqslant 0.30$, where an essentially nonzero gluon contribution is required by the measured scaling violations (compare iull and dotted curves with dashed one in fig. 5d and see also fig. 4 of rer. [10]). Thus, at $v_{G}=10$ (5) the gluon contribution to the sealing violation $\operatorname{dinF}_{2} / \partial \ln Q^{2}$ becomes comparable with the experimental error at $x=0.22$ (0.35). The

BCDMS data are thus not sufficicntly precise to reliably determine the exponent v_{G} responsible for the gluon distribution at $x>0.3$. In fact, replacing v_{G} by the ansatz (30') with $v_{0}=5$, corresponding to $v_{G}^{e f f} \approx 9.5$ at $x<0.3$ and $\nu_{G}^{e f f} \rightarrow 5.5$ at $x \rightarrow 1$, we reproduce the results of Table 1. A reasonable fit can be also achieved with a smaller value of v_{O} provided the exponent μ_{G} is treated as free parameter. E.g. choosing $\nu_{o}=1$, i.e. $v_{G}^{e f f} \approx 6.5$ at $x<0.3$, and fitting $\mu_{G}=-0.16 \pm 0.07, \Lambda_{\overline{M S}}=216 \pm 22 \mathrm{MeV}$ (other parameters practically coinoide with the ones in Table 1), the χ^{2} increases by ~ 1 unit only.

In the fits we have constreined the size of the gluon density with the help of the momentum sum rule (9). This may be questionable as it requires an interpolation of the singlet quark and gluon densities into the unmeasured region of $x<0.06$. It appeares, however, when treat:ng both $\left\langle x_{q}\right\rangle$ and $\left\langle x_{G}\right\rangle$ as free parameters and assuming $\mu_{S E A}=\mu_{3}=0$, that the results of Table 1 remain practically unchanged (except for 50% increase of the error in ν_{G}), and, that the sum rule is well satisfied: $1=1.05 \pm 0.13$.

The softness of the gluon distribution makes it possible to neglect its contribution in the evolution equations at sufficiently large x-values and determine Λ with the help of a more constrained nonsinglet analysis. The results of NS fits shown in fig. 6 indicate that the BCDMS data are insensitive to the gluon distribution at $x \geqslant 0.25$. In this x-interval the NLO nonsinglet approximation, as compared with the complete SI+NS treatment, yields Λ by $\sim 10 \mathrm{MeV}$ lower (see Table 1 and ref. [10]). In the LO this shift is about three times as large due to harder gluon distribution. To estimate the influence of the gluon density on the distortion of Λ in a NS fit, we plot in fig. 7 the ν_{G}-dependence of $\Lambda_{\overline{M S}}$ fitted in the full x, Q^{2}-region $(x>0.06)$ and - in the NS one ($x>0.25$). It may be seen that a negative correlation between these paraneters weakens in latter case, as expected due to rapid vanishing with x of the gluon contribution in the scaling violations (fiss. 5d). Since a fit in the full x, Q^{2}-region yields $v_{G}>5$ at a level of two standard deviations (in agreement with the lower linit $v_{S I}+1$ following from the ansatz (30')), and, $\left\langle x_{G}\right\rangle=0.44 \pm 0.06$ at $\nu_{G}=5$, we may conelude from fig.

7 that a NG fit underestimatos $\Lambda_{M B}$ by $5 \pm \frac{15}{5} \mathrm{MeV}$ at the same confidence level. We may also conclude that the uncertienty in $\Lambda_{\overline{M S}}$, introduced by the gluon distribution, is by $\sim 60 \%$ larger in the full kinematic region than in the NS-one.

The $N_{\max }$-dependence of the results of NLO fits is displayed in fig. 8. In agreement with the reconstruction accuracy analysis, the results of NS and SI+NS fits: show stable behaviour for $N_{\text {max }} \geqslant 8$ and $N_{\text {max }} \geqslant 10-13$, respectively.

Since the parton x-distributions evolve with Q^{2}, a check of the $Q_{0}{ }^{2}$-independence of the iftted Λ and χ^{2} values also provides a Ilexibility test of the initisl x-parametrizations in eqs. (30) in a given $Q_{0}{ }^{2}$-region. The resilts of $N S$ and complete $S I+N S$ QCD fits show in fig. 9 as functions of $Q_{0}{ }^{2}$ indicate sufficient flexibility of the NS x-parametrization, and - some problem with the singlet quark and the gluor ones; the use of the latter with $\mu_{S E A}=\mu_{G}=0$ slightly underesiimates $\Lambda_{\overline{l d}}$ at $Q_{0}{ }^{2}>50 \mathrm{GeV}^{2}$. This problem arises due to a fast Q^{E}-evolution in the low-x region and it may be cured by treating the exponents $\mu_{s \in A}$ and μ_{G} as free parameters. Thus choosing, e.g. $Q_{0}{ }^{2}=200 \mathrm{GeV}$ 解 and fitting $\mu_{S E A}=$ $\mu_{G_{2}} \approx-0.3, v_{G} \approx 11$, we recover $\Lambda_{\overline{M S}} \approx 200 \mathrm{MeV}$ obtained at low Q_{0}^{2}-values.

3.4 Testing QCD

Even the BCDMS data are not sufficiently precise for tests of the most specilic QCD prediction - asymptotic freedom - manifested by vanishing of $\alpha_{e}\left(Q^{2}\right)$ (or the scaling violations $x \alpha_{s}$) with Q^{2}. The corresponding curvature of $l n F_{k}$ in $l n Q^{2}$ is practically hidden in the statistical errors. Present data thus allow one to obtain only an average coupling $<\alpha_{s} \because$ in the measured Q^{2}-region. The fitted value of Λ then prastically coincides with the one following from equation $\alpha_{s}\left(\left\langle Q^{2}\right\rangle\right)=\left\langle\alpha_{s}\right\rangle$.

In such a situation, the well-known illustrative representation of perturbative GOD predictions in terms of the logarithmic slopes $\partial \ln F_{e^{\prime}} \partial \ln Q^{2}$ (see, e.g., [1]) approximately substitutes the globel QCD cescription. It follows irom the evolution equations, in particular, from the $L 0$ nonsinglet
proutution, whereas the charged curvent top production may give a non-negligable. Effeot depending on the top quark mass.

It appeares that the χ^{2} of the I'ts to the BODNS hydrogen data as well as the fitted gluon density are practioally insensitive to the number of ilavours used to calculate the evolution (the splitting functions). At the same time, the mass-scale parameter Λ is strongly correlated to this number: changing $f=4$ to $f=5$ decreaces $\Lambda_{\overline{M F}}$ by 60 MeV . Assuming the bottom threshold at $Q^{2}=(5 \pm 2) m^{2}$ we get for the shift of $\Lambda_{\overline{M S}}(f=4)$ due to the FTC a value of $-5 \pm 10 \mathrm{MeV}$. The uncertienty in Λ due to parameter p in eq. (49) is less than 1 MeV . We may conclude that the influence of the FTC on the QCD tests and the determination of α_{s} is negligable at present.

4.3 Target mass- and higher twist-corrections (TMC and HTC)

In the simple model of free massless partons the mo arise from the intrinsic transverse parton monentum [82-84,19]. Somewhat misleading name of these corrections is due to the fact that, as a consequence of kinematic constraints, they vanish as a square of the target mass M. Thus the contribution of the quark i to the structure functions F_{2} and $F_{工}$ is given ky:

$$
\begin{align*}
& F_{2}^{i}\left(x, Q^{2}\right)=\left(\frac{x}{\xi}\right)^{2}(1+\varepsilon)^{-3 / 2}\left[1+\frac{\left.6\left\langle k_{i 1}^{2}\right\rangle_{1}\right]}{Q^{2}} \tilde{F}_{2}^{i}(\xi),\right. \\
& F_{L}^{i}\left(x, Q^{2}\right)=\left(\frac{x}{\xi}\right)^{2}(1+\varepsilon)^{-1 / 2}\left[\tilde{F}_{L}^{i}(\xi)+\frac{4\left\langle k_{1}\right.}{2} \frac{Q^{i}}{}{ }^{i}\right. \tag{50}\\
& \left.\tilde{F}_{2}^{i}(\xi)\right] .
\end{align*}
$$

Here $\left\langle k_{i \perp}{ }^{2}\right\rangle_{0}$ is the mean transverse monentum squared of the i-th quark:

$$
\begin{equation*}
\left\langle k_{i 1}^{2}\right\rangle_{0}=\mathbb{M}^{2} \frac{x \xi^{2}}{(1+\varepsilon)^{1 / 2}}\left\{\frac{d \xi^{\prime}}{\xi^{\prime 2}} \tilde{F}_{2}^{i}\left(\xi^{\prime}\right)\left[i+2 \frac{M^{2}}{Q^{2}} \frac{x\left(\xi \xi^{\prime}-\xi\right)}{(1+\varepsilon)^{1 / 2}}\right] / \tilde{F}_{2}^{i}(\xi)\right. \tag{51}
\end{equation*}
$$

and ξ is the well-known Nachtmann variable:

$$
\begin{equation*}
\xi=2 x /\left[1+(1+\varepsilon)^{1 / 2}\right] \tag{52}
\end{equation*}
$$

$$
\frac{\partial \ln F_{2}^{N S}\left(x, Q^{2}\right)}{\partial \ln Q^{2}}=\frac{\alpha_{s}\left(Q^{2}\right) 1}{2 \pi} \int_{x} \frac{d y}{y} \frac{F_{Q}^{I I S}\left(y, Q^{2}\right)}{F_{a!}^{i / S}\left(x, Q^{2}\right)} P_{+}^{(O)}\left(\frac{x}{y}\right),
$$

that the logarithmic slopes are roughly constant and proportional to $\left\langle\alpha_{s}\right\rangle$. Their x-dependence in the NS case is uniquely predicted by perturbative QCD (provided the structure function is measured up to sufficiently high values of x), while their size determines the free parameter of the theory: $\left\langle\alpha_{s}\right\rangle$ or Λ. It is convenient [6] to calculate both the average theoretical and experimental slopes with the help of a straight line fit according to the equation

$$
\begin{equation*}
\ln F_{2}\left(x, Q^{2}\right)=a+b \cdot \ln \frac{Q^{2}}{\left\langle Q^{2}\right\rangle_{x}} \tag{37}
\end{equation*}
$$

Phus assigning to the predicted points of the BCDMS proton structure function $F_{2}\left(x, Q^{2}\right)$ the experimental errors (285 points after application of the selection criteria of ref [10]) and fitting them by formula (37) in each x-interval, the corresponding total χ^{2} of 1.8 units appears to be negligable as compared. with $\chi^{2}=243$ of a similar fit to the cata. This circumstance allows one to neglect the higher derivatives $\partial^{k} l n F_{2} / \partial\left(\ln Q^{2}\right)^{k}$ and identify, within the errors, the parameters a and b with $\ln F_{2}\left(x,\left\langle Q^{2}\right\rangle_{x}\right)$ and $\left\langle\partial F_{2} / \partial \ln Q^{2}\right\rangle \cong \partial F_{2}\left(x, Q^{2}\right) /\left.\partial l n Q^{2}\right|_{Q^{2}=:\left\langle Q^{2}\right\rangle x}$, respectively. An excellent agreement of the theoretical and experimental x-dependences of these quantities is demonstrated in figs. $5 \mathrm{~b}-\mathrm{d}$. The corresponding $\chi^{2}, \chi^{2}(a)=1.5$ and $\chi^{2}(b)=8.9$, agree with the respective numbers of degrees of freedom $\operatorname{NDF}(a)=N_{x}-N P_{x}=1$ and $\operatorname{NDF}(b)=$ $N_{x}-N P_{Q}=9$, where $N_{x}=11$ is the number of x-intervals, $N P_{x}=10$ is the number of parameters in the initial structure function x-parametrization and $N P_{Q}=2$ is the number of parameters responsible for the Q^{2}-evolution (Λ and $\nu_{G} ; a_{G}$ is fixed by the momentum sum rule, and, $\mu_{G}=0$). Note that $\chi^{2}(a)$ merely tests the flexibility of the initial x-farametrization, while $\chi^{2}(b)$, as stressed by BCDMS collaboration $[6,8,10]$, yields practically the only specific test of perturbative QCD for deep-inelastic
scatterine within the acouracy of present experimerts. In the nonsinglet approximation, the slope test depends on Λ as practically the sole free parameter whereas in a full SINNG analysis there is additional freedom due to the gluon distribution (the other parameters, and, to some extert also the parameters in the gluon distribution, eat the degrees of freedom in χ^{2} (a)).

Though the comparison of the slopes merely reilects the quality of a glaf fit, dealirs with the essentially compressed information it may yield a more stringent QOD test $[6,3,10]$. Thus eventual slope discrepancies may Jead to an unacceptably large $\chi^{2}(b)$, and, at the same time still give the global χ^{2} of a reasonable confidence level due to a large NDF. The analysis [6] of the iron FMC data may serve as an example.

The problem of an optimal binning for the χ^{2} test is quite general - the integration over the bins which are not sensitive to the eventual discrepancy may increase. the test selectivity. Another possibility is to use a $\Delta \chi^{2}$ test based on χ^{2}-comparison of two hypotheses. This test is practically independent on the binning provided the bins sensitive to differences are fine enough. It can be shown that; the difference $\Delta \chi^{2}$ of the χ^{2} s corresponding to a global QC.) fit $\left(\chi_{Q C D}{ }^{2}\right)$ and to the linear representation (37) of the date in each x-interval $\left(\chi_{L}{ }^{2}\right)$ is given by

$$
\begin{equation*}
\Delta \chi^{2} \equiv \chi_{\mathrm{QCD}}^{2}-\chi_{\mathrm{L}}^{2}=\chi^{2}(a, b)-\tilde{\chi}_{\mathrm{L}}^{2} \tag{38}
\end{equation*}
$$

Here $\tilde{\chi}_{I}{ }^{2}$ is the χ^{2} of the straight line representation of the QCD predictions with the assigned experimental errors (1.8 units in the case of the BCDMS hydrogen data) and

$$
\begin{equation*}
\chi^{2}(a, b)=\sum_{i=1}^{N_{x}} \vec{\Delta}_{i} \hat{E}_{i}^{-1} \vec{\Delta}_{i}^{T}=\chi^{2}(a)+\chi^{2}(b)+2 \sum_{i=1}^{N_{x}}\left(\hat{E}_{i}^{-1}\right)_{a b} \Delta a_{i} \Delta b_{i} \tag{39}
\end{equation*}
$$

where $\vec{\Delta}_{i}=\left(\Delta a_{i}, \Delta 0_{i}\right)$, and, i_{i}^{-1} is the inverse error matrix resulting from the linear fit in the i-th x-interval. The NDF of $\Delta \chi^{2}$ equals to the difference of the numbers of free parameters of the two hypotheses: $N D F=2 N_{x}-\left(N P_{x}+N P_{Q}\right)$, i.e. $N D F \approx N_{x}-N P_{Q}$ at $N P_{x} \approx N_{x}$. The generalization cf the $\Delta \chi^{2}$-test for the case of data
ensitive to the curvature of $7 n F_{2}$ in $l n Q^{2}$ is straightforward. The eplacement of the linear remresentation in eq. (37) by a parabolic one leads to $\Delta \chi^{2}$ with $V D F=3 N_{x}-\left(N P_{x}+N P_{Q}\right)$, i.e. $N D F=$ $N N_{x}-N P_{Q}$ at $N P_{x} \approx N_{x}$.

In figs. $10-12^{x}$ we compare various $\chi^{2} s$ obtained in a NLO fit p the BCDMS hydrogen data as functions of Λ and the gluon parameters ν_{G} and $\left\langle x_{G}\right\rangle$. Note that $\chi_{I}{ }^{2}$ depends on these parameters hrough the longitudinal structure function (see eq. (6)). It may pe seen that eq. (39) is well satisfied. Besides, $\chi^{2}(b)$ and $\Delta \chi^{2}$ re close to each other; they are practically parallel as functions of Λ but not as functions of the gluon parameters. This Is in accordance with a weak derendence of $\chi^{2}(a)$ on Λ and with a hotioeable one on v_{G} and $\left\langle x_{G}\right\rangle$. We may conclude that the $\chi^{2}(b)$ - and χ^{2}-tests are of similar selestivity. The latter is somewhat preferable as it takes into account all the available information, though, it has minor drawback being less robust-- more sensitive to the initial parton x-parametrizations.

Preasymptotic corrections

4.1 Higher-order corrections (HOJ)

The problem of HOC is closely related to the one of the renormalization scheme (RS) dependence of a truncated perturbation series (see, e.g., $[18,20,22,54,57-64]$). Thus the QCD predictions for a physical quantity ρ obtained to a finite order $O\left(\alpha_{s}{ }^{m}\right)$:

$$
\rho^{(m)}=\alpha_{s}^{q} \cdot\left(1+r_{1} \alpha_{s}+\ldots+r_{m} \alpha_{s}^{m}\right)
$$

differ in various schemes at ($m+1$)-th order when expanded in powers of the coupling constart in some reference RS. At m-th order, the RS is specified by m conditions. The corresponding unphysical parameters may be :dentified as the renormalization point μ and the beta function soetificients $\beta_{i}, i=2, \ldots m$ [18]. Thus the RS-dependence of tie NLO predictions is entirely equivalent to the problem of the best choice of the renormalization point within ore particular scheme. Changing the
renomalization point μ by another one $\tilde{\mu}=\mu / x$, the NLO coefficients in the expansions (10) or (10*) of the coefficient functions and the mass-scale pammeter A benome x dependent, e.g. [14,23]:

$$
\begin{align*}
& \tilde{B}_{2, n}^{N S(1)}=B_{2, n}^{N S}(1)-\gamma_{+}^{(0)}(n) \cdot l n 2 x \\
& \tilde{R}_{L, n}^{N S}(2)=R_{L, n}^{N S(2)}-\left[\gamma_{+}^{(0)}(n)+2 \rho_{O} l \cdot 7 n 2,\right. \\
& \tilde{\Lambda}=æ \cdot \Lambda \tag{40}
\end{align*}
$$

It is implied $M / \mu \lll<\mu / A$ so that the x-rescaling of the parameter Λ in eq. (40) is approximately equivalent to the rescaling of a_{s} :

$$
\left.\tilde{a}_{s}=\alpha_{s} \cdot 11+\frac{\alpha_{s}}{4 \pi} \beta_{0} \ln x^{2}\right)
$$

Choosing the $\overline{M S}$ scheme as the reterence FS and assuming $f=4$, we have, e.g. $x=2.17$ Ior the MOA scheme [60], or, $x=0.377$ for the MS scheme [14]. The complete NLO contribution to the predicted scaling violations, e.g. to

$$
\begin{align*}
\rho_{2, n} & =-\frac{8 \pi}{\gamma_{+}^{(O)}(n)} \frac{\partial l n f_{2}^{N S}\left(n, Q^{2}\right)}{\partial l n Q^{2}}= \\
& =\tilde{a}_{s} \cdot\left[1+\frac{\tilde{a}_{0}}{4 \pi} \frac{\gamma_{+}^{(1)}(n)+2 \beta_{0} \tilde{B}_{2, n}^{N S(1)}}{\gamma_{+}^{(0)}(n)}+\ldots\right] \tag{41}
\end{align*}
$$

or, to

$$
\begin{align*}
& \rho_{L, n}=-\frac{8 \pi}{\gamma_{+}^{(O)}(n)+2 \beta_{O}} \frac{\partial l n f_{L}^{N S}\left(n, Q^{2}\right)}{\partial l n Q^{2}}= \\
& =\tilde{\alpha}_{s} \cdot\left[1+\frac{\alpha_{s}}{4 \pi} \frac{\gamma_{+}^{(1)}(n)+2 \beta_{+}+2 \beta_{O} \tilde{R}_{L, n}^{N S(2)}}{\gamma_{+}^{(O)}(n)+2 \beta_{0}}+\ldots\right],
\end{align*}
$$

is, of course, independent ol. the $R S$, as would be full all order calculation. However, since we truncate the caloulation in the NLO, difierent choices for x yield different estimates of the higher-order terms. This is cemonstrated in fig. 13 where we plot $p_{2, n}^{(1)}(x)$ and the ratio $p_{2, n}^{(1)}(x) / p_{2, n}^{(1)}(1)$ at $\Lambda=200 \mathrm{HeV}, \mu=Q=10$ GeV as Iunctions of x and $\pi=2,6,10$. Similar ourves, with the
renormalization point μ by arother one $\tilde{\mu}=\mu / x$, the NLO coefficients in the expansions (10) or (10.) of the coeffioient functions and the mass-scale paraneter A hecome x-dependent, e. B. [14,23]:

$$
\begin{align*}
& \tilde{B}_{2, n}^{N S}(1)=B_{2 \cdot n}^{N S(1)}-\gamma_{+}^{(0)}(n) \cdot 7 n æ, \\
& \tilde{R}_{L, n}^{N S(2)}=\mathrm{R}_{L, n}^{N S(2)}-\left[\gamma_{+}^{(0)}(n)+2 \beta_{O}\right] \cdot \text { InEE, } \\
& \tilde{\Lambda}=æ \cdot \Lambda . \tag{40}
\end{align*}
$$

It is implied N / μ. \mathscr{C} « μ / Λ so that the $x-m e s c a l i n g$ of the parameter Λ in eq. (40) is approximately equivalent to the rescaling of α_{s} :

$$
\tilde{\alpha}_{s}=\alpha_{s} \cdot\left(1+\frac{\alpha_{s}}{4 \pi} \beta_{0} \ln \mathscr{E}^{2}\right)
$$

Choosing the $\overline{M S}$ scheme as the reterence $R S$ and assuming $f=4$, we have, e.g. $x=2.17$ for the $\mathbb{A O M}$ scheme [60], or, $\mathscr{A}=0.377$ Ior the MS scheme [14]. The complete TLO contribution to the predicted scaling violations, e.g. to

$$
\begin{align*}
\rho_{2, n} & =-\frac{8 \pi}{\gamma_{+}^{(O)}(n)} \frac{\partial \operatorname{lnf_{2}^{NS}(n,Q^{2})}}{\partial \ln Q^{2}}= \\
& =\tilde{a}_{3} \cdot\left[1+\frac{\alpha_{e}}{4 \pi} \frac{\gamma_{+}^{(1)}(n)+2 \beta_{0} \tilde{B}_{2: n}^{N S(1)}}{\gamma_{+}^{(O)}(n)}+\ldots\right] \tag{41}
\end{align*}
$$

or, to

$$
\begin{align*}
& \rho_{L, n}=-\frac{\varepsilon \pi}{\gamma_{+}^{(O)}(n)+2 \beta_{O}} \frac{\partial l n f_{L}^{N S}\left(n, Q^{2}\right)}{\partial \ln Q^{2}}= \\
& =\tilde{\alpha}_{s} \cdot\left[1+\frac{\alpha_{s}}{4 \pi} \frac{\gamma_{+}^{(1)}(n)+2 \beta_{+}+2 \beta_{0} \tilde{R}_{L, n}^{N S}(2)}{\gamma_{+}^{(0)}(n)+2 \beta_{O}}+\ldots\right],
\end{align*}
$$

is, of course, independent of the RS, as would be full all order calculation. However, since ve truncate the calculation in the NLO, difierent choices for x yield different estimates of the higher-order terms. This is demonstrated in fig. 13 where we plot $\rho_{2, n}^{(1)}(x)$ and the ratio $\rho_{2, n}^{(1)}(x)^{\prime} \rho_{2, n}^{(1)}(1)$ at $\Lambda=200 \mathrm{MeV}, \mu=Q=10$ $G e V$ as Iunctions of x and $n:=2,6,10$. Similar curves, with the
axima shifted by $\Delta x \approx 1.9$, are obtained for the quantity $P_{L_{1}, ~} n^{\text {. }}$ Ote that a weak n-dependence $\operatorname{ci} \rho_{2, n}^{(1)}(x)$ (especially for $6 \leqslant n$ 10, corresponding roughly to the x-interval of NS fits) explains he same $\chi^{2} s$ of the BCDMS JO and NLO Iits $[6,8,10]$ - the NLO
 $1.3 a_{s}(\overline{M S})$; this leads to $\Lambda_{\mathrm{LO}} \approx \Lambda_{\overline{M S}}$ in the BCDMS Q^{2}-range.

Though the PS dependence problem can be solved only by aloulating stiil the higher-orcier terms in the expansion series the results at high orders may be, however, of a little value due o asymptotio character of the jerturbation series), a number of uggestions how to choose the optimal $R S$ in a finite-order alculation (minimizing the HOC) have been discussed. For example, t was suggested to fix the $R S$ by the requirement of fastest pparent corivergence (FAC), $\therefore . \mathrm{e}$. by the one of vanishing orrection to the $L 0$ result [61,62] (see also similar scheme Invariant approaches of reis. [59,63,64,20,54]), or, by the rinciple of minimal sensitivity (PMS) of the result on the mphysical parameters characterizing the RS [18]. It follows from hese studies that there is no universal optimal RS. Thus the FAC r PMS schemes depend on the particular structure function and on he number n of its moment. For the structure function F_{2} the atter dependence is indicated by the arrows on the curves in fig. 3. The corresponding x_{n}-values in the case of longitudinal tructure function are higher by ~ 1.9 (PMS) and ~ 1.6 (FAC).

Fortunately, within the accuracy of present data the higher-order uncertienty (RS-dependence) of the predicted --dependence of the scaling violations is rather small. In particular, fig. 14 indicates only a weak x-dependence of the χ^{2} pi a NS fit to the BCDMS .hy Irogen data within the range of pproximate validity of the NLO expansion (in which the b-rescalings in eqs. (40) and (40') yield near-by results - closed and open circles). Clearly this is a consequence of similar c-dependences of the scaling violations at various x or n, i.e. pf a weak n-dependence of the ratio $\rho_{2, n}(x) / \rho_{2, n}(1)$ (iig. 13), allowing one to compensate the change of \nsim merely by a shift of 8_{s}. At the same time, this explains substantial dependence of the fitted value of $\Lambda_{\overline{M S}}$ on x displajed in fig. 14.

The n-dependence of the x-values characterizing the optimal schemes could, in principle, essentially modify the one of the scaling violations. However, cince these schemes extrapolate (with the help of optimization criteria) our lnowledge of the NLO corrections to the higher-order ones, and, since the former introduce minor change in the n-dependence of the scaling violations in a wide \not-range, this modification appears to be minor as well. Thus the n-dependences of the scaling violations in the FAC and FMS optimal schomes are close to the one in the MOM scheme (1ig. 13).

It İollows that the check of perturbative QCD with the help of measured scaling violations and the determination of the mass-scale parameter Λ are quite different tasks - the uncertienty due to higher order: being frobably small in former but not in latter case. Based on Iig. 14: we may estimate that a NLO fit at \notin $=1$ yields $\Lambda_{\overline{M S}}$ with an uncertienty of $\pm \frac{120}{30} \mathrm{MeV}$ (i.e. four times as large as the difference between NLO eqs. (14') and (14'.). Such an uncertienty is also indioa"ed by recent calculation [65] of the third-order correction to $R_{e^{+}}{ }^{-}-$in the $\overline{M S}$ scheme. This correction leads to $\sim 10 \%$ decrease of α_{s} at $\sqrt{s}=34 \mathrm{GeV}$, and, according to eq. (15) for $\alpha_{s}^{(2)}$, - to $\sim 40 \%$ decrease of $\Lambda_{\overline{M S}}$.

However, as compared with $R_{e^{+}} e^{-}$, there is an additional problem due to the higher-order contributions containing terms proportional to the powers of $\alpha_{s} \ln (1-y)$ and $\alpha_{s} \ln y(x \leqslant y \leqslant 1)$ which destroy the validity of the perturbative QOD predictions for the inciusive leptoproduction at high and low values of x. Various procedures for resummation $c f$ these terms have been suggested. Concerning the low-x region, the perturbative $Q C D$ predictions appear to be valid until x as small as $10^{-3}-10^{-4}$ [66,67]. The situation in the high-x region is less clear since the effect of the resummation (exponentiation) is almost as important as the ambiguity associated with it [68]. Fortunately, in the BCDMS kinematic range, the resummation of the terms containing powers of $\ln (1-y)$ (or $l n^{2} n$) leads only to a lew MeV change of the NLO A-value. E.g., using eq. 120') for the NS H-function, and, exponentiating analogically the coelficient function [26]:

$$
\left.C_{k}^{N S}\left(\pi, Q^{2}\right)=\dot{[1}+\frac{\beta_{1}}{\beta_{0}} \frac{x_{s}\left(Q^{2}\right)}{4 \pi} \cdot\right] \frac{\beta_{O}}{\beta_{1}} B_{ \pm}^{N S}(n),
$$

a NLO fit of BCDMS hydrogen dita yields, in the nonsinglet approximatjon, Λ by 5 MeV higher and χ^{2} by 1 unit vetter than the standard fit.

Related to the high-x problen there is a question of the HOC starting at three loops. Thus a consideration of the evolution in terms of the timelike variable $W^{\prime \prime}=m^{2}+Q^{2}(1-y) / y$ (the effective mass-squared of a final state in the photon-parton subprocess) instead of $q^{2}=-Q^{2}$ leads to the effective replacement in eqs. (14)-(15) [69]:

$$
\ln \frac{Q^{2}}{\Lambda^{2}} \rightarrow\left(\ln n^{2} \frac{Q^{2}}{\Lambda^{2}}+\pi^{2}\right)^{1 / 2}
$$

indicating that the contribution of the $O\left(\alpha_{s}{ }^{3}\right)$ terms may be substantial. Negleoting other pcssible $H O C$, it would mean less steep running of $\alpha_{s}\left(Q^{2}\right)$ as compared with the prediction of eq. (14), i.e. the NLO Λ-value increasing with Q^{2}. Thus to the BCDMS NLO value $\Lambda=210 \mathrm{MeV}$ would correspond 230 (240) MeV at UNK (HERA) and 300 MeV at asymptotic energies. This effect should be trackable in the experiments plamed to measure muning of α_{s} at SPS CERN and UNK with the stat.stical error of a few MeV in Λ [70].

We may conclude that at present the HOC-uncertienties in the predicted x-dependence of the scaling violations seem to be practically negligable as compared with the experimental errors. At the same time the HOC may lead to an uncertienty as large as \sim 10% in α_{s} (or in $F_{L} \propto \alpha_{s}$) and $\sim 40 \%$ in Λ. The clarification of the HOC would be clearly of great importance for the comparison of measured Λ with lattice calculations and for the derivation of any prediction from Grand Unified Theories (e.g. of the proton lifetime $\propto \Lambda^{4}$).

4.2 Flavour theoshata cormections (FW)

The corrections due to llavour axeitation trechold are of the order $O\left(m_{i}^{2} / Q^{2}\right)$ at Q^{2} much la ger than a havy quari mass squared $m_{i}{ }^{2}$. They become large at $\epsilon^{2}<m_{i}^{2}$, since, according to the intuitive decupling theorem [71], the contribution of a heave flavour vanishes at $Q^{2} " m_{i}^{2}$. Generally, the FTO arise from the mass dependence of $\alpha_{s}\left(Q^{2}\right)$, ooffioient functions and splitting functions (anomalous dimonsiors). Thore was some hope [72-74] that the FTC can be calculated within the mom renomalization schome. In this scheme, the mass-derendence of α_{s} and the giuon-giuon splitting function is merely conneoted with the replacement of the number of flavours by an efiective one:

$$
\begin{equation*}
f \rightarrow \tilde{f}=\sum_{i=1}^{f} K\left(m_{i}^{2} / Q^{2}\right) \approx \sum_{i=1}^{f} i /\left(1+5 m_{i}^{2} / Q^{2}\right) \equiv \sum_{i=1}^{f} \Delta f_{i} . \tag{42}
\end{equation*}
$$

Thus in the Io, beta function renormalization group equation (11), neglecting a weak Q^{2}-dependerce of the quark messes, yields the running coupling constant in the form (13), with the number of flavours f in eq. (12) for β_{0} replaced by

$$
\begin{equation*}
\tilde{f}^{\prime}=\sum_{i=1}^{f} \Delta \tilde{f}_{i}^{\prime} \approx \sum_{i=1}^{f} \ln \left[\left(Q^{2}+n_{i}^{2}\right) /\left(\Lambda^{2}+m_{i}^{2}\right)\right] / \ln \left(Q^{2} / \Lambda^{2}\right) \tag{43}
\end{equation*}
$$

The new effective number of jlavours in eq. (43) saturates quite slowly as compared with $\tilde{f}\left(Q^{2}\right)$. Thus, using $m_{c}=1.5 \mathrm{GeV} / \mathrm{c}^{2}, m_{b}=$ $4.5 \mathrm{GeV} / \mathrm{c}^{2}$ and $\Lambda=200 \mathrm{MeV}$, w. have at $Q_{\sim}^{2}=100 \mathrm{GeV}^{2}: \Delta f_{c}^{\sim}=0.29$, $\tilde{\Delta f}_{b}^{\prime}=0.09$ as compared with $\ddot{\Delta}_{v_{c}}^{\prime}=0.90, \tilde{\Delta f}_{z}=0.50$. It may be seen from lig. 15 that the usual ansatz of four massless ilavours with appropriately rescaled Λ-valle provides reasonable approximation to the mass-dependent $\alpha_{s}\left(Q^{2}\right)$. Even better approximation is achieved when calculating $\alpha_{3}\left(Q^{2}\right)$ with the number of massless flavours appropriate for a given Q^{2}-range and requiring the continuity $O I, \alpha_{3}\left(Q^{2}\right)$ at flavour excitation thresholds. The corresponding mass-soale parameters Λ_{f} are only weakly dependent on the threshold positions [75]. Choosing them at $(1-5) \mathrm{m}_{i}{ }^{2}$, we have in the NIO: $\Lambda_{3}: \Lambda_{4}: \Lambda_{5} \approx 1.3: 1: 0.65$. Since the mean

Approximation accuracy is much ketter than the accuracy of present heasurements of $\left\langle\alpha_{s}\right\rangle$ ($\sim 2.5 \%$ in the case of BCDMS hydrogen data), re may conclude that the mass-dependence of $a_{3}\left(Q^{2}\right)$ is of minor oractical importance.

The situation with the mass-dependence of the coefficient and plitting functions is not so simple: the results of refs. [72,73] appear to be renormalization prescription- and gauge- dependent. of course, the ambiguities cancell when the mass-dependence of the pefficient functions is taken into account [76]. Unfortunately, they cancell together with all the mass-dependence besides the "trivial" one in α_{s} and the glum-gluon anomalous dimension.

Therefore, similar to refs. [77-79], we estimate the FTC with the help of a phenomenological approach based on the perturbative CD calculation of the γ-gluon fusion process $\gamma g \rightarrow \bar{q}_{i} q_{i}$. The fontribution of this process to the strueture function $f_{k}\left(x, Q^{2}\right)$ is given by [80]:

$$
\begin{equation*}
f_{k}^{i G}\left(x, Q^{2}\right)=\int_{x}^{1} \frac{d y}{y} \frac{\alpha_{s}\left(m_{i}^{2}\right)}{2 \pi} e_{:}^{2} \cdot n_{k}^{i}\left(\frac{x}{y}, Q^{2}\right) \cdot G\left(y, m_{i}^{2}\right) \tag{44}
\end{equation*}
$$

There, e.g.

$$
\begin{align*}
& h_{L}^{i}\left(z, Q^{2}\right)=2 z(1-z)\left\{2 v-\left(1-v^{2}\right) l n[(1+v) /(1-v)]\right) \theta\left(x_{O}-z\right), \\
& v=\left(1-4 m_{i}^{2} / W^{2}\right)^{1 / 2}, \quad x_{0}=1 /\left(1+4 m_{i}^{2} / Q^{2}\right) \tag{45}
\end{align*}
$$

fere, v is the heavy-quark velccity in the $\bar{q}_{i} q_{i}$ rest frame and W^{2} $Q^{2}(1 / z-1)$ is the invariant mass squared of the heavy-quark system. The corresponding resilt of the renormalization group approach, expanded in $\ln \left(Q^{2} / Q_{0}{ }^{2}\right)$ at $Q^{2} \approx Q_{0}{ }^{2} \approx m_{i}{ }^{2}$, reads as follows:
$f_{k}^{i G}\left(n, Q^{2}\right)=\frac{a_{s}\left(m_{i}{ }^{2}\right)}{2 \pi} e_{i}^{2} \cdot \frac{1}{2 J}\left\{B_{k, n}^{G(1)}-C_{k}^{q}\left(n, Q^{2}\right) \int_{Q_{0}}^{Q} \frac{d \mu}{\mu} \gamma_{n}^{i G(0)}\right) G\left(n, Q_{0}{ }^{2}\right)$.
Comparing eqs. (44) and (46) we could try to extract the nass-dependence of the coefficient functions and - of the gluon-quark anomalous dimension. Evidently, there is no unique way to do this. Thus in ref. [7E] all the mass-dependence of the transverse function h_{2} was incorporated into the modified
gluon-heavy quark splitting function, while the one of the longitudinal function h_{L} - into the modiried gluon coefficient function. Iri ref. [77], both the quart and the ghon coerficient functions were modified. To retain the simplioity of the \bar{M} renormalization soheme, we follow ref. [77] (see also [81]) and treat the mass-dependence of the anomalous dimensions in a simplified way assuming them mass-independent, i.e. the Q^{2}-evolution mass-independent, in a Q^{2}-range between the neighbouring heavy flavour sacitation thresholis $Q_{i}{ }^{2}$ (eq. (42) indicates $O_{i}{ }^{2} \approx 5 m_{i}{ }^{2}$), and, holude the explicite mass-dependence entirely into the coefficien; functions. The standard QCD Iormula is then replaced, in the NLO, by

$$
\begin{align*}
f_{k}\left(n, Q^{2}\right) & =C_{k}^{Q}\left(n, Q^{2}\right) \cdot\left[A^{N S}\left(n, Q^{2}\right)+A^{G I}\left(n, Q^{2}\right)\right]+\sum_{i=1}^{f} e_{i}{ }^{2} \tilde{Q}_{k}^{i G}\left(n, Q^{2}\right) G\left(n, Q^{2}\right)+ \\
& +e_{c}^{2}\left[\tilde{C}_{k}^{c}\left(n, Q^{2}\right)-C_{k}^{q}\left(n, Q^{2}\right)\right] \cdot\left[c\left(n, Q^{2}\right)+\bar{C}\left(n, Q^{2}\right)\right]+ \\
& +e_{b}^{2}\left[\tilde{C}_{k}^{b}\left(n, Q^{2}\right)-C_{k}^{q}\left(n, Q^{2}\right)\right] \cdot\left[0\left(n, Q^{2}\right)+\bar{O}\left(n, Q^{2}\right)\right]+\ldots . . \tag{47}
\end{align*}
$$

The modified coeffioient functions \tilde{C}_{k} are normalized in suoh a way that, at $Q^{2}>m^{2}$,

$$
\tilde{C}_{k}^{i}=C_{k}^{G}, \quad \tilde{C}_{k}^{i G}=\frac{1}{f} C_{k}^{G},
$$

where $C_{k}^{q}=C_{k}^{N S}=C_{k}^{S I}$ in the NLO. The mass-dependence of the modified coefificient functicns in the MS scheme has not yet been calculated. Unfortunately, it cannot be determined from eqs. (44)-(45) unambiguously. Thus using the relation

$$
\ln \frac{1+v}{1-v}=\ln \left(Q^{2} / m_{i}^{2}\right)+\ln \left[(1+v)^{2}(1-z) / 4 z\right]
$$

we may, like in ref. [77], absorb the mass-dependence of the coelficient in iront of the diverging term $\ln \left(Q^{2} / m_{i}{ }^{2}\right.$) in eq. (44) into the modified quark coeficient function \tilde{C}_{k}^{i}, the remaining one - into the moaified gluon ccefficient function:

$$
\begin{align*}
& \ddot{C}_{L}^{i G(1)}\left(z, Q^{2}\right)=2 z(1-z)\left(2 v-\left(1-v^{2}\right) \ln \left[(1+v)^{2}(1-z) / 4 z\right]\right\} \\
& \stackrel{\sim}{C}_{2}^{i G(1)}\left(z, Q^{2}\right)=v\left[-1+8 z(1-z)-z(1-z) 4 m_{i}^{2} / Q^{2}\right]+ \\
& \left.+\left[1-2 z(1-z)+4 z(1-3 z) m_{i}^{2}, Q^{2}-8 z^{2} m_{i}{ }^{4} / Q^{4}\right] \ln \left[(1+v)^{2}(1-z) / 4 z\right]\right) \tag{48}
\end{align*}
$$

n the case of the longitudinal structure function, we might not are about the logarithmio dirergence at $Q^{2}>m_{t}^{2}$, which is uppressed by the factor ($1-v^{2}$), and, like in ref. [78], put $\tilde{C}_{L}^{\ell(0)}$ 0 and absorb all the mass-dependence into the modified gluon befficient function. More gereralky, we can modify both the befficient functions in eqs. (48), e.g. by the replacement:

$$
\begin{equation*}
\ln \left[(1+v)^{2}(1-z) / 4 z\right] \rightarrow \ln \frac{1+v}{1-v}-v^{p} \ln \left(Q^{2} / m_{i}^{2}\right) \tag{49}
\end{equation*}
$$

$\geqslant 0$, and, define the heavy quark coefficient functions in a orresponding way. The latter are actually not needed, since, in Lew of the approximations used, we may negleot the small last erms in eq. (47) related to the heavy-quark distributions; these erms vanish in the limits of lerge and small $Q^{2} s$ as compared with $n_{i}{ }^{2}$. To estimate the FTC unvertienty we plot in fig. 16 the atio $r^{(1)}=F_{I}^{c G(1)} / F_{I}^{u G(1)}$ of the yields of the c - and u-quarks in he longitudinal photon-gluon fision calculated with $p=0$ (i.e. sing eq. (48)) and $p=4$ (olose to the case of no subtraction in ubstitution (49), i.e. close to the ansatz of ref. [78]). A aster saturation of the heavy cuark contribution to F_{I} at smaller is seen. There is an additional uncertienty connected with the ass-dependence of the $\alpha_{s}{ }^{2}$-con;ribution to F_{L}. We simply assume $G(2)$, or, $R^{G}(x)$ to be mass-independent. Near the threshold it eads to a much slower saturation of the $\alpha_{s}{ }^{2}$-contribution of a eavy quark to F_{L} than of the a_{s}-one: $r^{(2)} \approx \stackrel{s}{x}_{0}{ }^{5} \cdot r^{(1)}$. In spite of onsiderable uncertienties of the FIC, their influence on the tructure Iunctions is rather snall. First, the gluon contribution F_{k} is moderate even at x as small as 0.1 (a 1 ew $\%$ to F_{2} and $\sim 60 \%$ $0 F_{L}$) and rapidly deoreases with x (fig. 17). Second, even if we ompare the cases of no $\left(m_{i}=0\right)$ and the total $\left(m_{i}{ }^{2}>Q^{2}\right)$ uppression, the change of the gluon contribution is not very arge (less than 40% for F_{L}^{G}); for F_{L} it corresponds to the maximal ossible uncertienty of $\sim 12 \%$ a; $x=0.1$, and, - to a much smaller ne at higher x-values (ifig. 16).

A noticeable manifestation of the FTC can be expected at HERA here the region of very small ic will be covered. The calculations fref. [79] indicate negligable FTC due to charm and bottom
prountion, whereas the chareed current top production may give a non-negligable. eflect depending on the top quark mass.

It appeares that the χ^{2} of the iits to the BoDMS hydrogen data as well as the fitted gluon density are praotioally insensitive to the number of ilavours used to calculate the evolution (the splitting functions). At the same time, the mass-scale parameter Λ is strongly correlated to this number: ohanging $f=4$ to $f=5$ decreases $\Lambda_{\text {MS }}$ by 60 MeV . Assuming the bottom threshold at $Q^{2}=(5 \pm 2) n_{p}^{2}$ we get for the shift of $\Lambda \frac{M S}{M S}(f=4)$ due to the FTC a value of $-5 \pm, \frac{\mathrm{HeV}}{} \mathrm{M}$. The uncertienty in Λ due to parameter p in eq. (49) is less than 1 MeV . We may conclude that the influence of the FPC on the QCD tests and the determination of α_{s} is negligable at present.

4.3 Target mass- and higher tuist-corrections (TMC and HTC)

In the simple model of fiee massless partons the TMC arise from the intrinsic transverse parton momentum [82-84,19]. Nomewhat misleading name of these corrections is due to the fact that, as a consequence of kinematic constraints, they vanish as a square of the target mass M. Thus the contribution of the quark i to the structure functions F_{2} and $F_{\mathcal{L}}$ i.s given by:

$$
\begin{align*}
& F_{2}^{i}\left(x, Q^{2}\right)=\left(\frac{x}{\xi}\right)^{2}(1+\varepsilon)^{-3 / 2}\left[1 \cdot \frac{6\left\langle k i 1^{2}\right\rangle_{0}}{Q^{2}}\right] \tilde{F}_{2}^{i}(\xi) \\
& F_{L}^{i}\left(x, Q^{2}\right)=\left(\frac{x}{\xi}\right)^{2}(1+\varepsilon)^{-1 / 2}\left[\tilde{F}_{11}^{i}(\xi)+\frac{4\left\langle k \lambda_{1}^{2}\right\rangle_{0}}{Q^{2}} \tilde{F}_{2}^{i}(\xi)\right] \tag{50}
\end{align*}
$$

Here $\left\langle k_{i \perp}{ }^{2}\right\rangle_{0}$ is the mean transverse momentum squared of the i-th quark:

$$
\begin{equation*}
\left\langle R_{i 1}^{2}\right\rangle_{0}=M^{2} \frac{x \xi^{2}}{(1+\varepsilon)^{1 / 2}} \int_{\xi}^{1} \frac{d \xi^{\prime}}{\xi^{\prime 2}} \tilde{F}_{2}^{i}\left(\xi^{\prime}\right)\left[1+2 \frac{M^{2}}{Q^{2}} \frac{x\left(\xi^{\prime}-\xi\right)}{(1+\varepsilon)^{1 / 2}}\right] / \tilde{F}_{2}^{i}(\xi) \tag{51}
\end{equation*}
$$

and ξ is the well-known Nachtmana variable:

$$
\begin{equation*}
\xi=2 x /\left[1+(1+\varepsilon)^{1 / 2}\right] \tag{52}
\end{equation*}
$$

here ε is defined in eq. (4). Tae function $\tilde{F}_{2}^{2}(\xi)$ is related to te Lorentz invarịant quark wave function squared $f^{\prime}\left(\xi^{\prime}\right):$

$$
\tilde{F}_{2}^{t}(\xi)=\frac{\pi}{2} N^{2} \xi^{2} \xi_{\xi}^{1} d \xi^{\prime} f^{\prime}\left(\xi^{\prime}\right), \quad \xi^{\prime}=2 R \cdot p / M^{2}
$$

and p are the quark and tarcet 4 -momenta, respectively. In aborstory frame the lower and upker integration limits correspond $k_{1}=0$ and $k_{0}=m / 2$. Note that the linematic constraint $k_{0}^{l a b} \leqslant$ (2 implies:

$$
\begin{equation*}
k_{1}^{2} \leqslant \frac{M^{2}}{4}\left[M^{2}+Q^{2} \frac{1-x}{x}\right] /\left[M^{2}+\frac{Q^{2}}{4 x^{2}}\right] \rightarrow M^{2} x(1-x) \leqslant M^{2} / 4, \tag{53}
\end{equation*}
$$

pere the arrow indicate $a \operatorname{limit} \theta_{1}^{2}>W^{2}$. In this limit $F_{2}^{i}\left(x, Q^{2}\right) \rightarrow$ (ξ), so that the function \tilde{F}_{2}^{i} carr be identified as the asymptotic Fucture function F_{2}^{i}. Note that ${\underset{F}{L}}^{i}(\xi)=\cdots$ in the considered pdel. Adding the contributions from the light quarks, and, eglecting the ones from the heary quarks, we get the usual form the TMO as given in eqs. (50) with $F_{k}^{i} \rightarrow F_{k}, \tilde{F}_{k}^{i} \rightarrow \tilde{F}_{k}$ and $\left\langle k i{ }_{i}{ }^{2}\right\rangle_{0}$ $\left\langle k_{1}^{2}\right\rangle_{0}$. Switching on the interaction $\left(\alpha_{s} \neq 0\right)$, it seems easonable to assume that eqs. (50) remain valid but with the metions $\tilde{F}_{F}(\xi)$ replaced by the corresponding $Q O D$ structure anotions $\tilde{F}_{k}\left(\xi, Q^{2}\right)$, logarithmical: y depending on Q^{2}.

Using the BCDMS hydrogen data as an input, we have found that he mean transverse momentum squared of the quarks in a proton reighted by $e_{i}{ }^{2}$) is practicall: independent on Q^{2}, and can be arametrized as:

$$
\begin{equation*}
\left\langle k_{1}^{2}\right\rangle_{0}=0.95 w^{2} x^{2}(1-x) /(1+3.35 x) \tag{54}
\end{equation*}
$$

his parametrization has correct limiting behaviour at $x \rightarrow 0,1$ hd its accuracy is better than 5% at $x=0.05-0.8, Q^{2}=10-200$ V^{2}. At moderate x-values it yields $\left\langle k_{1}^{2}\right\rangle_{0} \approx 0.04 \mathrm{GeV}^{2}$ as ppected from uncertienty relation for a typical hadron size of ~ 1 7. Using further the high-x approximation $F_{2}\left(x, Q^{2}\right) \propto(1-x)^{\nu}$, here $v \approx 3.5$ in the Q^{2} range of $10-10^{2} \mathrm{GeV}^{2}$, we can represent hs. (50) in the order $O\left(M^{2} / Q^{2}\right.$; with a reasonable accuracy as
follows:

$$
\begin{align*}
& \left.F_{2}\left(x, Q^{2}\right) \cong 11+\frac{5\left\langle k_{1}^{2}\right\rangle_{0}}{Q^{2}}+\frac{U^{2}}{Q^{2}}\left[\frac{\nu x^{3}}{T}-4 x^{2}\right]\right) \cdot \tilde{F}_{Q}\left(x, Q^{2}\right), \\
& F_{L}\left(x, Q^{2}\right) \cong\left[1+\frac{u^{2}}{Q^{2}} \frac{(\nu+1) x^{3}}{T-\tilde{C}}\right] \cdot \tilde{F}_{L}\left(x, Q^{2}\right)+\frac{4<k_{1}^{2}>_{0}}{Q^{2}} \tilde{F}_{2}\left(x, Q^{2}\right) .
\end{align*}
$$

It may be seen from ifis 18 that the TMC to $F_{2}\left(x, Q^{2}\right)$ is practically negligable at $x<0.55\left(6 \% \cdot 10 \operatorname{GEV}^{2} / Q^{2}{ }^{2}\right.$ at $Q^{2}>10$ $\left.\mathrm{GeV}^{2}\right)$, but rapidly increases at higher values of x. The TMC to $F_{I}\left(x, Q^{2}\right)$ is relatively very large at moderate values or x and Q^{2}. E.g. ~100\% correction arises at $x=0.55, Q^{2}=10 \mathrm{GeV}^{2}$ mainly from the second term in eq. (50) and becomes even larger at $x \rightarrow 1$ due to the first one. At lower x, where F_{L} essentially deviates from zero, the TMC is much Jess important. This is demonstrated in fig. 19 where we plot the proton function $R\left(x, Q^{2}\right)$, defined in eq. (5), and the ratio of tie R-functions with TMO and/or HMC neglected in the nominator one.

There are however prob.ems in the above approach. First, eqs. (50) yield nonvanishing strueture iunctions for unphysical values of $1<x \leqslant 1 /\left(1-x^{2} / Q^{2}\right)$. Tais effect presumably arises from the mismatch between the spectrum of states in perturbative QCD (quarks and gluons) and the observed spectrum of physical particles, and, cannot be cured by switching on the interaction with the spectator quarks through a truncated series of the HTC [85,86]. Fortunately, this overestimation vanishes as $\left(M^{2} / Q^{2}\right)^{v}$, and, in fact, can be avoiced in a finite order expansion of the TMC in inverse powers of Q^{2}, (see, e.g. eqs. (50.)). Second, the restriction of k_{1}^{2} in eq. (53), following from the free parton approximation, is in apparent contradiction with the uncertienty principle in the boundary regions $x \rightarrow 0,1$, or, - in the case of a small target mass. To solve this problem, the simple picture of on-shell partons with in irinsic transverse momentum should be improved and generalized in the presence of interaction. It is well-known that both the k nematic and dymamical power corrections are controled by the transverse components of momenta and the gluon fiela. The complete QCD result can be formally written in the form oi eqs. (50) correatea by the contribution of higher
twist terms calculated in the limit of zero target mass:

$$
H T C=T M+H T C_{0}
$$

Thus, for the twist-4 comrections: $H T C_{0}$ to eqs. (50), we have [85]:

$$
\begin{align*}
\Delta F_{2}^{\prime}\left(x, Q^{2}\right) & =\frac{\Lambda^{2}}{Q^{2}} x\left[4 T_{1}(x)-x \int\left(2 x_{2} d x_{1} \frac{\delta\left(x-x_{2}\right)-\delta\left(x-x_{1}\right)}{x_{2}-x_{1}} T_{2}\left(x_{2}, x_{1}\right)\right]\right. \\
\Delta F_{L}\left(x, Q^{2}\right) & =4 \frac{\Lambda^{2}}{Q^{2}} x T_{1}(x) \tag{55}
\end{align*}
$$

where $T_{1}(x)$ and $T_{2}\left(x_{2}, x_{1}\right)$ are cectain parton correlation functions which measure the transverse momentum generated by the interaction together with the transverse componets of the gluon field. They satisly the relation

$$
\begin{equation*}
4 \int \partial x T_{1}(x)=\int-3 x_{2} d x_{1} T_{2}\left(x_{2}, x_{1}\right) \tag{56}
\end{equation*}
$$

and the positivity constraint

$$
\begin{equation*}
\left.\Lambda^{2} T_{1}(x) / \tilde{F}_{2}(x)+\left\langle k_{1}^{2}\right\rangle_{0}\right\rangle 0 \tag{57}
\end{equation*}
$$

At sufficiently high x-values the integration over the gluon momenta implicit in the definition of the correlation functions is dominated by the soft gluon region. Assuming the soft gluon approximation valid also at lower x-values, the x-dependence of T_{1} and T_{2} is essentially given by the shape of the quark distribution function $\tilde{F}_{2}(x) / x$, i.e. [87]:

$$
\begin{align*}
& \Lambda^{2} T_{1}(x) \cong k^{2} \ddot{F}_{2}(x) / x \\
& \Lambda^{2} T_{2}\left(x_{2}, x_{1}\right) \cong k^{2} \delta\left(x_{2}-x_{1}\right) \tilde{F}_{2}(x) / x \tag{58}
\end{align*}
$$

For the twist-4 contributions in eqs. (55) we then have (see also [42]):

$$
\begin{align*}
& \Delta F_{2}\left(x, Q^{2}\right)=4 \frac{k^{2}}{Q^{2}} \cdot c \frac{\partial}{\partial x} \tilde{F}_{2}\left(x, Q^{2}\right) \\
& \Delta F_{L}\left(x, Q^{2}\right)=4 \frac{k^{2}}{Q^{2}} \stackrel{\rightharpoonup}{F}_{2}\left(x, Q^{2}\right) \tag{59}
\end{align*}
$$

Besides, the positivity constraint (57) ior the mean transverse parton momentum squared takes the form:

$$
\left.k^{2}+\left\langle k_{1}^{2}\right\rangle_{0}\right\rangle 0
$$

We may thus interpret the oositive parameter k^{2} as the mean transverse momentum squared generated dynamically. Its positivity follows from the constraint (57') taken at the boundary x-values where $\left\langle k_{1}{ }^{2}\right\rangle_{o}$ vanishes. Fron tho twist-4 correotions to the Gross-Ilewellyn smith sum male calculated in ref. [88] within three different approaches (the QCD sum mules, the vector dominance approximation and the nonrelativistic quark model) we may estimate $k^{2}=0.013-0.033 \mathrm{GeV}^{2}$. This is in agreement with the expectation of $k^{2} \sim 1 \mathrm{fm}^{-2}=0.04 \mathrm{GeV}^{2}$ following from the uncertienty relation.

The twist-4 corrections in eqs: (55), (59) contain only the two-fermion contributions. Tle four-fermion ones varish for the Iongitudinal, structure function but not for $F_{2}\left(x, Q^{2}\right)$. Their x-dependence is expected [89] to be similar to the one in eq. (59). Based on the bag model calculations in ref. [90] we may estimate the corresponding k^{2} as $0.004 \mathrm{GeV}^{2}$.

The results of NS fits to the BCDMS hydrogen data, taking into account the HTC according to eqs. (50), (59), are given in Table 2 (Fit 1-3). The values of the parameter k^{2} fitted in various kinematic regions agree within the errors with the theoretical expectation of $0.02-0.04 \mathrm{GeV}^{2}$. They should be compared with previous determinations of this parameter: $R^{2}=0.10 \pm 0.16 \mathrm{GeV}^{2}$ [91], $0.12-0.20 \mathrm{GeV}^{2}$ [86] and 0.04-0.12 GeV^{2} [92], based on EMC-, EMC+neutrino- and SLAC-data, respectively. A systematic decrease of the fitted k^{2}-value when cutting low-y or low- Q^{2} points may indicate the sensitivity of the fits to systematic uncertienties of the BCDMS data whioh are jargest just in the low-y region.

Large $\Lambda_{\overline{M S}}$ errors in these ifts result from a compatition of the scaling violations in $F_{2}\left(x, Q^{2}\right)$ predicted by the leading twist QCD evolution and the HTC in eq. (59), which have similar x-dependences in the moderatie-x region. This leads to a flat χ^{2} curve as a function of k^{2} and to a substantial correlation between

Table 2. The results of NLO norsinglet QOD fits to the ECDMS hydrogen data [9] as described in caption of Table 1 but taking into account the HTC according to eqs. (50), (59).

Fit	$\begin{aligned} & Q^{2}-\text { out } \\ & G e V^{2} \end{aligned}$	$\begin{aligned} & y \text {-outs } \\ & {[10]} \end{aligned}$	$\begin{aligned} & \mathrm{HTC}_{0} \\ & \mathrm{eq} . \end{aligned}$	$\begin{aligned} & \Lambda_{\overline{M S}} \\ & \mathrm{MeV} \end{aligned}$	$\begin{gathered} k^{2} \\ (\mathrm{GeV} / \mathrm{c})^{2} \end{gathered}$	χ^{2} / DOF
\dagger	20	yes	(59)	204 ± 53	0.02 ± 0.03	174/197
2	10	yes		218 ± 45	0.04 ± 0.03	$201 / 223$
3	10	no		247 ± 36	0.06 ± 0.02	222/250
4	20	yes	(60)	238 ± 130	-	171/192
5	10	yes		$\begin{array}{r}273 \pm 80 \\ \hline 70\end{array}$	-	192/223
6	10	no		297 ± 70	-	212/245

Λ and k^{2}, as it is demonstrated in fic. 20. The correlation weakens with stronger $10 w-Q^{2}$ cut but it remains essential even at rather large Q^{2}. E.g. the correlation slope at $Q^{2}>10 \mathrm{GeV}^{2}$ decreases only by 30% at $Q^{2}>40 \mathrm{GeV}^{2}$.

The error in Λ becomes still larger if we do not fix the x-dependence of the HTC in F_{2} accorling to eq. (59) and replace it by the ansatz:

$$
\begin{equation*}
\Delta F_{2}\left(x_{i}, Q^{2}\right)=\frac{a_{i}}{Q^{2}} \ddot{P}_{2}\left(x_{i}, \dot{Q}^{2}\right) \tag{60}
\end{equation*}
$$

where a_{i} is a free parameter in eash x-interval (see Fit 4-6 in Table 2). The fitted values of tre parameters a_{i} (Fit 5) are compared in fig. 18 with the prediction $4 k^{2} x_{\partial x}^{\partial} F_{2}\left(x, Q^{2}\right)$ of eq. (59). It may be seen that this predistion does not contradict with the BCDMS data, and, that the global power corrections are slightly negative in the moderate-x jegion whereas at large x they are dominated by the positive TMC. The small negative power corrections at moderate x qualitatively agree with the results of neutrino experiments [93]. However, they are in disagreement with rather large positive HTC required to tail the $I 0 w-Q^{2}$ SIAC data to the deep-inelastic muon-proton soattering data of EMC and BCDMS $[3,55]$. This discrepancy may be due tio the twist-6 contribution \propto $1 / Q^{4}$ to the charged lepton deep-inelastic scattering, being
dominant in the Slac kinenatio region but getting negligable in the CEPN one. Note that the twist-6 contribution to neutrino scattering is expected to be reglisable $[88,94]$.

The negative power corrections in F_{2} lead to a systematic decrease of the mass-scale parameter Λ with decreasing the lower Q^{2}-cut when fitting the scaling violations according to the Ieading-twist perturbative QOI prediction only. Such a correlation is demonstrated for the EOMS hydrogen data in fig. 21 (partly it may be related to systematio uncertienties in the low-y region). For Q^{2}-interval of $20-260 \mathrm{Cev}^{2}$ it becomes negligable as compared with experimental errors vhich justifies the use of the leading-twist approximation and allows one to periorm a stringent test of perturbative QOD (see Section 3.4). A stringent $Q C D$ test is also possible in a Q^{2}-interval extended to lower values of Q^{2} provided the x-dependence of the HTO is fixed acording to eqs. (50) and (59). At the same time the HOC may substantially modify the Λ-value fitted in the leacing twist approximation ever at $Q^{2}>$ $20-30 \mathrm{GeV}^{2}$. Thus taking $\dot{K}^{2}=0.04 \pm 0.04 \mathrm{GeV}^{2}$ as a combined result of Table 2 (including systematic errors) we may conclude from fig. 20 that the standard NS fit CI the BCDMS hydrogen data (Table 1) underestimates $\Lambda_{\overline{M S}}$ by $35 \pm \frac{50}{50} \mathrm{MEV}$.

5. Conclusions

. The influcnce of varicus approximations and theoretical uncertienties on the determination of the QCD mass-scale parameter $\Lambda_{\overline{M S}}$ in a nonsinglet NLO fit (using eq. (14.') for $\alpha_{s}\left(Q^{2}\right)$ and assuming four massless flavours) to the BCDMS hydrogen data in the region: $x=0.25-0.8, Q^{2}=20-260 \mathrm{GeV}^{2}$ (y-cuts of ref. [10] are applied) is summarized in Table 3.

The contribution of higher twists in the BCDMS proton structure function $F_{2}\left(x, Q^{2}\right)$ js found small and negative in the moderate-x region and $Q^{2}>10 \mathrm{GeV}^{2}$, and, in agreement with theoretical models, it is well described in terms of one parameter $k^{2}=0.02-0.04 \mathrm{GeV}^{2}-$ the transverse momentum squared generated dynamically. This circumstance allows one to use the BCDMS data

Table 3. Cometions and inoertienties $10 r$ the parameter $A_{\text {m }}$ fitted in a leading-twist NS approximation from the BCDMS hydrogen data as described in caption of Table 1.

Source	$\Delta \Lambda_{\overline{M S}}$
$M e V$	
NS approximation (gluon x-parametrization)	5 ± 15
Calculation and fit procedures	± 5
Quark x-parametrization	± 2
HOC	± 2
FTC	± 120
HTC eqs. (50), (59)	-5 ± 30
	eqs. (50), (60)

for a stringent $Q C D$ test and a reliable determination of the mass-scale parameter Λ.

Combining the results of Tables $1-3$ and ref. [10], we get:

$$
\Lambda_{\overline{M S}}=204 \pm 53(\text { stat. }) \pm 60(\text { (syst. }) \pm \frac{120}{30} \text { (theor.) MeV }
$$

(or, including the uncertienty due to the HTC into the theoretical error:

$$
\left.\Lambda_{\overline{M S}}=230 \pm 20(\text { stat. }) \pm 60(\text { syst. }) \pm \frac{140}{60} \text { (theor. }\right) \mathrm{MeV} .
$$

The statistical error in former case is dominated by the effect of the HTC. It would be twice as large if the theoretical ansatz in eq. (59) is replaced by the phenomenological one in eq. (60). The theoretical error is dominated by the higher-order uncertienty.

The next generation experimerts may decrease the statistical and systematical errors in $\Lambda_{\overline{M S}}$ at least 5 times [70] and thus make it possible to perform fine $Q C D$ tests: clarify running of α_{s} and the influence of the high.er-order corrections. These measurements could be also of great importance for Grand Unified Theories provided the theoretical uncertienty in Λ will be diminished by the next-to-next-to-leading order calculations.

Feferences

1. F.E.Close, "An Introduction to Quarks and Gluons", Academic Press, 1979.
2. T.Sloan, Proceedings of the Int. Europhysics Conf. on High Fnergy Physios, Uppsala, 1387.
3. R.Voss, Proceedings of the 1987 Int. Symp. on Lepton and Photon Interactions at High Enewije, Hamburg, 1987; CEPN/EP 87-223.
4. R.Mount, Proceedings of the XXIVth Int. Cont. on High Energy Physics, Munich, August 1983.
5. BCDMS, A.C.Benveruti et al., Phys. Lett. 195B (1987) 91.
6. BCDMS, A.C.Benvenuti et al., Phys. Lett. 195B (1987) 97.
7. M.Virchaux, These, Universjte Faris VII, 1988.
8. BCDMS, A.O.Benvenuti et al., JINR-E1-87-689, Dubna 1987.
9. BCDMS, A.C.Benvenuti et El., Fhys. Lett.: 223B (1989) 485.
10. BCDMS, A.O.Benvenuti et al., Phys. Lett. 223B (1989; 490.
11. A.Ouraou, These, Universite Paris XI, 1988.
12. A.D.Martin, W.J.Stirling, R.G.Roberts, RAL-88-023, Chilton 1988.
13. A.A.Akhundov et al., Sov. J. Nucl. Phys. 26 (1977) 660; 44(1986) 988; JINR E2-86-107, Dubna 1986;
D.Yu.Bardin, N.M.Shumeiko, Sov. J. Nucl. Fhys. 29 (1979) 499.
14. W.A.Bardeen et al., Phys. Risv. D19 (1978) 3998.
15. G.Altarelli, R.K.Ellis, G.Martinelli, Nucl. Phys. B157 (1979) 461;
J.Kubar-Andre, F.E.Paige, Plys. Rev. D19 (1979) 221.
16. M.Diemoz et al., Z. Phys. C'9 (1988) 21.
17. O.Tarasov, A.Vladimirov, A. iharkov, Phys. Lett. 93B (1980) 429
18. P.M.Stevenson, Phys. Fev. DE3 (1981) 2916; D27 (1983) 1968.
19. A.Buras et al., Nucl. Phys. B131 (1977) 308.
20. S.J.Maximov, V.I.Vovk, Phys. Lett. B199 (1987) 443; Yad. Fiz. 46 (1987) 961.
21. G.Altarelli, Phys. Rep. 81 (1982) 1.
22. D.W.Duke, R.G.Roberts, Phys. Rep. 120 (1985) 275.
23. A.Devoto et al., Phys. Rey. D30 (1984) 541;
D.W.Duke, J.D.Kimel, A.D.Sowəll, Phys. Rev. D25 (1982) 71.
24. J.L.Miramontes, J.Sanchez Juillen, B. Zas, Phys. Rev. D35 (1987) 853.
25. A.Buras, Rev: Mod. Phys. 5is (1980) 199.
26. G.Curoi, W.Furnancki, R.Peronzio, Nucl. Phys. B175 (1930) 27.
27. E.G.F1oratos, D.A.Ross, O.I.Sachrajda, Nuol. Phys. B129
(1977) 66; B139 (1978) 545. B152 (1979) 493.
28. A.Gonzalez-Arroyo, C.Lopez: F.J.Yndurain, NueI. Phys. B153 (1979) 161;
A.Gonzalez-Arroyo, C.Lopez, Nucl. Phys. B166 (1980) 429.
29. E.G.Floratos, C.Kommas, R.Jacaze, Nuol. Phys. E192 (1981) 417
30. I.Antoniadis, E.G.Floratos, Nucl. Phys. B191 (1981) 217.
31. D.A.Ross, C.T.Sachrajda, NLol. Phys. B149 (1979) 497.
32. R.Ledricky, CERN/EP/NA4 Note 88-01.
33. D.I.Kazakov, A.V.Kotikov, Nucl. Phys. B307 (1988) 721.
34. M.J.Hermero, J.L.Miramontes, Phys. Rev. D34 (1986) 138.

35: C.Loper, F.J.Yndurain, Nuel. Phys. B171.. (1980) 231; B183 (1981) 157.
36. A.V.Kotikov, JINR E2-88-422, Dubna 1988.
37. L.F.Abbott, R.M.Barnett, Anil. of Phys. 125 (1980) 276.
38. A.Devoto et al., Phys. Rev. D27 (1983) 508.
39. M.Virchaux, A.Ouraou, DPhPE 89-07, Saclay 1989.
40. A.Buras, K.J.F.Gaemers, Nuc... Phys. B132 (1978) 249.
41. I.S.Zlatev et al., Yad. Fiz. 35 (1982) 454;
V.A.Bednyakov et al., Yad. I'iz. 35 (1982) 745.
42. Yu.P.Ivanov, P.S.Isaev, Yad. Fiz. 38 (1983) 744.
43. B.Escoubes et al., Nucl. Phts. B242 (1984) 329.
44. A.V.Kotikov, S.J.Maximov, V.I.Vovk, ITP-89-64E, Kiev 1989.
45. F.J.Yndurain, Phys. Lett. 74B. (1978) 68.
46. EMC, J.J.Aubert et al., Phys. Lett. B114 (1982) 291.
47. W.Furmanski, R.Petronzio, Nucl. Phys. B195 (1982) 237.
48. CHARM, F.Bergsma et al., Phys. Lett. 123B (1983) 269.
49. G.Parisi, N.Sourlas, Nucl. Phys. B151 (1979) 421.
50. I.S.Barker, C.E.Langensiepen, G.Shaw, Nucl. Phys. B186 (1981) 61.
51. I.S.Barker, B.R.Martin, G.Shiw, Z. Phys. C19 (1983) 147; I.S.Barker, B.R.Martin, Z. Phys. C24 (1984) 255.
52. J. Oryla, J. Mmes, L. Phys. 031 (1985) 151.
53. V.G.Krivokhizhin et al., Z. Phys. 036 (1987) 51. V
54. V.I.Vovk, Yad. Fiz. 50 (1289) 204.
55. EMC, J.J.Aubert et al., Niol. Phys. E259 (1985) 189.
56. S.I.Bilenkaya, D.B.Stamen ν, JINR E2-87-287, Dubna 1987.
57. F.J.Ynclurain, Quantum Ohromodynamios (Springer, Berlin, 1983)
58. A.N.Sohellekens, Lett. Nuvvo Cim. 24 (1979) 513.
59. A.A.Vladimirov, Yad. Fiz. 31 (1980) 1083.
60. W. Celmaster, R.J.Gonsalves, Fhys. Rev. Lett. 42 (1979) 1435; Phys. Rev. D21 (1980) 311c.
61. G.Grunberg, Phys. Lett. 95 B (1980) 70.

62:A.L.Kataev, N.V.Krasnikov, A.A.Pivovarov, Nucl. Phys. B198 (1982) 508.
63. A.Dhar, Phys. Lett. B128 (1983) 407; A.Dhar, V.Gupta, Fhys. Rev. D29 (1984) 2822.
64. D.I.Kazakov, D.V.Shirkov, Yad. Fiz. 42 (1985) 768.
65. S.G.Gorishny, A.L.Kataev, E.A.Harin, Phys. Lett. B212 (1988) 238.
66. L.V.Gribov, E.M.Levin, M.G.Ryskin, Phys. Rep. O100 (1983) 1.
67. J.Kwiecinski, Z. Phys. C29 (1985) 147; 561.
68. J.Chyla, J.Phys. G: Nucl. Fhys. 12 (1986) 1297.
69. M.R.Pennington, G.G.Ross, F.G.Roberts, Phys. Lett. 120 B (1983) 204.
70. C.Guyot et al.: "A new fixed-target experiment for precise tests of QCD", Proposal, Saolay, 14 March 1989.
71. T.Applequist, J.Carrazone, Phys. Pev. D11 (1975) 2856.
72. A.DeRujula, H.Georsi, Phys. Rev. D13 (1976) 1296;
H.Georgi, H.D.Politzer, Phys. Rev. D14 (1976) 1829.
73. B.J.Edwards, T.D.Gottschalk, Nucl. Phys. B196 (1982) 328.
74. Yu.P.Ivanov, Yad. Fis. 44 ('986) 492.
75. W.Marciano, Phys. Rev. D29 1984) 580.
76. S.Wada, Phys. Lett. 29B (19810) 163.
77. S.P.Luttrell, S.Wada, Nucl. Phys. B182 (1981). 381.
78. M.Gluck, E.HoItmenn, E.Reya, Z. Phys. C13 (1982) 119.
79. M.Gluck, R.M.Godbole, E.ReyE, DO-TH 87/12, Dortmund, 1987.
80. E.Witten, Nuol. Phys. B104 (1976) 445.
81. J.C.Collins, Wu-Ki Tung, Nuel. Phys. B278 (1986) 934.
84. M.Gluok, E.Reya, Nucl. Phye. B145 (1978) 24.
85. R.K.Ellis, W.Furmansti, R.P 29.
86. J.L.Miramontes, J.Sanchez Giillen, Z. Phys. C41 (1988) 247.
87. R.K.Ellis, W.Pumanski, R.Petronzio, Nuol. Phys. B207 (1982) 1
88. V.M.Braun, A.V.Kolesnichenks, Nucl. Phys. B283 (1987) 723.
89. S.P.Iuttrell, S.Weda, B.P.Wsbber, Nuel. Phys. B188 (1981) 219.
90. R.L.Jaffe, M.Soldate, Fhys. Lett. 105B (1981) 467.
91. V.A.Bednyakov et al., Yad. Yiz. 40 (1984) 770.
92. J.L.Miramontes, M.A.Miramonses, J.Sanchez Guillen, US/FT-3/89, Sentiago de Compostela 1989.
93. BEBC-WA59, K.Varvell et al., Z. Phys. 036 (1987) 1.
94. E.V.Shuryak, A.I.Vainshtein, Nucl. Phys. B199 (1982) 451; B201 (1982) 144.

Figure Japtions

Fig. 1. The NLO- and the ratjo of the LO- and WLO-prediotions of perturbative QOD for the proton longitudinal struoture function calculated with the help of BOIMS hydrogen data [9] neglecting flavour threshold-, target mass- and higher twist-corrections; Q^{2} $=10$ and $100 \mathrm{GeV}^{2}$.
Fig. 2. The relative reconstrue*ion accuracy (34) vs the weight function exponent $p ; a=3, N_{\text {max }}=12$ and $Q^{2}=10$ and $200 \mathrm{CeV}^{2}$. Fig. 3. The relative reoonstruotion acouracy (34) vs the weight function exponent $\alpha ; \beta+1=10^{-5}, N_{\text {max }}=12$ and $Q^{2}=10$ and 200 GeV^{2}.
Fig. 4. The relative reconstruction accuracy (34) vs the number $N_{\max }=M+1$ of the retained terns at various lengths of the IBM computer word: REAL*4 (dashed curve), REAL*8 (dashed-dotted curve) and RFAL*16 (IUIl curve); $\alpha=3, \beta+1=10^{-5}$ and $Q^{2}=25 \mathrm{GeV}^{2}$. The dotted curve corresponds to R£AL*8 and a numerical integration of the x-parametrizations in eqs. (30).
Fig. 5. Comparison of the BODMS proton structure Iunction $\vec{F}_{2}\left(x, 0^{2}\right)$ [8] with the result of a complete SI+NS QCD fit (full curves) described in caption of Table 1; dotted and dashed curves correspond to $v_{G}=5$ and $\left\langle x_{G}\right\rangle=0$, respectively. The quantities $F_{2}\left(x,\left\langle Q^{2}\right\rangle_{x}\right)=a(x)$ and $\left\langle\partial \ln F_{2} / \partial \ln Q^{2}\right\rangle=b(x)$ are determined by assigning to the experimental and theoretical points the statistical experimental errors and fitting them in each. x-interval according to eq. (37).
Fig. 6. The low- x out dependence of the results of NS leading-twist NIO fits to the BCDMS hydrogen data [9]; $Q^{2}>20$ GeV ${ }^{2}$, the y-cuts of ref. [10] are not applied.
Fig. 7. The ν_{G}-dependence of $\Lambda_{M S}$ and $\Delta \chi^{2}=\chi^{2}-\chi^{2}\left(\nu_{G}=10\right)$ obtained in complete SI+NS QCD fits (desoribed in caption or Table 1) to the BCDMS hydrogen data [9] in the full. x, Q^{2}-region (closed circles) and in the NS-one (open airoles); $\left\langle x_{G}\right\rangle=0.5$. The upper and lower dotted curves represent $\Lambda_{\overline{M S}}$ fitted in the NS-region at $\left\langle x_{G}\right\rangle=0.5$ and 0.4 , respectively; the corresponding $\Delta x^{2} \mathrm{~s}$ coincide within 0.3 units with the ones obtained at $\left\langle x_{G}\right\rangle=0.5$. The dached line represents the result of a NS fit.

Fig. 8. The $N_{\max }$-dependence of the results of NS (open ciroles) and complete SI+NS (closed circles) NLO QCD tits (described in caption of Table 1) to the ECDMS hydrogen data [8]; $\Delta \chi^{2}=\chi^{2}$ $\chi^{2}\left(N_{m a x}=13\right)$. Typioal statistical errors are shown at $N_{\max }=13$. Fig. 9. The $Q_{0}{ }^{2}$-dependence of tre results of the same fits as described in caption of fig. $8 ; \Delta y^{2}=\chi^{2}-\chi^{2}\left(Q_{0}^{2}=5 \mathrm{GeV}^{2}\right), N_{\max }$ $=11$.
Fig. 10. The $\Lambda_{\overline{M S}}$-dependence of the results of complete SI+NS NLO QCD fits to the BCDMS hydrogen data [8], as desoribed in caption of Table 1 but without imposing the momentum sum mule (9); $N_{\text {max }}=$ 12. The $\Delta \chi^{2}$ (dashed curve) and the $\chi^{2} s$ (full curves) are defined in eqs. (38), (39).
Fig. 11. The v_{G}-dependence of tre results of the same fits as described in caption of fig. 10.
Fig. 12. The $\left\langle x_{G}\right\rangle$-dependence of the results of the same fits as described in caption of ifg. 10.
F1g. 13. The quantity $\rho_{2, n}^{(1)}(x)$ and the ratio $\rho_{2, n}^{(1)}(x) / \rho_{2, n}^{(1)}(1)$ as functions of the parameter x specifying the renormalization scheme; $n=2,6,10$. The quantity $\rho_{2, n}$ measures the scaling violations in a NS stmucture function F_{2}. It is calculated in the NLO according to eq. (41) with $\Lambda=200 \mathrm{heV}$ and $\mu=Q=10 \mathrm{GeV}$. Various schemes are indioated by the arrows.
Fig. 14. The results of nonsinglet NLO QCD fits (described in caption of Table 1) to the BCDMS hydrogen data [9] as functions of the parameter \nsim specilying the :anormalization scheme. Various schemes are indicated by the arrows.
Fig. 15. The LO mass-dependent runzing coupling constant $\alpha_{s}\left(Q^{2}\right)$ at $\Lambda=200 \mathrm{MeV}$ (full ourve) and its approximation $\alpha_{s}^{\prime}\left(Q^{2}\right)$ calculated with four massless flavours and normalized to $\alpha_{s}\left(Q^{2}\right)$ at $Q^{2}=60$ GeV^{2} (dashed curve); see eqs. (12), (13), (43). The ratio $\alpha_{s}^{\prime} / \alpha_{s}$ is also shown (dashed curve). The dotted curve corresponds to $\alpha_{s}^{\prime}\left(Q^{2}\right)$ calculated with the number of massless flavours f appropriate for a given Q^{2}-interval; the flavour excitation thresholds are chosen at $4 m_{i}^{2}$ which implies $\Lambda_{3}=222 \mathrm{MeV}, \Lambda_{4}=180$ $\mathrm{MeV}, \Lambda_{5}=128 \mathrm{MeV}$.
Fig. 16. The dashed regions represent ratios of $\bar{c} c$ and $\bar{u} u$ production rates in the longitudinal photon-gluon fusion, and,
ratios of the NLO longitudinal proton structure functions calculated with $m_{c}=1.5 \mathrm{GeV} / \mathrm{c}^{2}$ and $m_{c}=0$ (neglecting target mass- and higher twist-comections). The upper and lower bounds correspend to $p=0$ and 4 , respsetively (eqs. (48), (49)). Dashed curves represent ratios of the structure functions calculated with three $\left(m_{c}=\infty\right)$ and four massless ilavours. $Q^{2}=10$ and $100 \mathrm{GeV}^{2}$.
Fig. 17. Relative gluon cortribution to the proton longitudinal struoture function calculased with $m_{c}=1.5 \mathrm{GeV} / \mathrm{c}^{2}, p=4$ (negleoting target mass- and higher twist-corrections) at $Q^{2}=10$ GeV ${ }^{2}$ (full cuive) and $100 \mathrm{Get}^{2}$ (dashed ourve).
Fig. 18. Power corrections to the proton structure function $F_{2}\left(x, Q^{2}\right)$ at $Q^{2}=60 \mathrm{GeV}^{2}$. The $T M C$ (full ourve) is calculated according to eq. (50). The ITC $_{O}$ result from NS-ifits to the BCDMS hydrogen data [9] using eq. (59) ($R^{2}=0.04 \mathrm{GeV}^{2}$ - dashed curve) and eq. (60) (points) in the region $x>0.25, Q^{2}>10 \mathrm{GeV}^{2} ; y$-cuts of ref. [10] are applied.
Fig. 19. The structure Iunction $R=\sigma_{L} / \sigma_{T}$ at $Q^{2}=10$ and $100 \mathrm{GeV}^{2}$, obtained in a complete NLO GCD fit (described in caption of Table 1) to the BCDMS hydroger. data [9]. The flavour threshold corrections are taken into account according to eqs. (47)-(49), the target mass- and higher twist-ones - according to eqs. (50) and (59) with $k^{2}=0.04$ GeV 2. Spreading of the curves corresponds to the dashed regions in fig. 16. Ratios of the R-Iunctions are also shown with neglected $H P C_{0}$ (dashed curves) and $H T C_{0}+T M C$ (full curves) in the nominator one.
Fig. 20. Results of NS lits to the BCLMS hydrogen data as functions of the transverse momentum squared k^{2} generated dynamically (see eq. (59)); $\Delta \chi^{2}=\chi^{2}-\chi^{2}\left(k^{2}=0\right.$). Closed ciroles, open circles and crosses correspond to Fit 1,2 and 3 in Table 2. Dotted line indicates $\Lambda_{\overline{M S}}$ fitted with $H T C=0$.
Fig. 21. The low-Q Q^{2} out dependence of the results of NS leading-twist NLO fits to the BCDMS hydrogen data [9]; $x>0.25$, the y-cuts of ref. [10] are not applied.

Fig. 2

Fig. 1

Fig. 3

Fig. 5

Fig. 7

Fig. 6

$6 \cdot 87$

Fig. 8

Fig. 11

Fig. 10

Fig. 13

Fig. 12

Fig. 14

Fig. 21

