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QCD PJ~ALYSIS OF STRUCTURE FUNCTIONS 

R. Leclnicky 

Abstract 

of varj_ou::: 3pproxim2.ticns and. theoretical 
uncertienti:::s on the determir_3ticn ~)f th::: QCD mass-sc:?.le parameter 

AMS' and, - on the QCD tests is studied with the help of the BCDMS 

hydrogen dat3. A· small ~negative) contrit,uti•:;n of higher twists in 

the proton structure functio:1 F_,(x,Q2
) is obtained in the region 

..... of moderate x a..YJ.'i Q2 
;> 10 GeV 2

, ~d, in agreement with theoretical 
models, it is well describ~~d in terms of one par.2.meter k 2 = 
0 Or - - 4 -, \ r? t -A t. c'-U.l.)" ue,~ - he parton transverse momentum squar,2cl generated 

dynamically~ 11his allows one to use the BCDMS data for a stringent 

QCD test and. a reliable determination of AMs. The the6retical 
unce_rtienty in AMS is dominated by the one due to the higher-order 

corrections. 
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PECI:IEPAT 

C IIOMOIUbiO BO;D;OpO,TIJihiY .n;aHHbiX OOTPY.IUilfCI8CTBa ElU(lVIC M3y'IeHO 

BJIJ?lHHll8 pa3JIM'IHbiX IIpi16JIP.DK.E HMH M T80p8TM'tl80KIDC H80IIpe.n;eJI8HH001'8YI 

na onpe,n:eJreHHe IVIacmTa6norc rrapaMeT:P,a KX.U H -: Ha rrpoBepKy KX.lJ,. 
B OOJiaOTM ope,n:HMX )( M Q. 2. > I 0 r8B2 HaM.n;eH H800Jllilll0ll ( oTpMIJ;aTeJibHli 

BI~a,n: BhlClllMX TBMCTOB B rrpcTOHHYIO CTPYKTYPHYID WYHK~ F2(x,a2), 
KOTOpbiM, B COOTB8TCTBHM C T80p8TM'I8CKHMH MO,IJ;e~, XOpOlllO OIIMCbiBaE 

c rroMOIUbiD o.n;Horo napaMeTpE k 2 = 0, 02 - 0, 04 r8B2 - KBa,Iij)aTa napTc 

noro norrepe-qnoro MMnyJibcH, renepnpyeMoro 3a c'IeT ~HaMKKM. 8To 

no3BOJIHeT I1CIIOJib30BaTb ,n;a.I:Hble EUIJNC ,n;JIH 'IYBCTBHTeJIDHOH npoBepKM 
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I • Introduction 

The pointlilw and t:itruoturelesr:; n3. tuc.:~ of leptons has been 

3Xtensively exploited to study the ir ternal :::trueture of the 

:1ucleon with the help of lep ton-nuoh'"1)n S(~a t tering. F1irst the 

proton size was measured by electron s1;attcring at the momentmn 

tran~fer squared Q2 "' 0. ·1 GeV2 and, later on, the nucleon composite 
-·? 

structure was discovered at SIJ/1.0 at t igher values of U"-. The 

presence of pointlike constituents (p 0.r-Lons - quarks) in the 

nucleon reveals itself as an approxima·;e B,jorken scaling of the 

measured. structure functions Fk(x,Q2 ). 'Jhus, in the model of free 
collinear partons, the nucleon structure ftmctions depend on the 

Bjorlmn scaling variable x only, e.g. 

X•l: e. 2
(qi(X} + 

t t 

= 2X·[d(X} + S(X} 

Cji(:-c)J, 

+ il(x) ~ ~ixJ + .. J, ( 1 ) 

where qt. = d, u, s, c, b, .• represent the probability densities 

to find a quark of flavour i and electric charge ei (in the units 

of the proton electric charge) carrying a fraction x of the proton 

momentum. The interpretation of partons as quarks is strongly 

supported by the fulfilment of Gross-J;lewellyn Smith, Adler and 

~Dottfried sum rules for the number of \alence quarks in a nucleon 

(3 = 3. 0 ± 0. 2), the difference betweer. numbers of valence u- and 

d-quarks in a proton ("1 = 1.1 ± 0.2) and eu2
- ea-::: (1/3 = 0.24 ± 

0.1-1), respectively (see, e.g. refs. [1 ,2 J). 
It follows from the momentum sum r:.1le that only about half of 

the proton momentum is carried by quarl\:s. The unprobed neutral 

partons are identified as gluons - carriers of the interaction 

between colour charges in quantwn c:hromodynamics ( QCD). This 

identification is supported by a weak (logarithmic) violation of 

Bjorken scaling, related in QCD to tt.e gluon bremsstrahlung and 

quark-antiquarl{ pair production. The predicted softening of the 

parton x-distributions with Q2 agre3s with the character of 

scaling violations observed experiment 3-llJr, though, there is e.ome 

discrepancy between the most precise high energy data of EMC and 

BCDMS (2-4]. 

') .... 



Since the QCD effecti're 
? 

vanishes with Q~ (asymptotic 

coupling 

freedom) 

0 

a ( Q~) log· ·ari thrnically 
s· 

the scaling violations 

should do the same. PreEent d:jcp-inela~:;tic ::.;cattering da-::8. are not 

accurate enuugh to checl-: rtmning of a . Howeve1->, the r.recission s 
and the Q2-range of recent BCDMS data [5-11] appear to be 

--- ~:fficient to qa:::mtit2.tively ·.:heck the QOD predictions fer S1]aling 

violations, to reliably determine a
8 

(or QOD mass-scale parameter 
A), and, to checl:;: consister.cy of the predictions for various 

targets (same a ) . These data h.2.ve alE.o imr)ortant ir;,;::li::;?. ticms for 
0 • 

...... 

predicting W and Z production rates on pp colliders 3.nd thus 
placing limits on the ntunber of light neutrinos and, poss-ibly, on 
the mass of the top quark [ 1 2 l . 

In this paper we use tho BCDMS hydrogen cla ta · [ 8, 9) to study 

the influence of variow: . approximations and. theoretic~al 

uncertienties on the determin:ltion of the QOD mass-scale parameter 
A and - on the QCD tests. Basie formulae- of p-erturbative QCD for 
deep-inelastic scattering, inch-~.ding a 2 -corrections to the 

8 

longitudinal ,structure functLon, are reviewed in Section 2. In 

Section 3 we discuss various me·thods for solving the QCD evolution 

equations, in particular - ~;he simple and convenient r.1ethod of 

Jacobi polynomial reconstruct ion of structure functions. In this 
Section we ~lso study the uncertienties of QCD fits due to finite 
reconstruction accuracy ani limited flexibility of parton 

t~sts. The parametrizations, and, disct.ss the problem of QCD 

un~ertienties clus- t') 7·ar1c,us preas;:,'Inptotic corre~tions to the 

perturb at i ve C~CD predicti:::m:: , including higher-or1er-, flavour 
threshr::ld- and higr~er twist-correGt;Lons, are discussed. in Section 

4. The conr:lu.sions are swnmarized in Section 5. 

2. Perturbative QCD predictio1s for inclusive leptoproduction 

:.:) ., 
~. ' Cross ·~p,-. t j n·n ·~ a· ·r?a·. Q'T ·r•u, .... r:· t·r·e· funr"t. ·[ 011 Q 

LJ'-'"''-' 1.t \. .._., ,t...-· "' ut, - ....... J ,(,,_.. L·'L-' 

The cross secti~ns or deep-inelastic inclusive lepton 
7 -!: N __. 7 ± X '=l Yld ·1,1 , ,IV- l ~T ~ nu\~leons, c c, .;;;uL ~ a 

e:.::(~hange appr~::xima t ion, are expressed 

C'(~'='t tc.rl' no· ''ll 1illp<'l<;)r ... l· '7pd ......... '-"' ~- .J,..J..,·,:, - .... .J \...+ "-l -· ....... 

. l- l+ ~ . / lll t\1 .:. ,-,nw-b''S,-,n 
' J ' Jr......... ._. - · .. • '-./ 



t -, .)? 
through th·:::: nuole:cm s ructure fu.n,:tions l•kUr,LrJ in 
'ri«m 2): w.z 

dol-L' e - ----
dXdQ2 

davlv 

d.-rdy 

the form 

(2) 

(3) 

• 2 
where n ~ 1/137, G ~ 1 .1 66 ·1 o-5 Gev-- 2

, x = 3M
1
, is the Bjorli:en 

scaling variable, M is the nucleon mass, y = VIE, v = E-E', E and 

E' are the energies of the· initi3.l and the scattered lepton. To 

exctract these cross sections from the measured ones the radiative 

corrections should be applied. '1 hey are knovm quite precisely. 

E.g., for the charged lepton scattering, in the region of large y 
(small X) covered by BCDMS data, they introduce an unoertienty in 

F
2

(x,Q2
) less them 1%, otherwise, t11e 1.mcertienty is muoh smaller 

[ 13] • 

In the parton model approximation, the Callan-Gress relation 

F
2
= 2xF

1 
is valid at Q2

>> M2 as a consequence of vanishing coupling 

of ·longitudinally polarized photc·ns to quarlm. The violation of 

this relation is measured by the longitudinal structure function 

(4) 

or, , by the ratio of the cross sections of the absorption of 

longitudinally and transversally polarized photons on a nucleon 

target: 

R(x,Q2
) = (1+8JP -E' • 2 L 

(5) 

In terms of. the structure functions F
2

(x,Q2
) and R(x,Q2 

), the 

cross section in eq. (2) can be rewritten in the form 

( 6) 

4 



It may be seen that the :;r(~;;::s sect1on is sensitive to the 
...... 

structw:·e ftmction l?.(x,Qc.) only at 

2.2 Q2-evoiut'Lon of structurE functions 

According to the QCD ractorization tlv::orem, the structure 

fimctions are given as t:te convolution of quarlc and gluon 

densities q i and G with the OC·effioient functions ck (which are 

proportional to the corres;1onding ·cross sections of the hard 

process- the absorption of the intermediate boson by a parton): 

f ( Q2) = f1 w k X, . [C~s(p,G2)ANS(y,Q2) + C~I{~,Q2)ASI(y,Q2) + 
X y 

-1 C~(~,Q2 )AG(y,Q2 )1, (7) 

where f.;J = F?/x, !
1 

= J.F
1 

ard f...,= F 0 • The functions AGo: G, A8
I 

._ c._ c .J ._; 

and ANS are certain flavour :: inglet- and nonsinglet combinations. of 

the parton densities. E.g., in the case of charged lepton 

scattering, assuming f/2 doutlets of zero mass quart:s, 

1 . - - - -r:/ U-d+U--d+C-S+C-8+ • • ) • (8) 

h 1 ·. 
The coefficients TB and b a::-e nothing else but half the sum and 

the difference of the electrlc charges squared of the quarks in a 

doublet, respectively. 

It should be noted that both the coefficient f~~ctions and 

·parton densities are dependent on the renormalization 

(factorization) scheme and 0:1. the renormalization scale parameter 

~ (the choice~ = Q, assumed in eq. (7), introduces Q2 -dependence 

of the parton densities). Of course, their convolution, being a 

physical quantity, must be independent on the renormalization 

procedure provided both the factors c::re calculated in the same 

scheme. In the following, Ne use, the results obtained in the 

modified minimal subtraction (MS) scherne [14]. In particular, the 

parton densities defined in ;his scheme satisf~l the usual momentum 

sum rule: 

5 



1 f ? - 2 2 
· <x > + <x > = fdX•X·fl: fq,,(x,Q~)+qi(x,Q )1 + G(x,Q )J = 1. (9) 

q G 0 i= 1 ~ 

The parton densities are often cefined in a different way [ 1 :;, , 16] 

by demanding F~N(x,Q2 ) to maintc:in the same form as in the parton 

model. Such a modification of t:w scheme slightly simplifies the 

calculation of this particular strueture function, but has no 

preference in other cases. 

The coefficient functions Jan be expanded in powers of- the 

running coupling constant a (Q2 ): 
8 

2 ) a ( Q2) ' a ( Q2 J 2- c 2 ) 
0 (X, Q - ) = 0 ( O (X) + 8 0 ( ) (X) + [ c~1rrr -] Ck (X) 

k k 2'JJ; - k /\, + • • ' ( 10) 

where CSI(O)(X) = ONS(O)(X) = CJ(:r;-1), OG(O)(X) = 0 and OSI(t)(X) = 
NS ( 1 ) k k ( fJ 2 k 

Ok (X), k = 1,2,3. The functions Ck (X) are Q independent in 
the limit of massless quarl{S. At a ~ 0,- eq.--(7) yields the parton 

8 

model result, e.g., eqs. (1 ). 

The effective coupling a
8

(Q2 ). obeys the QCD beta function 

renormaliza t ion group equation 1 

where ~ i are the beta function ei:pansion coefficients, e.g . 
...... 

2 
~0 = 11 - 3!' 

' 

38 
~1 = 102 - -g-f, A _ 2857 _ 5033/ + 325/2 

~--'2 - -r ~ "5Lr ' 

( 11 ) 

( 12) 

! i_s the number of active flavours. The coefficients ~0 and ~ 1 are 
independent on the renorrnal iza t ion scheme, ~ 

2 
in eq. ( 1 2 ) 

corresponds to the MS scheme [17]. Eq. (11), in the leading order 
(LO) of a on the rhs yields 

8 

a co J ( Q2) _4_'JJ;~----:,--
s = ~cin(Q2/A2) ' 

( 13) 

and, in the next-to-leading ordeJ• (NLO), a = a (f) ( Q2 ) is given by 
B B 

the implicit equation [18]: 

( 14) . 



where A is an unl~nown i.n ;c:,;;.·c.'l.tion constant (QCD mass scale 

parameter) to be determined 1rom experiment. The constant C on the 

rhs of eq. ( 1 4) inclic:a tss that the defini t icm of the scale A is 

merely a matter of eon7enti.o1.. 1l'he comm0nl;yr used choice is C = 1 

[14,19], though other choicu.:: are sometimes prefered, e.g., C = 

~ 1 1~0
2 [18) or C = 2~0 [20). The scales at different C-values are 

related by: 

The solution of eq. ( ·11 ) ca1 be represented as a series of the 

terms lnm[C·ln(Q2/A2 )J/Ir{\Q'~/A2 ), m = 0,1, .. n. In particular, at 

0 = 1 we have in the NLO: 

( 14 I ) 

(14") 

·and, in yet the higher-order: 

...., 
In the BCDMS Qc-range and at A~ 200 MeV eqs. (14') and (14''), as 

compared with the equally valid NLO expression (14), give the 

. a -values higher by 3% and lc1wer by 2%, respectively. Eqs. ( 14' ) , 
B 

(14") and (14) yield the sanle a as the second order eq. (15) at 
s 

the A-values lower . by 15 Me i &>J.d higher by 25 MeV and 10 MeV, 

respectively. 
The Q2 dependence of the parton densities At(x,Q2 ) is 

governed by solutions of the generalized Altarelli-Parisi-Lipatov 

evolution equations: 

7 



oA!8 (x,Q2 J 

olnQ2 

f
1 

Qlj_ [ASI(·y Q2 )}' ('£ Q2) iG( Q2)I' (X Q2)] 
X y ' , qq. y' -f- i '!J' . qG fj' ' 

oAG(x,Q~ =· f
1 

QU [ASI(y,Q2)pli_q(~!;'Q2) AG( 02)P (X Q2)J 
2 Y - + y' "'; ''r< y-' ' onQ X (JIJ 

( 16) 

where the splitting functions P . . are the probabilities of J --. i 
t 1 

(P G is sometimes redefined by P .---. -+ 2fP 
0

). The index ~- (-) in 
q· qu Q.J 

the NS-equation denotes the evolution of a crossing even _(odd) 
-combination of parton densities, i.e. of a one containing qi+qi 

.(q i -q i). 

The Q2 dependence of the splitting functions is determined by 

the expansion in powers of the rLnning coupling constant a (Q2 ): 
8 

a ( Q2) a ( Q2 ) -- -- --
P (X tJ2) 8 p (OJ( ) [ 8. J2P. c.t J(x)· 

i J ' ~ = 27[ - i J X -1 27[ -~ J + " • · ( 17) 

Note that P~ 1 ) t:- P~ 1 ) for l ~ due to the q ~ q ;nixing terms 

which arise in the next-to-leading and higher orders. Both the 

coefficient and -the splitting flirLctions have been calculated up to 

the next-to-leading order (see rE!Views [21, 22], references therein 

and refs. [23,24]) • 
..... 

2.3 Analytical solutions of evolution equations in moment 
.representation 

The Mellin transformation 

1 
f(n) = f d:x;.xn-t f(X) 

.0 
(18) 

allows one to transform the C•)nvolution integrals into simple 

multiplications. Thus, ·e.g., eq. (7) becomes 

fk(n,Q2) = d!S(n,Q2)ANS(n,Q'?) + c!I(n,Q2)ASI(n,Q2) + 

+ C~(n,Q2 )A0 (n,Q2 ). (7') 

8 



By tradi t ic;n, I'· . 
VJ.ll:; in power;:; ()f a 

8 
i:s defi:.sd 

differently than in eq. ( 10): 

·.J2) 
2 (0) a_c~ (1) c (n Q -) == B + b 1' · + k ' k,n --~ )R.,n 

? 

a ( Q<- L, c r, J 
[ _3j-_-----1 .:. B · c.. + • • , 

4'iC k,n 
( 10 I ) 

·i.e. B~n = 27-cnJ(n) • 
.tV,n k 

The solution of the MellLn transformed evolutio::-'- equations is 
straigh tforwar•cl: 

No 0 2 N-' 0 
rh· ,-:; ( n t]''· () -- ) l· j (- '7 n~- ' 
'+"± '"" ''""0-'li± f •• , ._,0}' 

-· 

+ cp qG ( n' Q2' Q~) AG ( n_, Q~) ' 
•• 

2 2 G 2 
+ ¢ca(n,Q ,Qo)A (n,Qo). ( 19) 

Here the initial moments Ai(;1,,Q
2 J a~ so~~ ~ef~rence point Q~ are 

not predicted by perturbativE~ QCD. The ¢-functions are determined 
by the Mellin transform of tbe splitting functions. Int2:•oducing 

then, e.g., the nonsinglet ¢-function reads as follows: 

(20) 

Similar expressions for the singlet ¢-functions can be read out 

from eqs. (2.138) - (2.143) of the review [25]. The solutions of 

the evolution equations shotld not depend on the reference point 

Q
0 

2 • The ¢-function in eq. :20) fulfils this requi::.--ement only in 

the NLO in a
8

(Q
0

2
). Therefore, it becomes unvalid if Q

0
2 has been 

chosen too low. The Q
0

2 -inclependence in the low-Q
0

2 region can be 

recovered by solving the NLO Mellin transformect evolution 

equations exactly, i.e. repLa·~ing the H-ftmction in eq. (20) by 

[26 1: 



(20' ) 

In fact, the QCD predictic ns in terms of the Mellin moments 

have been originally obtained w:_ th the help of the Wilson opera tor 

product expansion (OPE_); '(±(n.Q2
) at even/odd n are just the 

anomalous dimensions of the ~:pin-n nonsin.zlet oDera tors. Both I , ~ • 

Ck(n,Q2
) and '((n,Q2

) are lmo'Nn np to the next-to-leading order. In 

particular, the anomalous dimensions have been calculated in [27] 

an~ represented in a simple-analytical form in [28,29]. Note that 
' . 

the gluon-gluon anomalous dim:msion of refs. [27 ,28] slightly 

differes from the generally acc1~pted :;."'esul t of refs. [ 29,30]. 

Rec9,ll that the anomalous dimensions beyond the leading order 

predict only even/odd moments of the crossing- even/odd structure 

functions [31 ]. To find out the evolution of the moments at any n, 
art analytical continuation should be performed for even and odd n 
separately. As a result, the re:~evant moments defined ,.in eq. (17' ) 

are related to the OPE anomalc~us dimensions 1.:"8 and rSI by the 
n n 

following expressions~ 

~~l)(n) = r.:s cu + 'll±(n)l.(;~snJ' n 
' 

lnJ(n) = (SI(I) + 'll+ (n)Lq~~I (I)' 
n 

, 'll±(n) = ±1-(-1)n, (21 ) 

where A((O) ;; 0, and, the corrEctions A((t) are known to be quite 
n n 

smail and vanishing very fasi; with n (A~8cx: 1/n6
) [31]. The 

n 
corrections-in the crossing even/odd case can be simply taken into 

account by the followin_g re-)lacements in the OPE anomalous 

dimensions [26,32]: 

fV 

S(n) 

-+ ±1, 

_. (-1 )nf±S~(fn) + 'll±(n)f-2S
2

(n) + C(2)JJ, 

_. (-1 Jnf±sJrfnJ + yt±(n)f-4S
3

(n) +3 C(3)JJ, 

-+ (-1)n[±S(n) + 'llt(n) § CC3)J, 

10 

(22) 

I 



where the series Sm(n) and tlB alternate serieses Sm(~n), S(n) are 
defined in [28] and ((z) is the Riemann zeta func~ion, ~(2) = 

~216, ~(3) = ·J.20205 69031 59594 • 

• 
2.4 NW calculation of longitldinai structure function 

The QCD prediction for the longitudinal strtwtl.:tre function, 
defined in eq. (4), is given, at Q2 » M2

, ·by eq. (7), where 

Since cl0 )(X) = 0, due to the helicity conservation, the leading 

order QCD prediction for FL(x,Q2 ) is proportional to a
8

: 

Here 

aa(Q
2

) 1 d1t NS 1 X F2(y,Q
2

) G( X G 2 
= 2rrr; Xf y [QL ( ) (j}) y +CL ~) ( -yJA (y, Q ) ] • (23) 

X 

GLG( 1 )·(X) = 4fX(1-X),. 
-; 

(24) 

.. being the LO quanti ties, arE' independent on the renormalization 

scheme (eq. (23) is sometime:~ confusingly called as the NLO one, 

though it is understood that it should be used with a
8 

and the 

' parton densities calculated :~n the LO [25]). To get the NLO QCD 

predictions, the a 2 -terms· 0. (2 ) (X) in the coefficient functions 

OL(x,Q2 ) are neede;. AnalyticJresults for ~S(2 )(x) and CLSI(2 )(x) 
have been obtained in refs. [23,24]. The Mellin moments of the 

. a 2 -terms were calculated partly numerically in the. nonsinglst 
B 

case [23] and, recently, in an analytical form for all the 
nonsinglet-, singlet- quark End gluon coefficient functions [33]. 

The results contain th<~ alternate serieses K (n) = 

S (n)-S 'r2
1n)li"--1 and Q(n) = -S(n) which should be contin:ed from 

m m 
even to odd n by the replacements (22) for the crossing even case 

(see eqs. ( 43) of ref. [ 3: ] ) . The coefficients ELi ( 
2

) in the ,n 
expansion (10') are given in ~qs. (35), (38) and (41) of ref. [33] 
through the ratios RL(2 ) = BL(2 JIBL(t), where BL(t) = 2CL(t )(n), 

,n ,'1.. ,n ,n 

G( 1) _ · · 8!_ 
BL,n - tn+'l )(n+2J • (25) 

1 1 

' .• 



We can invert the Mellin rni)ffients of a longitudinal structure 

function, given by eq. (7'), with the help of the methods 

discussed in Sect. 3.1, or, neglect a small difference between the 
'?) 

NS and SI values of RL(,_ , whi(;h is essential (>10%) only at small 
,n 2 

n (n ~ 3), i.e. only at small .r, and write FL(x,Q ) in tne form 

similar to eq. (23) (see also rEf. [ 34]): 

. (26) 

where the functions Rq(X) and RG(X) are defined by the relations: 

-t!B.(1 )(JT!!S(2)_ Y'!_S(1)) = 2JdX·~-1CNS(1 )(X)Rq(X), 
L,n L,n 2,n C _L ___ _ (27) 

1 . 
BG(1 )RG(2)_ J!!S(t )BG(1 )= 2JdX·:Jf-·-1cf!(1 )(X)RG(X). 
L,n L,n L,n 2,n . C L 

(28) 
J 

• 
The approximati~n RLSI = R!!L8 , assumed in eq. (2G), l'~ad~ to rv 4% 

.n 2 ,n 2 
overestimation of FL(x,Q ) in the lowest BCDMS x,Q -bins. The 

overestimation becomes less than 1% for i > 0.3. At f = 4, the 

following simple but sufficiently accurate parametrizations for 
the Rt-functions can be used: . 

(29) 

I 

They satisfy eqs. (27) and (28)_with an accuracy better than 1% (2 
< n <11) and 2% (3 < n < 11), ::-espectively, i.e. -underestimate 

FL(x,Q2 ) by 3-7% for X= 0.07-0.14, and, overestimate it by 4-11% 
for x = 0.35-0. 75. · 

The a 2-corrections to the longitudinal coefficient functions 
.B . . . 

are quite large. Thus the nEglect in refs. [8,9,11] of the 

correction terms in square br2ckets in eq. (26) underestimates 

FL(x,Q2
) in the NLO by about 30%. At the same time, they are 

compensated, to a large extent, by the NLO corrections to a (Q2 ) 
8 

and to the parton distribution~~ As may be seen from fig. 1 the 
, net NLO correction remains pos L tive but it is less than 10% in 

12 



major part C.f the BCI·:'JS l~insrnc.tti·::. region. The tmcertient,y in FL 
due to the higher--ord•2r corrEctions is expected to be of similar 

size (see Section 4.1 ). 

3. Calculation and fit procedures 

3.1 Calculating QCD predictions for structure functions. Survey of 
methods. 

The comparison of the theoretical and the experimental 
moments of the structure functions is technically very easy. 
However, due to the necessity of an interpolation of the data into 
the unmeasured regions X ~ ( 1, 1, such a comparison is commonly 
considered to be less reliable than a direct QCD analysis of the 
measured structure functions. Thus the evolution equations (16), 
as well as the convolution (7), · effectively require only an 
interpolation, to x = 1 which introduces a· negligable uncertienty 
.(due to rapidly vanishing pa::-ton densities with ,r,) provided the 
. . 
struct1.u-e functions are reliably measured up to X N 0.8. 

The evolution equations _allow one to calculate the parton 
densities Ai(x,Q2

) provided they are given at some reference point 
.... Q

0
2

• The densities At(x,Q
0

2
) are not predicted by perturbative 

QCD. They are usually par&~~t~ized based on plausible theoretical 
assumptions concerning their behaviour near the end points X = 0, 
1, e.g. 

I 

xANs(x,Qo2) 

xAsi(x,Qo2) 

xAa(x,qo2) (30) 

-At low Q
0 

2 , we expect from Hegge theory and the quark counting 

rules: ~LSI ~ ~lNS ~ 1-ap(O) ~ 0.5, l'si ~ VNS i'-$ 3, ~SEA ~ ~G ~ 0, V 0 
~ v + 1 and v E ~ v + 1. QCD evolution increases (decreases) the 

SI S :A G :::> -

exponents vi (~i) with Q~: vt--+ oo, ~NS; ~si ~ 1-aP(O) and ~tSEA'_ ~G 
~ _ ~oo' where -1 < ~00 < 0. The high:-X behavtour of the gluon 

13 
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distribution, oompatir)lc with QCD at sufficiently high Q
0

2 , is, in 

fact, of the form [ 35] : 

which suggests aX-dependence or the exponent VG in eq. (30), e.g. 

(30') 

In the limit X-+ 1 the quantity v
0 

is relate~ to v
8

I by [361: 

VO = [( ~ 25 + ¢(2+VSI)J-1' 

where 1 and ¢(z)- are the Euler • constant and ¢-function, 

respectively; v
0 

= 0.5-0.4 at v
2

I = 3-5. In the region of moderate 

or low :X, however; the effective value o~_ v
0 

may substantially 

differ from this estimate (v 
0 

= ·1 is simply asswned in ref. [ 35] ) . 
Eq. (30') yields VG(X) decreasi1g with X from v8I+V0 +1 to v8I+1, 

the decrease being quite slow exoept for regions near the end 

points X=O (at v
0

»1) and X=1. 

. It is important to providE a sufficient flexibility of the 

parton x-parametriza tions at Q2 = Q
0 

2 in order to not bias the 

comparison of the QCD prediotions with data. In particular, nt~ber 

'Of parameters describing the qw,rk densities should be comparable 

with the nmnber of measured .1-interva1s. Concerning the gluon 

density, its contribution to tr e struoture funotions and to the 

scaling violations rapidly vani~hes with X and becomes small at X 

> 0.3. Thus the simple parametri3ation in eq. (30), even with ~G = 

- 0 (at not too high Q
0 

2
), appeares to be suffioient at present 

experimental erro~s. 
The evolution equations (1E) can be solved numerically using 

a suitable algorithm [37-39]. AJthot~h straitforward, thin method 

is not cheap in terms of compt.ter time and meets a problem of 

accumulation of the rounding errors when evolving at very large 
· scales. Therefore a number of ar alytie methods has been developed 

to solve these equations with lo·ver price. 

The simplest and fastest possibility is to use plausible 
? 

parametrizations for the parton :L', Q'--distributions and determine 

i4 



the parameters in such a way that the evolution equations are 
approximately satisfied. Thus i..n refs. [40-42] the parameters are 

determined by minimizing deviations of the first 10-20 Mellin 

moments of these distributions from the QCD predictiom:~, while in 

refs. [35,43,44], the parameter·s responsible for the Q2 dependence 
are calculated exactly in th:':) limits X -+ 0, 1. The achieved 

accuracy, several % ( ,,Q. 5%) in former (latter) case in the 

kinematic region of interest, is satisfactory for many purposes 

but it may be insufficient when the moe.t precise data are 
analyzed. A drawback may be also limited flexibility of the 
pararnetrizations. 

Another method [ 16] exploj. ts the inverse Mellin transform 

1 +too n ,, 
= 2~t f dn x- f(n,Q~ J 

-iOO 
/(::[) (31 ) 

which is performed numerically in finite atld carefully chosen 
bounds ali owing one to achie"e the required accuracy. A minor 

drawback is that analytical expressions for the moments of the 
parton densities must be proviced. / 

The other methods are based on the expansion of a structure 

function or parton densi ti9s in a series of orthogonal 
polynomials. In principle, they allow one to solve the evolution 

, equations with any reasonable ::.ccuracy. 

Originally, Bernstein pol)~omials were used in ref. [45] to 

expand a structure function with the expansion coefficients 
expressed through its Mellin noments given by QCD eqs. (7') and 
( 19). The convergence of this series appeares however quite slow. 
The method was further develo:t=ed and applied in refs. [28,46] 
the structure function was rEpresented by a convolution of the 
parton densities Ai(x,Q

0
2

) with the integration l{ernels given in a 

form of fast converging seriesos. 
In refs. [ 47,48], Laguer::-e polynomials were used to expand 

the densities Ai(x,Q2
). The evolution of their Laguerre moments is 

lmmvn in an analytical. form. rhe densities at a reference point 

Q 2 are represented by ·their Laguerre moments which has an 
0 

advantage (however minor) as compared with the usual apriori 

pararnetrizations.of their X-dependence. 
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An importa.11t variation uf the polynomial reconstruction 
method - Jacobi polynomial exp:::nc-:don - was propos eel in ref. [ 49] 
and further studied, developec and applied to the analysis of 
·experimental data in 1'8:!:'::.:;. (50-1i4,6,8,10]. It is discussed in some 
detail in the next Section. 

3.2 Jacobi po~ynomiai reconstrw:t ion oj' structure junctions 

Given the Jacobi moments J.
111

(Q2 ), a function f(x,Q2 ) may be 
reconstructed in a form of the ::>eries 

(32) 

where the Jacobi polynomials 

• 

satisfy the orthogonality relation with the weight x~(1-X)a . The 
Jacobi moments are just linear jOmbinations of the Mellin ones: 

2 m m ...... 2 
am(Q) = Y=o~Jca,~)f(J+2,~) . (33) 

' 2 . 
~heir Q -dependence thus simply follows from the QCD eqs. (7') and 
(19). It was shown that a fast convergence of the reconstruction 
series can be achieved when appropriately_ choosing the weight 
function to factor out an essential part of the structure function 
X-dependence. As a result, not only the first N = M+1 Jacobi or 

max 
Mellin moments of the truncated series are exactly equal to the 
given (QCD) values (due to tht~ orthogonality relation) but also 
higher moments approximately satisfy this equality [50] (the 
weight function causes a rapid vanishing of the Jacobi moments). 

Originally·, a Q2 -dependen·; weight function (with a = a(Q2
)) 

was proposed. Later on, it was recognized [50,52,53] that a good 
reconstruction accuracy (bettEr than 1%) can be obtained with 
constant values of a and ~; and, a reasonable number N of the max 
terms retained in the series. J.s expected, the choice a f'::j 3 and ~ 
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lid 0.5 for the weight ftmction p.:J.Y-c-tmeters appears to be opUrnal :i.n 

the nom:dnglet ca:::~e. E'or a sin~let structure function given in eq. 

(30) with ~L,-,I= 0.25, 1',-,I= 3, ttn,~,:-= 0 and V,.,EA= 8, two cets of 
.:) 0 I D.l:.JA D; 

optimal a, ~ valu~::s have beer; fou ... rtd [53]: a R;; 3, (3 '~ 0.2 and a 
E(-0.8, 3.3), ~ ~J -0.8. The relation ~ 1 R;; ~2 +1 between the two 

~-values is merely consequence of the polynomial expansion. 
The accuraoy analysis of r·ef. [53] does not take into accotmt 

a ·rapid Q2 -evolution of the sea quarks and gluons. Since the 

evolution effectively leads tc the appearance of a negative power 
of X in their X-distributions [ 35], we may expect decreasing the 

optimal ~-value with Q2
• This is indeed confinned (fig. 2) by the 

analysis of the r.m~s. relativ~ reconstruction accuracy 

(34) 

of the BCDMS proton structure function (N = 11). The index M 

indicates that the structure ftmction was·reconstructed from the 

.first M +1 moments. We have approximated the structure function by 

(35) 

where the parameters cJ, aJ, ~J' j = 1, 2.and 3, are calculated 
from the first three evolved IJLO-moments of the NS, SI and gluon 
densities , respectively. The QCD mass-scale pararr1eter A, as well 

I . 

as the parameters in eqs. ( 30) defining the initial densities at 

Q2= 5 GeV2 , were determined by a QCD fit of the BCDMS proton 
structure function [8). The approximation (35) is sufficient for 
studying the reconstruction a~~curacy, and, as the moments of its 

rhs are exactly lmown, it avoids the. necessity of the "exact" 
solution of.the evolution equations for this purpose. 

It may be seen from figures 2 and 3 that an optimal choice of 

the weight function parameters a and ~ in the case of a proton 
structui•e funution would be o E (0, 4) and ~ close to -1 or ~ ~ 

-0.15. In the BCDMS kinemati) range this choice garanties 11;
1< 

· 0.3%. This is more than one order better result as compared with 

'I'{ 



the case of the cons t;:1n t ~Vt~i;zh t fune tic)n (Legenclre pol;ynomial 

expansion). For the longi tudinc:.l struchn·e function, due to a 

substantial gluon contributior:, the reconstruction aecuracy 
appears to be much wor::-:;e: 11Ls::. 5() f.:.

2 
at the optimal values a :>~ 6 

and ~ close to -1. Such an inacct.racy is still acceptable since it 

is comparable with the uncertj Em ties due to the highei•-order 

corrections, and, it is compensa~ed by a small FL-contribution to 

the cross seetion (up to several ?~ in a few high-y BCDMS points). 

Figures 2 and 3 also indicate, in contrast with the nonsinglet 
case [52], the sensitivity of the reconstruction accuracy to the 

analyzed Q2 -interval. Clearly, i his is a consequenee of a fast 

singlet evolution in the low-x region. 
· The dependence of the reconstruction accuracy on the number 

.N of the terms in the reconstruction series and on the length 
max 

of the ~BM computer word is dis~layed in fig. 4. It may be seen 
that the single precission is :mfficient --up to N = 8, the 

max 
double precission - up to N = 22, and, that the reconstruction 

max 
accuracy blows up at N = 44 e\ en if the maximal word length of · max 
REAL*16 has been used. It also 1 ollows from fig. 4 .. that the IBM 

double precission allows one to achieve the reconstruction 
accuracy by about one order better than in the case of the single 

one, while further doubling of the word length is less effective • 
. We may conclude that the computE:r precission practically limits 

the number of the retained tern.s to N < 20. Due to rapidly max 
increasing computer time vri th N , an optimum seems to be N = mar max 
10-15. In this case, as may be sE~en from fig. 4, there is only a 

I . 

minor difference in reconstruction accuracies corresponding to the 

exact and numerical calculations )f the initial moments from eqs. 

(30). 

It should be noted [32] that the convergence of the 

reconstruction series destroyes at N > 10 if the QCD moments max 
have been calculated neglectinf the corrections to the OPE 
next-to-leading anomalous dimensions arising from the 

substitutions (22). 

We may conclude that a sim9le and a cheap tuning of the 
Jacobi polynomial reconstruction of both the transverse and the 
longitudinal structure flmotions is . possible to make the 
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recom;truetion uncertienties 1n the prr~dicted cro~:;s section Jess 

than a fraction of %, i.E. negliga.ble even in the case of 

presently most prec.iss BCD;,:s data. 

3.3 QCD fits 

The Jacobi moments a (G 2 ), unlike the. Mellin ones, rapidly 
m 

vanish with m and represent :1n independent, and, j_n the limit of 

precise data over the whole X-range, uncorrel.a ted pit:jce of 
information. It is there1ore convenient to p8.rametrize a 

nonsinglet structure function at a reference point Q
0

2 in terms of 
a few first Jacobi moments [50]; the required parametrization of 
the corresponding Mellin mome~ts is merely given by the inverse of 

eq. (33). Of course, in the E:inglet case, two sets of the initial 
Jacobi moments should be give~, corresponding to the quark singlet 

and the gluon part of the structure function. ·In principle, it is 

possible to consider the Mellin moments of the parton densities at , 
Q

0
c:. as free parameters [53]. rhis is however of a little practical 

use due to a large number )f such parameters (increasing with 

Nmax) and large correlations among them. The starting values of 
the .Mellin moments can be alEo parametrized with the help of eqs. 

· (30). This parametrization ap)ears to be sufficiently flexible for 
~he analysis of present data :ind is used in the following . 

To perform the complet~ QCD fits, we have modified the 
computer code used in ref. [:)3] for a LO singlet analysis of the 

EMC iron data, and, in ref. [6], for a NI.JO, essentially 
I 

nonsinglet, analysis of the BCDMS carbon data. 
Thus the parameters in e<lS. ( 30) are determined together with 

the QCD mass-scale parameter A by fitting the QCD predictions to 
# 

the cross section data points. These points are sometimes given in 

a form of the function (see, H.g. [5,9,55]): 

(36) 

which coincides with the stru)ture function F2 (x,Q2
) at R(x,Q2

) = 

0. The K-funotion is the fa~~tor in square bracket in eq. (6). 



Approximate procedures are oft.-::n used assuming R(x,Q2 ) = 0 or 

parametrizing it in a simple foPm (see, e.g., the critics raised 

. in ref. [56]). VIe compare the crnE.:s section data with the complete 

next-to-leading order QCD predic ;ion containing both the structure 

!unctions F
2 

and FL calculated Ln the MS renormalization scheme. 
Different weight functions ar,; used to optimize the Jacobi 

reconstruction of these .structure functions - the corresponding 

exponents a, ~ may be treated a;5 free parameters of the fit. The 

procedur,~s are also included in to the code allowing one to talce 

into account the preasymptotic corrections (flavour threshold-, 

target mass- and higher twist- o:1es) to the leading twist massless 

theory (see Sect. 4). 
The new code has been alr1:ady applied for QCD fits of the 

BCDMS hydrogen data [8,10]. The reference point was chosen at a 

value Q
0

2 = 5 GeV2 and the NLO m~ss-scale parameter A was defined 

byeq. (14''). An excellent agrEement of the QeD-predictions with 

the data is demonstrated in figs. 5 and Table 1. The results of 

Table 1. The results of NLO leading-twist QCD fits ~o the BCDMS 

hydrogen data [9]. (AMS in MeV), assuming four massless flavours 

and parametrizing the parton densities according to eqs. (30) at a 
. . 2 2 . 

reference po1nt Q0 = 5 GeV ; flsEA= flo= 0, the momentum sum rule 
are · applied; in is used. The kinematic cuts of ref. [ 10] 

' 
particular, X >0.06 (0.25) in a SI+NS (NS) fit. 

? 

Fit flNs VNS 'YNs aNS flsi 1JSI <X > VSEA aSEA VG 
_r_ 

q AMS DOF 

SI+NS 0.5 3.5 10 1 • 1 0.8 4.5 0.45 . 13 0.17 9.5 205 258 
±0.2 ±0.2 ±2 ±0.2 ±0.1 ±0.6 ±0.08 ±4 ±0.05 ±1 . 5 ±21 270 

NS 0.6 3.5 0.1 ') ') 
'-•'- 198 178 

±0.2 ±0.3 ±0.8 ±0.7 ±20 198 

the· fits well agree with the on,;s [ 10,11] obtained by a different 

method (based on a numerical sclution of the evolution equations 

[39]), except for a slight systematic difference of 10-15 MeV in 

the NLO A-values. Almost half of this difference is due to rv30% 
underestimation of the R-functj on (see discussion at the end of 

Section 2. 4) in latter fits. The two . methods would be fully 
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equivalent 1>rovided [:>2] the exact 
? 

(14) for a (Q:-) is used instead 
.s 

solution of the NLO equation 

of the equally valid NI.O 

approximation in eq. (14''); :.n -tlte fc>rmer method, also the exaet 

solutions of the NJij Mellin transformed evolution equation::-:> should 

be used, e.g. the nonsinglet H-functic)n in eq. (20) should be 

replaced by the one in eq. ( 20' ) • These equations may 
2 

su~stantially differ if a l't3ft;rence point Qo h~s been cho.sen too 

low. It_apppears, however, th~t the fits are not sensitive to this 
0 ~ ? - - .. T? 

difference even at Q
0 
~ as low aD ':J 1...-·:::v··. 

Since a "fine tuning" o1 the x--pararnetriz8.tions was applied 

in the second method, a. goc d agreement of the x2 -values also 

indicates a sufficient fle:.dtility of the quark parametrizations 
in eqs. (30). We have confirn ed this with the help of polynomial 

modifications of these par.:unetrizatj_ons and found that the 

subsequent change of A is negJigable (< 2 MeV). 
·Note that the large err)r.s of the ·parameters of the quark 

densities arise due to sui)stantial correlations among them. 

However, these parameters, teing deter·mined essentially by the 

_X-dependence of the structw·e functions averaged over Q2
, are 

practically deoorrelated fron the QCD mass-scale parameter A, 
which measures the s·ize of the scaling violations. This 

circwnstanoe makes the deep- inelastic lepton scattering a good 
place for testing QCD (see se~~tion 3.4). 

A surprisingly soft glucn distribution has been obtained in 

the NLO. Thus, parametrizing the gluon density according to eq. 

(,30) with ~L0= 0, the fitted e:cponent v0~ 10 is about twice the one 

expected from the quark ccunting rule and found in the LO 

anal~,rsis. Note that the neflect of the longitudinal· structure 

function (R = 0) would lead to still a softer gluon distribution 

(1'
0 

by 30-40% higher) and to . .A. higher by 15 MeV. The gluon 

parametrization shc·uld be h0\1 ever considered only as an effective 

one in the range 0.06 ~ x ~ 0.30, 'Nhere an essentially nonzero 

gluon contribution is requirEd by the measured scali.ng violations 

(compare full 3.Dd dotted Cl..U'V:?-S with dashed one in fig. 5d and see 

also fig. 4 of ret. [10]). Thus, at 1'a = ·10 (5) the gluon 

contribution to the scal:.ng violation oZnF
2
1olnQ2 becomes 

comparable with the !3Xperimental error at X = 0.22 (0.35). The 
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BCDMS rJ3.t3. are thus not suffi0icntly precise to reliably determine 

the exponent v0 responsible for the gluon distribution at X > 0.3. 
In fact, replacing~ v 

0 
by the ansa tz 0?' ) ·with v 

0 
= 5, 

corresponding to v~f! Fj 9.5 at J' < 0.3 and v~!f ~ 5.5 at X .... 1, we 

reproduce the results of Table 1 . A reasonable fit can be also 

achieved with a smaller value of v
0 

provided the exponent IJ-~ is 
. (.r 

treated as free parameter. E.g. choosing v
0 

= 1, i.e. v~ff ~ 6.5 

at x < 0.3, and fitting ~LG = -0.16±0.07, AMS = 2'16±22 MeV (otl1er 
parameters practie3.ll;;_.- coincl.de with the ones in Table 1 ) , the X2 

increases by rv1 unit only. 

In the fits we have cons tr~ ined the size of the gluon d-8nsi ty 

with the help of the momentum sum rule (9). This may be 
questionable as it requires an Lnterpolation of the singlet quark 

and gluon densities into the unmeasured region of X < 0.06. It 

appeares, however, when treat:.ng both <X > and <x
0
> as free . q 

parameters and assuming IJ-sEA= IJ-::;= 0, that the· results of Table 1 
emain practically unchanged (e:>cept -for 50% increase of the error 

in v
0

), and, that the sum rule js well satisfied: 1 = 1.05 ± 0.13. 
The softness of the gluon distribution makes it_ possible to 

eglect its contribution in the evolution equations at 

sufficiently large x-values ancL determine A with the help of a 

more constrained nonsinglet anaJysis. The results of NS fits shown 
in fig. 6 indicate that the BCDMS data are insensitive to the 

gluon distribution at x ~ 0.25. In this x-interval the NLO 
onsinglet approximation, as compared with the complete SI+NS 

treatment, yields A by"' 10 MeV lower (see Table 1 and ref. [10]). 
i 

In the 10 this shift is about ihree times as large due to harder 

gluon distribution. To estimate the influence of the gluon density 
on the distortion of A in a NS fit, we plot in fig. 7 the 

v0-dependence of AMS fitted in ihe full x,Q2 -region (X > 0.06) and 
- in the NS one (X > 0.25). It may be seen that a negative 

correlation between these paraneters weakens in latter uase, as 

expected due to rapid vanishing with X of the gluon contribution 
in the scaling violations (fig. 5d). Since a ·fit in the full 

x,Q2-region yields v
0 

> · 5 at a level of two standard deviations 

(in agreement with the lower limit v
3
r+1 following from the ansatz 

(30')), and, <x
0
> = 0. 44±0. 06 a i IJ 

0 
= 5, we may conclude from fig. 
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t t . t t . A r:· ·J 5 'ff u t ha a NS fl uncleres lma t11s .,-,;::; by .:J± 5 ,~lf:::'v at ·he .=.arne 
lii .. :J 

confidence level. We may also conclude that the w·1C1jrt len ty j_n 

AMS' introduced by the glu(>n distribution, is by .,_,6Q<C;; larger in 

the full 1-:inema tie region th:J.n ~ n the NS -on~.:~. 

The N -dependence of the results of NLO fits is displayed max 
in fig. 8. In agreemEmt with thE~ reconstruction accurac~r analysis, 

the resuJ ts of NS and SI +NS fit~; :::-;how stable b,:;haviour for N ~ 8 max·· 
and N ~ 'JQ-13, respecti7ely. 

~X ~ 

Since the parton X-distritutions evolve with Q~, a eheck of 

the Q
0 

2 -independence of the fit ted A and x2 values also provides 
a flexibility test of the initial X-par~netrizations in eqs. (JO) 

in a given Q
0 

2-region. The res J.l ts of NS and complete SI+NS QCD 

fits shovm in fig. 9 as functions. of Q
0 

2 indicate sufficient 

flexibility of the NS X-parametrization, and - some problem with 

the si~slet quarl\: and the gluon ones; the use of the latter with 

f.LsEA = f.t.0 = 0 slightly underes~.imates Azis at Q0 
2 > 50 GeV2

• This 
problem ar~ses due to a fast Q.:::-evolution in the low-x region and 

it may be cured by treating the ~e:xpon~nts f-;sEA and flG as free 
parameters. 'l1hus choosing, e.g. Q

0
""· = 200 Gev~ and fitting flsEA = 

f.La I'<$ -0.3, VG Rj 11, we recovnr AMS R:j 200 MeV obtatned at low 
2 - Q

0 
-values. 

3.4 Testing QCD 

Even the BCDMS data are not sufficiently precise for tests of 

tp.e most specific QCD predtction - as~nnptotic freedom - manifested 

by vanishing of a.,_.( Q2 ) (or the scaling violations ex: a
8

) with Q2
• 

The corresponding ~curvattiTe of InFk in InQ2 is practically hidden 

in the statistical errors. PreE;ent data thus allow one to obtain 

only an average coupling <a > in the measured Q2 -region. The 
8 

fitted value of A then pra;tically coincides with the one 
~ 

equation a (<Q'->J = <a >. 
8 8 

following from 

In sueh a situation, the well-known illustrative 

representation of perttiTbative QCD predictions in terms of the 

logari tl1Jnj_c 

substitutes 

evolution 

') 

slopes oLnF../oLnQ<- (see, e.g., [1]) approximately 
c 

the global QCD cEscription. It follows from the 

equations, in particular, from the LO nonsinglet 

2J 

• 



pJ•oJ.uction, whervas the eharg(;d current top production m:::y give a 

non-neglig::tble. efl'ec L depending on the top quark m:::tE:s. 
-::. 

It appeare:::: th.s. t the x·- of the f ~ ts to the~ BCDMS h;ydrogen 

data af:: well as the fitted gluon density ·are praetically 

insensitive to the number of flavours us~d to calculate the 

evolution (the splitting functions). At the same time, the 

mass-scale parameter A j_s Btrongly cc rrelated to this number: 

ehanging f = 4 to f :.:. 5 decroa.st:;s A-;:r--;: by 60 MeV. Assurning the 
0 2 l~~ 

bottc,m threshc·l d .::. t Qc_ = ( 5±2 )7n 1 we get for the shift of A,u-J f=/n 
~ lUD 

due to the FTC a value of -5± 10 MeV. TLe uncert ienty in A due to 

parameter p in eq. (49) is less than 1 MeV. We may conclude that 

the influence of the FTC on the QCD tests and the determination of 
a is negligable at present. 

8 

4.3 Target mass- and higher tw'Lst- corrEct·Lons (TMG and HTG) 

In the simple model of free massless partons the TMC arise 

from the intrinsic transverse parton montentum [82-84, 19]. Somewhat 

misleading name of these corrections is due to the .fact that, as a 

consequence of kinematic constraints, . they vanish as a square of 

the target mass M. Thus the contributjon of the quark i to the 

s true ture functions F 2 and F *' is given 1>y: 

(50) 

Here <~i 12>0 is the mean transverse monentwn squared of the i-th 

quark: 

<k312>o = M2 xg2t I? } d~' pi(~, JL -t-~2 xr~ '-£) 1/Fi(~J (51) 
V (1+8) J ~ ~ ~ ,2 2 . Q2 (1+8)1/2 2 

and ~ is the well-kno'l'm Nach tmam1 variable: 

(52) 



equation 

BlnF;.srx,Q2 ) 
··) 

olnQ~ 
( 16 I ) 

t the logarithmic ~~lopos are roughly constant and proportional 

o <a >. Their X-dependence in the NS case is uniquely predicted s 
perturbative QCD (provided the structure function is measured 

to sufficiently high values of X), while their size determines 

e free parameter of the theory: <a > or A. It is convenient [6] 
s 

o calculate _both the average theoretical and experlinental slopes 

th the help of a straight line fit according to the equation 

(37) 

assigning · to the predieted points of the BCDMS proton 

tructure f1L.'1.ction F
2

(x,Q2
) the experimental errors (285 points 

ter application of the selection criteria of ref [ 1 0]) and 

tting them by formula (37) in E~ach X- interval, the corresponding 

otal x2 of 1 .8 units appears to be negligable as compared. with 
2= 243 o·f a similar fit to the <lata. This circumstance allows one 
o neglect the higher derivatives oklnF2/o(lnQ2)k and identify, 

thin the errors, the parame1ers a and b with InF
2

(x,<Q2 > ) and 

218lnQ
2
> s: oF2 (x,Q

2
)/olnQ2 IQ2""<Q2>x' respectively. An exc~llent 

ement of the theoretical and experimental X-dependences of 

se quru1tities is demonstrated in figs. 5b-d. The corresponding 
2s, x2 (a) = 1.5 and x2 (b) = 8.9, agree with the respective 

of des:rees of freedom NDF(a) = N -NP = 1 and NDF(b) = 
~ X X 

-NPQ = 9, where N = 11 is the number of x-intervals, NP = 10 is 
~ X . X 

number of parameters in the initial structure function 

trization and NPQ= 2 is the number of parameters 

sponsible for the Q2-evolution (A and v 
0

; a
0 

is :(ixed by the 

~mn~ntum su~ rule, and, ~a= 0). Note that x2 (a) merely tests the 

exibility of the initial X-I'arametrization, while X2 (b), as 
tressed by · BCDMS collaboration [ 6, 8,1 0], yields practically the 

specific test of pertu~bative QCD for deep-inelastic 

'l4 '-
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within the .'iccur-acy of presont 8X[H3riment:::;. In the 
nonsinglet approximat:i.on, the slope test depends on A as 

practically the solr~ free parameter whereas in a !'ull SI+NS 

analysis there is addi ticrw.l fr8ed('ffi due to t11e gluon dif~tribution 

(the other parameters, and, to ~;orne extent also the parameters in 
...., 

the gluon distribution, eat the degrees of freedom in Xc. (ct)). 

Though the comparison of the slopes merely reflects the 

quality of Pi gJ.-.~.:::, l fit, dealir g with the essentially compressed 

information it m':l.~i yield a more stringE;nt QCD test [6,3,10]. Thus 

eventual slope discrepancies m:1y lead to an unaceeptabl~r large 

x2 (b); and, at the same time still give the global x2 of a 
reasonable confidence level due to a large NDF. The analysis [ 6] 

of the iron ETvl:C data may serve as an example. 

The .Problem of an optimal bin.rling for the x2 test is quite 

general - the integration over ~he bins which are not sensitive to 

the eventual discrepancy may increase .. the- test selectivity. 

Another pcpsibility is to use a AX2 test based on x2 -comparison of 

two hypothes~s. This test iE practically independent on the 

binning provided the bins sEnsitive to differences are fine 

enough. It can be shown thal the difference AX2 of the x2 s 
2 corresponding to a global QC:) fi~ (XQcD ) and to the linear 

representation (37) of the datE. in each x-interval (XL2
) is given 

by 

2 2 2 2 N 2 
AX = XocD - XL = X (a,b) - XL (38) 

Here xL2 is the x2 of the straight line representation of the QCD 

predictions with the assigned experimental errors ( 1 .8 units in 

the case of the BCDMS hydrogen data) and 

N 
X2(a,b) = ~x ~i E~t ~~ = 

i=1 
(39) . 

where ~i,=. (/:.ai,Abi.), and, j~~ 1 is the inverse error matrix 
resulting from the linear fit in the i-th X-interval. The NDF of 

11X2 equals to the difference cf the numbers of free parameters of 

the two h;>rpotheses: NDF = 2Nx - (NPx+NP,_,QJ' i.e. NDF R! Nx- NPQ at 
NP R! N . The generalization cf the Axc.-test for the case of data 

X X 
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ensitive to the curvature of In1'
2 

in InQ2 is straightforward. The 

eplacement of the linEJar rer·resentation in eq. (37) by a 

arabolic one leads to !J.X2 with VDP = 3N - (NP + NP
0

), i.e. NDP == 
X X 

N - NP
0 

at NP Rj N • 
X X X 2 

In figs. 10-12 we compare various X s obtained in a NLO fit 

t the BCDMS hydrogen data as functions of A and the gluon 

ararneters vG and <XG>. Note that x1
2 depends on these parameters 

hrough the longitudinal structu:-e function (see eq. (6)). It may 

e seen that eq. (39) is well E.atisfied. Besides, X2 (b) and !J.X2 

re close to each other; th!W are praetically parallel as 

unctions of A but not as functions of the gluon parameters. This 

s in accordance with a weak dependence of x2 (a) on 'A and with a 

oticeable one on v G and <X a>· Wt:; may conclude that the x2 (b)- and 

x2-tests are of similar sele1:}tivi ty. The latter is somewhat 

referab.le as it takes into acco1mt all the available information, 

hough, it has minor drawback b1:dng less robust-- more sensitive 

o the initial parton X-parametrlzations. 

/ 

• Preasymptotic corrections 

.1 Higher-order corrections (HQj) 

The problem of HOC is closely related to the one of the 

enormalization scheme (RS) dependence of a truncated perturbation 

series (see, e.g., [18,20,22,54, 57-64]). Thus the QCD predictions 
tor a physical quantity p obtained to a finite order O(a m): 

8 

P(m) =a q·(1 + r a + .. +ram) 
8 1 8 m 8 

differ in various schemes at (m+1 )-th order when expanded in 
'· powers of the coupling cons tar: t in some reference RS. At m- th 

order, the RS is specified by m conditions. The corresponding 
unphysical parameters may be :_dentified as the renormalization 

point ~ and the beta function ~oefficients ~ ·t, i = 2,.. m [ 18]. 

Thus the RS-dependence of t~e NLO predictions is entirely 

equivalent to the problem of the best choice of the 

renormalization point within ore particular scheme. Changing the 
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renormalization point tJ. by another o:no p. -- ~/<£, the nr,o 

coeffieien ts in the expansions ( 1 0) or ( 1 0 • ) of the coef:fioient 

functions and the mass-sGale pctr:ltn·~ter A bccr'rn8 :Y'-cL~.'!!)encLent, E:.g. 

[14,23]: 
ENS ( 1 ) BNS ( 1 ) 
2,n - 2,n 

R
"'NS(2) = NS(?) (0) 

L RL ~ - [j+ (n) + 2P 0 J • 1naY., ,n ,n 
N 

A = (£•A. 

It is implied. A/fl «. 2B « 

parameter A in eq. (40) 
rescaling of ct : s 

~LI, ~ so that the 

is approximately 

(40) 

02-resc:alin&: of the 
'-' 

equivalent to the 

( 40' ) 

Choosing the MS scheme as the referenee RS and assuming f = 4, we 
ha~e, e.g. ·22 = 2.17 for the M:o',r seheme [60}, or, G€ = 0.377 for the 

MS _scheme [ 14]. The complete liLO contribution to the predicted 

scaling violations, _e.g. to 

or, to 

8~ olnf~8 (n,Q2 ) 
P2,n = - I(O)(n) olnQ2 

+ 

= 

. . 1' ( 41 ) 

. . 1 ' ( 41 ' ) 

is, of course, independent of the RS, as would be full all order 

calculation. However, since we tr1.mcate the calculation in the, 

NLO, different ehoices for r£ yield <iifferent estimates of the 

higher-ord·?r terms. This is cemonstrated in fig. '13 where we plot 
p( 1 J((£) and the ratio p~ 1 )(re!/p~ 1 _J(1) at A= 200 MeV, fl = Q = 10 
2,n ~.n ""•n . 

GeV as ftmctions of ~ and n = 2, 6, 10. Similar ctiTves, with the 



'" 
ization point fJ. by a1otller one p, - fl/C£, the NLO 

ooeffioients in the expansions ( 10) or ( 10' ) of the coefficient 
!unctions and the mass-scale par:nn·~ter A hee.(1 m'3 :::t:-cle~encL<::m t, e.g. 

[14,23]: 
[3NS(1) BNS(1) _ (+(O)(n)•llk'='£, 
2,n - 2,n 

R
"'NS(2) __ NS(2) (0) - R - fl (n) + 2p 0 7 ·1n<£, 
L,n L,n + 

It is implied Alt-1 <<. d-2 « ~VA so that the 
parameter A in eq. ( 40) is approximately 

rescaling of a : 
8 

2€-resc:alinD: of 
'-' 

equivalent to 

(40) 

the 

the 

(40' ) 

_ 1u . _ , s ~ r~ erence fV-) an. -assumlng = , we 
Choos)._ng the 'r·.~c schP .. n'~E". a thA f nc d · f 4 
ha~e, e.g. ·ce = 2. 17 for the MOM scheme [ 60] , or, 22 == 0. 377 for the 
MS .scheme [ 14]. The complete ~JLO contribution to the predicted 

scaling violations, _e.g. to 

or, to 

Brn:; 
p =----
2,n 1 coJ(n) 

olnf~8 (n,Q2 J 
olnQ2 

+ 

rv 

=a ·[1 
8 

= a · [1 s 

·o 
s 

+ 4% 

= 

. . 1' ( 41 ) 

• • 1 ' ( 41 t ) 

is, of course, independent of the RS, as would be full all order 

calculation. However, since V'e truncate the caloulation in the. 
NLO, different ehoices for a: yield different estimates of the 

higher-order terms. This is d(·monstrated in fig. ·13 where we plot 

P1:~(~J and the ratio PY~(a:J/p~:~(J) at A ~ 200 MeV, fl. ~ Q ~ 10 
GeV as ftmctions of X and n '= 2, 6, 10. Similar curves, with the 



shifted by /J.(£ F-.'3 1. 9, are obtained for the quantity pL . 
that a weak n-dependence cf p~ 1 )((£) (especially for 6 ~nn 

~.n 

0, corresponding roughly to th3 ,T-interval of NS fits) explains 

same X2 s of the BCDMS 10 :tnd NLO fits [ 6, 8,1 0] - the NLO 
-values may be well approxim~ted by the LO one: p~O) = a (LO) ,n ..., .::.:,n s 

}.3a
8

(MS); this leads to A10 Pd AMS in the BCDMS Q.::.:-range. 
Though the PS dependence problem can be solved only by 

oulating still the higher-orC:.er terms in the expansion series 

the results at high orders may 1)e, however, of a little value due 

asymptotic character of the )erhu·bation series), a number of 

how to choose thE optimal RS in a finite-order 
culation (minimizing the HOC) have been discussed. For example, 

convergence 
-rn~TWcction to the LO 

t approaches 

RS by the requirement of fastest 

: .. e. by the one of vanishing 

result [61 ,62] (see also similar scheme 

of refs. [59,63~64;20,54]), or, by the 
sensitivity (PMS) of the result on the 

ical parameters characterizing the RS [18]. It follows from 

e studies that there is no 1tni'versal optimal RS. Thus the FAC 

PMS schemes depend on the particular structure function and on 

number n of its moment. F(>r the structure function F 
2 

the 

tter dependence is indicated by the arrows on the curves in fig. 

. The corresponding <£ -valut~s in the case of longitudinal 
n 

ructure function are higher by N1.9 (PMS) and N1.6 (FAC). 

Fortunately, within the accuracy of present data the 
uncertienty (RS--dependence) of the predicted 

endence of the scaling -violations -is rather small. In 
icular, fig. 14 indicates. o~ly a weak <£-dependence of the x2 

a NS fit to the BCDMS .hy :lrogen data within the range of 
validity of the NLO expansion (in which the 

scalings in eqs. (40) and (40') yield near-by results - closed 

open circles). Clearly ttis is a consequence of similar 

endences of the scaling violations at various x or n, i.e. -
a weak n-dependence of the ratio p

2 
· (<£)/p

2 
( 1) (fig. 13), 

,n ,n 
one to compensate the change of C£ merely by a shift of 

the same time, this expl:1ins substantial dependence of the 

value a·f AMS on G€ displa~·ed in fig. 14. 
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The n-dcpendencc of tho £-values characterizing the optimal 
schemes could, . in principle, essentially modi!'y the one of the 

scaling violations. Hcwe-.rer, Eince these schemas extrapolate (with 

the help of optimization criteria) our lm.mvledge of the NLO 

corrections to the higher-or-der -ones, and, since the former 

introduce minor change in the n-dependence of the scaling 
violations in a wide ce-rangE), this modification appears to be 

minor as well. Thus the n-depEndences of the scaling violations in 

the FAC and PMS optimal sc:h:::r:1es are clo.se to the one in the MOM 
scheme (fig. 13). 

It follows that the check of perturbative QCD with the help 
of measured scaling violations and the determination of the 

me.ss-scale parameter A are qu=_te different tasks - the uncertienty 

due to higher orders being :r:robably small in former but not in 
latter case. Bas$Cl on fig. ·14; we may estimate that a NLO fit at ce 
=· 1 yields AMS with an uncert:.enty of ± 

1 ~g MeV (i.e. four times as 
large as the dif:ference bet wE en NLQ eqs. ( 14' ) and ( 14' ' :) • Such 
an uncertienty is also inclic~a-;ed by recent .calculation [65] of the 

third-order correction to R + - in the MS scheme. This correction 
e 7 

leads to "' 10% decrease of a at ¥3= 34 GeV, and, according to eq. 
8 

--(15) for a~2 ), - to "' 40;!& dec:,ease of AM,S" · · 

However, as compared with R + -, there is an additional 
e e 

problem due to the higher-order contributions containing terms 

proportional to the powers c-f a In( 1-y) and a Iny (X ~ y ~ 1) 
- 8 . 8 . 

which destroy the validity of the perturbative QnD predictions for 

the inclusive leptoproduction at high and low values of X. Various 
I 

procedures for resumma tion c f these terms have been suggested. 
Concerning the low-x region, the perturbative QCD predictions 
appear to be valid until :;; as small as 10-3 -10- 4 [66,67]. The 

situation in the high-X regi<'n is less clear since the effect of 
the resummation (exponentiat Lon) is almost as important as the 
ambiguity associated with it [ 68]. Fortunately, in the BCDMS 

kinematic range, the resu~ation of the terms containing powers of 
ln(1-y) (or In2n) leads only to a few MeV change of the NLO 
A-value. E.g., using eq. t20') for ·the NS H-function, and, 
exponentiating analogically t:1e coefficient function [26]: . 
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~ 1 (ts ( Q2 ) ~Q1 B~_ s ( n) 
CNS(n,Q2) = [ 1 + ] ~ 

k p
0 

4rc -

NLO fit of BCDMS hydrogen d.ita yields, in the nonsinglet 
~T'IT\T1/,,vimation, A by 5 MeV higher <t.nd x2 by 1 unit Letter than the 

standard fit. 

Related to the high-.2' problen there is a question of the HOC 

starting at three loops. Thus :.:i C)nsideration of the evolutjon in 

terms of .the timelH~:e variable w~· =-= m2 + Q2 (1-y)ly (the effeetive 

m~ss-squared of a final state i:1 the photon-parton subprocess) 

instead of q2 = -Q2 leads to th9 effective replaeement in eqs. 
(14)-(15) [69]: 

indicating -that the contribution of the O(a
8 

3
) terms may be 

substantial. Neglecting other pc ssible HOC, it would mean less 

steep running of a (Q2
) as comp lred with the prediction of eq. 

s 
(14), i.e. the NLO A-value incre 1.sing with Q2

• Thus to the BCDMS 

NLO value A = 210 MeV would correspond 230 ( 240) MeV at UNK (HERA) 

and 300 MeV at asymptotic energies. This effect should be 

trackable in the experiments pla:med to measure running of a at . s 
SPS CERN and UNK with the stat:_stical error of a few MeV in A 

[70]. 

We may conclude that at prE·sent the HOC-uncertienties in the 

predicted X-dependence of the scaling _violations seem to be 

practically negligable as compar·ed with the experimental errors. 

At the same time the HOC may lead to an uncertienty as large as rv 

10% in a (or in FL o: a ) and rv .l-Q% in A. The clarification of the s s . 
HOC would be clearly of great importance for the comparison of 

measured A with lattice calculations and for the derivation of any 

prediction from Grand Unified Theories (e.g. of the proton 

lifetime o: A 4 ). 
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4 2 F1L·····Jlr'j"'l1""' ~-~·-,.--.,~,,,'h ~, 7 C'l r''c''·r""'eC t· t (~Jf'/ C• (fYl1"" ;· • v ~- ... -- \ .. 1 & c1 L u! L.L (J • . l.· 1 1 _. • ~-o .. t_;, 

Thr::; corrc-::ctions due to fJavour c:xc-itHtl•Yl treshclcl are of the 

order 0(m,. 2 /Q2
) at (l much la'g·::r tlun .:3. lJ'_d·.;y qu:J.ri~ ;:t:t::A::; squ.~J~"8 11 

m., 2 • They~ be()Ome large at '!2 < , m i 2 , since, according to the 

intuitive decupling theorem [71]. the contribution of a liE<1.V;'/ 
? ·:' 

flavoui' vanishes at Q~ ., m. ·-. Gen8ra1ly, the FTC arise from tht:: 
. t 

mass de·oendenee of ct ('02 ' (•n;:of-"·i ,-~en-L fu.nction,s :J.:nd s:::littin.s:: ..._ S ~ / ' ' - ....._... .L _._ C· ..I... .1 - ..~...- -

funct:i.cns (aEor:t?.lous dimcnsior 3). Tl1cre wss. scme h·_:;._r::c: [72--7 .t] th:l t 

the FTC 0an be calclJlated within the MOM renormalization scheme. 

In this scheme, the mass·-dei·endenc~e of a
8 

and the gluon-glucm 

splitting ftmction is merely connected with the replaeement of the 

number of flavours by an effective one: 

h 2 lr]2) + .__,m. _, ~"' / 
t 

f rv 

-- Z Lf. 
i=1 !, 

(42) 

Thus in the LO, beta function renormalizat:ton group equation (11 )., 
? ' 

neglecting a ·weak Q~-depender:ce of the quark ma.sses, yields ths 

rl.llilling coupling constant in the form ( ·1 J), with the mJmber ot' 

flavours f in eq. (12) for ~0 replaced by 

·The new effective number of rlavours in eq. (43) saturates quite 

slowly as compared with f(Q2
). Thus, using m = 1.5 GeV/c2

, mb = 
C oV 

4.5 GeVIc2 and A= 200 MeV, W3 have at Q2 = 100 GeV2 : !J.f' = 0.29, 
rv rJ .. rv C 

h.f~ = 0.09 as compared with l:<'c = 0.90, !J.fb = 0.50. It may be seen 
from fig. 15 that the usual ansatz of four massless flavours vd th 
appropriately rescaled A-valt.e provides reasonable approximation 

? 
to the ma.ss-dependent a

8
(Q-). Even better approximation is 

? 
achieved when calculating a

3
(Q'-) 

flavours appropriate for a given 

with the nwnber of massless 

Q2 . . th -range and requlrlng e 
? 

continuity of, a8 (Q~) at flavour excitation thr·eshol<is. The 

corresponding mass-scale par3meters Al are only 
on the threshold positions 175). Choosing them 

weakly dependent 
at (!-5)m. 2

, we 
t 

·have in the NJ-10: A
3

:A,
1
:A

5 
:~ ·t.3: 1:0.65. Sin(~e the mean 



I 
I 

imation accuraoy is much letter than the accuraey of present 

surements of <a > ("'2 .5% in the case of BCDMS hydrogen data), . s 
may conclude that the mass- dependence of a (Q2 ) is of minor 

8 

tica'l importa.1'1ce. 

The situation with the mas;:.-dependence of the coefficient and 

litting ftmctions is not so sj_mple: the results of refs. [72,73] 

to be renormaliza tion pJ•escription- and gauge- dependent. 

course, the ambigui tiet:. canc€:11 when the mass-dependence of the 

efficient fu...'1ctions is taken into aeeount [76]. Unforttmately, 

cancell toge'ther with aL. the mass-dependence besides the 

trivial 11 one in a and the f!.'lw,n-gluon anomalous dimension. s '--" 
Therefore, similar to refs. [77-79], we estimate the FTC with 

help of a phenomenological 3.pproach based on the perturbative 

calculation of the 1-gluo1 fusion process IB """" qiqi. The 
this proc.ess to the structure function fk(x,Q2 ) is 

2 

!~G(-x,n.2) ft cJlj_ as(mi ) ? hi ·X Q?) Gr ?) 
~ ~.>t = y 2'JC e : ~ I ~k ( fj ' ~ I t y ' m i ~ ' (44) 

X 

h1(z,Q2 J = 2z( 1-z J f2v-( 1-v·? Jlnf 0 +v )/( 1-v J 1 J6(x0-z), 

v = (1-4mi 2 /W2 J112
, x 0 = 1/(1+4mi2 /Q2

). (45) 

-~,~~, v is the heavy-quark velccity in the qiqi rest frame and W2 

Q2 (1/z-1) is the invariant mass squared of the heavy-quark 

The corresponding res~l t of the renormalization group 

h, expanded in ln(Q2 /Q
0

2
) at Q2 ~ Q

0
2 ~ mi 2 , reads as 

= 
a (m. 2 J Q 

s t e 2 1 1{BG(t)_ Cq(n n2)r Qg-viG(O)JG(n Q 2).( 46 ) 
c''JC i ZJ k , n k ' ~ 6 ~ 1 n ' 0 

0 

aring eqs. 

-dependence 

(44) and ·(46) we could try to extract the 

of the eoef:fioient functions a.11d of the 
dimension. Evidently, there i.s no tmique way 

Thus in ref. [7c] all t:r1e mass-dependence of the 

funotion h
2 

was incorporated into the modified 
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quark [:pli t t inP' - -' 
func~ tion, while the one of . the 

gltlon coefficient 

::::lu,m coef r icien t 
functions were modified. To retain the simplicity of the M~3 

.renorm:3.lization sohsme, we f)llow ref. [77] (sE~e also [81]) ancl 

treat the rnass-(ler.H:::nclanoe :Jj_· the ::lnorne.lc>us d.irnen.si.ons in a 

assuming them i.e. the simplified 

Q2-evolutic'n mass-independent, in 

mass-independent, 
2 a 0 --rel' rp,..,, 

~ ~· ... :.:::. "-~ 

neighbotu"ing heavy flavow.' ·~xci ta tion thrt::EihoL~.:~ 

between the 

Q. 2 
( eq. ( 42) 

t 
• • - :? ~ 2· . l!ldlca tes Q i ~ :'<:! ::;,;n -L ) , ~tnd, ~noJud.e t1-1e expliei ts m3.ss-dependence 

,entirely into the eoeffioien~. f1mctions. The standard QCD formula 

is then replaced, in the NLC), by . 

I &(n,Q2) = c~ (n,Q2) ·lANS (n, a" )+ASI (n, Q2)] +t~ /GiG (n, Q2 )G(n, Q2) + 

+ e 2 C~0 (n 02 )-Cq(n Q2 JJ.[c(·~ 02 )+~(n· o2 )J + 
c k ,, k l . ' '"" ''""' . 

+ eb2 c3!cn,Q2 J-c2rn~Q2 JJ·fb(n,Q2 Jt5(n,Q2 JJ + (47) 

The modified coefficient fun<:tions C are normalized in such a way 
that, at Q2 » m 2 k 

ON i = r;G 
k ..11< ' 

Oq CNS CSI . where k = k = k ln the NLO. The mass-dependence of the 

moclified coefficient functicns in the M~3 schem . .;; has not yet .been 

calculated. Unfortunately, it carmot be. determined from eqs. 

(44)-(46) lmambiguously. Thus using the relation 

2n~~~ = ln(Q2
/mi

2
) + 2n£(1+v) 2 (1-z)/4zJ, 

we may, lH:e in ref. [77], absorb the mass-dependence of thu 
? ? 

coefficient in front of the diverging term ln(Q'-/m~'-) in eq. (44) 
rv • ·v 

into the modified quark coefficient flJnGtion G~, the remaining one 

- into the modified gluon ccefficient function: 

CiG<t.\z,Q2 ) = 2z(1-z)(2L 1-( "/-V2 )ln[("!+V) 2 ("1-z)/4z]), 

'''·~(1) 2 ? :? 
C~v (z,Q) = V[-1+8z(1--z)-Z(/-z).cfrni~/Q~J + 

+ l1-2z(J-z)+4Z(1-3z)m.~2, Q.?_8z2 mt 4/Q 4 Jinf(!+vJ 2 (1-z)/4zJJ. (48) 
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the case of the: longitudinal struuture fnnetion, ·we might not 

e about the ~ogari thmi(; eli 1ergence at Q2 
Y• rni 

2
, which is 

ppressed by the fa::; tor ( 1-v2
)' and, lilw in ref. [78]' put c1 (O) 

0 and absorb all the mass-dE pendel1()8 into the modified gluon 

efficient fnnction. More ger.eraLky, we can modify both the 

e"fficient fnnctions in eqs. (48), e.g. by the replacement: 

(49) 

~ 0, and, define the heavy quark coefficient fnnctions in a 

rresponding way. The latter are actually not needed, since, in 

'ew of the approximations. used, we may neglect the small last 

rms in eq. (47) related to th::. heavy-quark distributions; these 

rms vanish in the limits of lc::=rge and small Q2 s as compared with 

i
2

• To estimate the FTC ill1)ertienty we plot in fig. 16 the 
tio r( 1 

)= F~G(t J;p~G(1 J of tht1 yields of the c~ and u-quarks in 

e longitudinal photon-gluon f.1sion calculated with p == 0 (i.e. 

ing eq. (48)) and p = 4 (clos·3 to the case .of no subtraction in 

bsti tution ( 49), i.e. close to the ansatz of ref. [78]). A 

ster saturation· of the heavy c.uarl{ contribution to F L at smaller 

·is seen. There is an additional nncertienty connected with the 

ss-dependence of the a 2 -con·;ribution to FL. We simply assume . s 
(2 J, or, Ifl(x) to be mass-independent. Near the threshold it 
,n 2 
ads to a much slower saturation of the a -contribution of a 

8 

avy quark to FL than of the at:-one: r( 2
) f':,j x

0
5 ·r(1 J. In spite of 

nsiderable nncertienties of the FTC, their influence on the 

ructure fl.mctions is rather snall. First, the gluon contribution 

is moderate even at X as smaLl as 0.1 (a few % to F2 and N 60% 
FL) and rapidly decreases with x (fig. 17). Second, even if we 

mpare the cases of no (m i = 0) and the total (m i 2 
» Q2

) 

ppression, the change of th;; gluon contribution is not very 

rge (less than 40% for pt); for FL it corresponds to the maximal 

ssible nncertienty of(\) 12% a~ x = 0.1, and, -to a much smaller 

e at higher x-values (fig. 16). 
A noticeable manifestation of the FTC can be expected at HERA 

-
ere the region of very small ;C will be covered. The calculations 

ref. [79] indicate neglig2ble FTC due to charm and bottom 
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pJ:•oJ..uct:Lon, wher8as the c:har,:;cd cln•rent top production mew give a . 
non-neglig.::1bl8. effect dependin; on the top quark m:-tf:.~s. 

':") 

It appt.:;arcc: th.::.. t the x·- of the I'i ts to the~ BCDIJS hydrogen 
data af~ wt;;:!ll 

insensitive to 
evolution (the 

as the fi tt!: c1. !Zluon clensi ty ·are praetiGa1ly 
'-' ' 

the number or flavourB twed to calculate the 

splitting fw1ctions). At the same time, the 
mass-scale parameter A is e.trongly correlated to this number: 

clianging f == 4 to f :::. 5 decrc::.tses AMc' by 60 MeV. Assuming the 
0 2 "-' 

bottom thre.shoJ<l ~tO"·== (5±2)nl we f·tet for the shift of A~,r<(f=~'./.) 
.. - . ,d 1...-.J Jifl.J<-:J 

due to the FTC a value of -5±10 MeV. The uncertienty in A due to 
parameter p in eq. (49) is leEs than 1 MeV. We may conclude that 

the influence· of the l''TC on thE QCD tests and the determination of 
a

8 
is negligable at present. 

4.3 Target mass- and higher tw·lst- correct·ions (TMG and HTG) 

In the simple model of fJ~ee massless partons the TMO arise 

from the intrinsic transverse parton momentwn [82-84,19]. Somewhat 

misleading name of these corrections is due to the ·fact that, as a 

consequence of kinematic constPaints, they vanish as a square of 

the target mass M. Thus the c )ntribution of the quark i to the 
structure functions F

2 
and F:f. i.3 given by: 

(50) 

Here <~i 12>0 is the mean transverse mornentwn squared of the i-th 
quark: 

<k_,l2>o = M2 x£2 } d~' pi(~ I )£1-t-;!12 xr~ '-£) J/Pi(~J (51) 
t. ( 1 +8) 1 /2 ~ ~ I 2 2 . Q2 ( 1 +8) 1 I 2 2 

and ~ is the well-knovvn Na(;h tman:1 variable: 

(52) 



,, . ..r 

c if:; defined in eq. (4). '11 18 function P~(~) is related to 

invartant quarlc wav·~ function squared f(~ '): 

cZt 'f ( ~ '), 1': ' = ?J_,. p/'r'2. £ L-..o...v ,.tl ' 

and p are the quark and tar2:et 4-.. momenta, respectively. In 

tory frame the lower and up:t; er integratit)D limits correspond 

k
1 

= 0 and k
0 

- m/2. Note that the Jdnematio oDnstraint R~ab ( 

implies: 

(53) 

arrow indicate a limit G!2 ;:" M2 • In this limit F~(x,Q2 ) _,. 

that the function P~ can b2 identifie~ as the asymptotic 

ture function F~. Note that F1(£) =-- 0 i:ri the considered 
del. Adding the contributions fr,jrn the light quarks, and, 

ecting the ones from the hea\·y quarks, we ~et ~e usual form 

the TMC as given in eqs. (50) Hi th F! --+ F k' F~ --+ F k and <kil 
2 > 0 

<R
1
·2>

0
. Switching on the interaction (a

8 
f. 0), it seems 

,...,..., . ..,u ... ...,le to assume that eqs. (50) remain valid but with the 
N 

tions ,,/k(~) replaced by the corresponding QCD structure 

. tions F k ( g, Q2
), logari thmicaL_y depending on Q2 

•. 

Using the BCDMS hydrogen data as an input, we have found that 

mean transverse momentlUn squared of the quarks in a proton 

ted by e i 2 ) is practicall;r independent on Q2· and can be 

trized as: 

2 ? . 
0.95 M :~---(1-X)/(1+3.35x) (54) 

parametrization has correct limiting behaviour at x --+ 0, 1 
its accurcicy is better than 5% at X = 0.05-0.8, Q2 = 10-200 

. At moderate x-values it yields. <k
1

2 >
0 

~ 0.04 GeV2 as 

ected from uncertienty relatio1 for a typical hadron size of rv1 
Using further the high--x ::~pproximation F,.,(x,Q2 ) o: ('1-x)v, 

~ ~ 

v ~ 3.5 in the Q2 range cf 1D-1if GeV2
, we-- can represent 

• (50) in the order 0(M2 IQ2
, with a reasonable accuracy as 



follovvs: 

,··, 

F (X Q- ..-=) "' 
2 ' -

(1 + 

(50') 

It may be seen 
? 

18 that the TMC to F~(x,Q-) is frr:::·m 
-~ ......... c:. ·J 

pr;_j_-:ti.-:all::;.~ rE~gli.g::tbltc' at; J' <,· 0.55 (-::-J-:;. 10 G;~-\l~/Qc:. a-t; Qc:. >10 

GeV2
), but rapidly increases at higher values of x. The TMC to 

0 0 

FL(x,Q.:-_) is relatively verJr large at moderate values of X: and Q.._. 

E.g. "' 100;0 correoti<)n arit:es at X = 0.55, Q2 = 10 GeV2 mainly 

from the seco11d term in eq. (50) and become.s even larger at X .... 1 

due to the first one. At l)wer X, where PL essentially deviates 

from z,ero, the TMC is much leBs important. This is demonstrated in 

fig. 19 where we plot the pt:'oton fL.motion R(x,Q2
), defined in eq. 

(5), and the ratio of t:1e R-f1mctions with TMC and/or HTC 
neglected in the nomine. tor c)ne. 

There are however prob __ ems in the above approach. First, eqs. 

(50) yield nonvani:=;hi1'1 ...... ~ structlrre ftL.'1otions for unphysical values 

of 1 < X ~ 1/ (1-M2 IQ2
). T 1is effect presumably arises from the 

mismatch between the spec:trmn of states in pertLrrbative QCD 

( quarl-:s and gluons) and the observed spectrum of physical 

particles, and, cannot be cured by switching on the interaction 

with the spectator ·quarks through a trm10a ted series of the HTC 

[85,86]. Fortw1atel~r, this overestimation vanishes as (M2 !Q2 )v, 
and, in fact, can be a'lOiced in a finite order expansion of the 

TMC in inverse powers of Q2
, (see, e.g. eqs. (50')). Second, the 

restriction of k
1

2 in eq. (53), following from the free parton 

approximation, is in apparent contradiction with the uncertient;;l 

principle in the boundary regions X- 0, 1, or, -in the case of a 

small target mass. To sol "e this problem, the simple picture of 
on-shell partons with in-;rinsic· transverse momenttun should be 

improved and generalized i_n the preE:ence of interaction. It is 

well-lrn.ovm that both the k:_nematic and d~mamical power corrections 

are controled by the tra:1sverse corrtpl)nents of momenta and the 

glucm field. The complete QCD result can be formally written in 

the form 1)f eqs. \50) ccrrect:::d by th:.:~ contribution· of higher 
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twist terms calculated in the liii1it of zero target mass: 

Thus, for the twist-4 G,Drrectiow; HTG
0 

to eqs. (50), we have [.951: 

(55) 

where T1(X) and T2(X2,X1) are certain parton correlation functions 
which measure the transverse mom3ntum generated by the interaction 
together with the transverse ccmponets of the gluon field. They 
satisfy the relation 

(56) 

and the positivity constraint 

(57) 

At sufficiently high .:r-values the integration over the gluon 
.momenta implicit in the definition of the correlation functions is 
' dominated by the soft gluon region. Assuming the soft gluon 
approximation valid also at lowEr x-values, the X-dependence of T

1 
and. T2 isrvessentially given by i.he shape of the quark distribution 
function !

2
(x)lx, i.e. [87]: 

A2 T
1 

(X) ~ R2 J;
2

(X)IX 

A2 T
2

(x2 ,x1 ) ~ k2B(x2-x 1 ) (58) 

For the twist-4 contributions in eqs. (55) we then have (see also 
[42] ) : 

bP2(x,Q2 ) 4 R2 0 rv 2 
= 2 .rvx P2(x,Q ), 

Q 
. 2 R2 v ? 

(59) 11PL(x,Q ) = 4- p 2(X, Q~) 
Q2 
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Besides, the positivity constraint (57) :for the mcjan transverse 

parton momentum squared takes the form: 

(57 f ) 

We may thus interpret the )OSi tive parameter k 2 as the mean 

tram.werse m<Jmentmn squared g:merated dynamically. Its positivity 

follo'NS from tht.: cons train t (57' ) taken at the boundary x-values 
. ., 

where <k 
1 

c > 
0 

vanishes. Fror1 tb.G twis t-L~ correct ions to the 
Gross-Llewell;:rn Smith cum rule calculated in ref. [88] within 
three different approaches (the QCD sum rules, the vector 
dominance approximation and the nonrelativistic quark model) we 

may estimate k 2= 0.013-0.033 GeV2
• This is in agreement with the 

expectation of k2 
"' 1 jm-,? = 0. 04 GeV2 following from the 

uncertienty relation. 
· The twist-4 corrections in eqs~ (55), -(59) contain only the 

two-fermion contributions. The fo-ur-fermion ones vaEish for the 

longitudinal, structure function but not for F2 (x,Q2 ). Their 
. X-dependenoe is expected (8S] to be similar to the one in eq. 

(59). Based on the bag model calculations in ref. [90] we may 
estimate the corresponding Il as rv0.004 GeV2 • 

The results of NS :fits to the BCDMS hydrogen data, taking 

into account the HTC according to eqs. (50), (59), are given in 
Table 2 (Fit 1-3). The values of the parameter k 2 fitted in 
various kinematic regions agree within the errors with the 

theoretical expectation of 0.02-0.04 GeV2
• They should be compared 

with previous determinations of this parameter: k2~ 0.10±0.16 GeV2 

[91], 0.12-0.20 GeV2 [86] and. 0.04-0.12 GeV2 [92], based on EMC-, 

EMC+neutrino- and SLAC-data, respectively. A systematic decrease 
of the fitted k2 -value when cutting low-y or low-Q2 points may 

indicate the sensitivity of the fits to systematic uncertienties 
of the BCDMS data which are largest just in the low-y region. 

Large AMS errors in theE;e fits result from a compa tit ion of 
the scaling violations in F..,(x,Q2

) predicted by the leading twist 
c 

QCD evolution and the HTC in eq. (59), which have similar 
X-dependences in the moderai.e-X region. This leads to a flat X2 

2 curve as a ftmction of k and to a substantial correlation between 
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Table 2. The~ results of NLO nc·nsinglt=:t QCD fi t::3 to the BCDlvlS 

hy<lrogen data f9} as deseribecl in c:1.ption of Table 1 but taldng 

into ar)eotmt the HTC accor-din~~ to eqs. SC1 , -~ ( -")(50_'). 

-.-----------------
? 

Q~ -cut y-ou ts H'rC A-
o us 

GeV2 
____ [ '! o] ___ eq. __ . __ MeV 

-------------, 

x2 1DOF 
. .., 

(GeV/c)'-
.~~-----------~ 

1 20 yet~ (59) 204 ± 5" _) 0.02 ± 0.03 174/'197 
,.., 10 ;Ies c.. 218 ± 46 0.04 ± 0.03 ;:~o1 /c'28 
~ iu no -

,-, ,fr? ± 3C 0.06 ± 0.02 22C:'/250 C'_ij-( 

4 20 yes (60) 238 ± 
130 

171/192 100 

5 10 yes 273 ± 80 192/223 70 
6 10 no 297 ± 7C 212/245 

----·--·-

A and k
2

, as it is demonstrated in :Llg. 20. The correlation 

weakens with stronger low-Q2 cut but it rerr1a.ins -essential even at 

rather large Q
2

• E.g. the correlation slope at Q2 > 10 GeV2 

decreases only by 30% at Q2 > 40 GeV2 • 

The error in A becomes still lar·ger if we do not fix the 

X-dependence of the HTC in F
2 

accorling to eq. (59) and replace it 
by the ansatz: 

2 ai " 2 
!J.F2 (.r.,Q J ==--;;; r

2
rx,,Q J, 

t Q.:::: 0 

(60) 

where ai is a free parameter in ea'Jh .1'-interval (see Fit 4-6 in 

Table 2). The fitted values of tLe parameters ai (Fit 5) are 

compared in fig. 18 with the prediction 4R2xfyxJ?
2

(x,Q2 ) of eq. 

(59). It may be seen that this predi;tion does not contradict with 

the BCDMS data, and, that the global power corrections are 
slightly negative in the moderate-x Pegion whereas at large x they 

a1•e dominated by the positive TI.fC. The small negative power 

corrections :1.L moderate X qualitativ·~1y agree with the results of 

neutrino experiments [ 93] . However, they are in disagreement with 

rather large positive HTC required tc tail the lovv-Q2 SI,.AC data to 

the deep-inelastic muon-proton scattering data of EMC and BCDMS 

13,55 J. This discrepancy may be due to the twist-6 contribution o: 

1/Q
4 

to the charged lepton deep-inelastic scattering, being 
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dominant in the ~)LAC kinem~H i_c regifjrJ. but getting nE:gligable in 

the CEHN one. Note that th<:: twi:3t-6 contribution to neutrino 

scattering is expected to be regligable [88,94]. 
Tbe negative power corrt:ctions in P? lead to a :::.y.stematic 

. ~ 

decrease of the m3ss-scale parameter A with decreasing the lower 
~ -

Q.:::-cut when fitting the selling violations according to the 

Ieacling-twi.::.t perturbative QCI prccUction only. Such a correlation 
. ,; 

is demonstrated. for the BCIJIJS hydrogen data in fig. 21 (partly it 
may be related to syEd~8matL; uncertisnties in the low--y reg:i.(:>:n). 
""R'OI"' 0 2 --J"n+r"rTvT:::i.l..1 i-..J.-f.L' 'J(L_')t-::v,·-1 G.JP172 ~ t 1)"''"'0ffiC·C"' nwrPl; C!'r·bln SOC' C"mt:·.r:,Y-.: .. r'l ...._ ~ _ v- ._.., (......· ..... : L- • '-"' V .J.. L -v l ~ ... -...J .L' ........ Q ..J...b'- '-L CJ..)...,) •v&. .L._...''-"J- '--''~1.. 

with experimental errors v·hich justifies the use of the 

leading-twist approximation and allov1s one to perform a stringent 

test of perturbative QCD (see Section 3.4). A stringent QCD test 

is ale.o possible in a Q2-inter-val extended to lower values of Q2 

provided the X-dependence of the HTC is fixed aeording to eqs. 

(50) and (59). At the same time the I-l'rC·may substantially modify 
the A-value fitted. in the leacing twist approximation even at Q2 > 
20-30 GeV2

• Thus taking k 2 = 0. 04±0. 04 GeV2 as a combined result 

. of Table 2 (including systematic errors) we may conclude from fig. 

20 that the standard NS fit cf the BCDMS h:ldrogen data (Table ·1) 
- 60 . 

underestimates A---by 3tJ±~u- M6Y. 
MS ...; 

5. Conclusions 

The influs-nce of varicus approximations and theoretical 

uncertienties on the determination of the QCD mass-scale parameter 
? 

AMS in a nonsinglet NLO fit (using eq. (14") for 0.8 (Q~) and 

asswning four massless flavours) to the BCDMS hydrogen data in the 

region: x = 0.25-0.8, Q2 = 20-260 GeV2 (y-cuts of ref. [10] are 

applied) is summarized in Table 3. 
The contribution of higher twists in the BCDMS proton 

structure funetion F
2

(x,Q2
) is folmd small and negative in the 

? ? 
mod.erate-x region and Q._ _: ·Jo GeV._, and, in agreement with 

theoretical models, it is well described in terms of one parameter 

k 2 = 0.02-0.04 GeV2 
- the tra~sverse .momentum squared generated . . 

dynamh~ally. IJ.1his cirownstance allo'NS one to use the BCDMS data 



le 3~ . .C.J.l. ,.,.:~;:tio.ris . and .1.J18er-tienti.E:s ·for ..... thE: 

tted in a leacling-twist NS appro:~imation from the BCDMS hyd:t.'c'gen 

ta as described in caption of Tatle 1. 

Source !J.AM.s 
MeV 

NS approximation (gluon x-parameirization) 5 ± 15 
5 

Calculation and fit procedures ± 2 

Quark x-parametrizations ± 2 

HOC ± 120 
30 

FTC -5 ± 3 
10 

HTC eqs. (50)' (59) 35 ± 60 
50 

eqs. (50)' (60) 42 ± 130 
100 

for a stringent QCD test and a reliable determination of the 
... ~~-~.-scale parameter A. 

Combining the results of Tables 1-3 and ref. [10], we get: 

AMS = 204 ± 53(stat.) ± 60(;3yst.) 120 
± 30ctheor.) MeV, 

, including the uncertienty due to the HTC into the theoretical 
error: 

140 . 
AMS = 230 ± 20(stat.) ± 60(3yst.) ± 60 ctheor.) MeV. 

The' statistical error in former ca 3e is dominated by the effect of 
the HTC. It would be twice as large if the theoretical ansatz in 
eq. (59) is replaced by the phenomenological one in eq. (60). _The 
theoretical error is dominated by the higher-order uncertienty. 

The next generation experimer.ts may decrease the statistical 
and systematical errors in AMS at least 5 times [70] and thus make 
it possible to perform fine QCD tests: clarify running of a and s 
the influence of the higLer-order corrections. These 
measurements could be also • of great importance for Grand 
Unified Theories provided the thecretical uncertienty in A will be 
diminished by the next-to-next-to-leading order calculations. 
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F'igure ::aptions 

Fig. 1. 'rl1e NLO- and the ratio cf the 10- and NLO-prt':djction::; of 

perttu•bative QCD f,)r the proton hmgitudinal strtwtur~.::: function 

calculated with the help cf BCI'LlS hydrogen data [ 9) neglect i:ng 

flavotu· threshold-, target mass- an_cl higher twist-correcthms; Q
2 

;· 10 and. 100 GeV2 • 

Fig. 2. The relative reccmstrw::. .ion a~Jctu"'acy (34) VE..~ the weight 

ftmc t ion exn<men t 1·3; a = 3, 11 = 12 and t12 = 10 and 200 Ge\
72

• 
. .t- . - -mo..:l: 

Fig. 3. The relative reec:mstruciion aecuracy (34) vs the wej_ght 

function exponent a; 13 +. 1 = '1 o- 5 , N = ·12 and Q2 
-- 10 and 200 

2 r . -max -
GeV . 
Fig. 4. The relative reconstrw~iion accuraey (34) vs the number 
N = M -1- 1 of the retained terns at various lengths of the IBM: 

max · ~ 

computer word: REA.L*4 (dashed cur:re), RE..A..L*8 (dashed-dotted curve) 
and ·REAL*16 (full curve); a= 3, ~ + 1 -= ·ro--5 and Q2 

= 25 GeV
2

• 

The dotted curve corresponds to R~L*8 and a numerical intE;gration 

of the x-parametrizations in eqs. (30). 
-Fig. 5. Comparison of the BCDMS p~:-oton strueture ftmction F2 (x,Q

2
) 

[8] with the result of a complE:te SI+NS QCD fit (full curves) . 
described in caption of Table 1 ; dotted and dashed curves 

correspond to 

F (X ..-:-Q2 > ) = 
2 ' X' 

assigning to 

1-'G = 5 and <XG> = 0, .... respectively. The quanti ties 
a(x) and <cHnF ..,18 lnQc. > = b(x) are determined by c. . . 
the experimental and theoretical points the 

statisti.(:al experimental errorE and fitting them in each· 

x-interval according to eq. (37). 
Fig. 6. The low-.1' cut . depenienoe of the results of NS 

? 
leading-twist NIJO fits to the BCDMS hydrogen data [9]; Q.... > 20 

GeV2 , the y-cuts of ref. [10] are not applied. 
. 2 2 2 

Fig. 7. 'I'he v
0

-dependence of AMS and !J.X = X - X (VG=10) obtained 
in complete SI+NS QCD fits (described in caption of Table ·1 ) to 

·the BCDMS hydrogen data· [9 J in the full. x,Q2-region (closed 

~ircles) and in the NS-one (open ~ircles); <"XG> = 0.5. The upper 

and lower dotted curves represent AMS fitted in the N~-region .at 
<XG> = 0. 6 and 0. 4, respectively; the corresponding !J.:'( .... s ooincdd8 

within 0.3 1.mits with the ones obtained at <::r~> = 0.5. The daE~hed 
· Cr 

line represents the result of a NS fit. 
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Fig. 8. 'l'he N --dependence of thr~ results of NS ( optJn ciroles) 
max 

and complete SI +l''JS ( clo.sed circL::;s) NLO QCD fits (described in 

caption of T:::tbL:: 1) to the BCL'l1;t3 hyclrog::m data [8]; !::.X2 = X2 
-

v
2 (N =13). Tyr.deal statisti1:::al t:rrors are shmvn at N = 13. _ ~~, max ' m.ax 

Fig. 9. The Q
0 

2-d;:::;penclence of tLe results of the e.ame fits as 

described in caption of fig. 8; 11'):2 = x2 
--- X2 (Q

0
2 

.:-.:: 5 GeV2 J, Nmax 

= 11. 
Fig. ·1 0. The AM,s-dependence _of the results of complete SI+NS NLO 

QCD fits to the BCDMS h;'{clrogen cl:ata [8], as described in caption 

of Table 1 but without imposing the momentum su .. •n ru.le (9); N = 
? max 

12. The nx2 (dashed curve) and tbe X~s (full curves) are defined 

in eqs. (38), (39). 

Fig. 11. The VG -dependence of t:t.e results of the same fits as 

· described in caption of fig. 10. 

Fig. 12. The <XG>-dependence of the results of the same fits as 

described in caption of fig. 10. 

Fig. 13. The quantity p.~ 1 )((£) ar.d the ratio p
2
( 1 )(C£)/p

2
( 1 )(1) as 

._,n ,n ,n 
· functions of the parameter · C£ specifying · the renormalization 

scheme; n = 2, 6, '10. The qugnGity p
2

,n measures. the scaling 

violations in a NS st~cture ftmciion F
2

• It is calculated in the 

NLO according to eq. (41) with A = 200 MeV and ~ = Q = 10 GeV. 
· Various schemes are indica ted by t :1e arrows. 

¥1g. 14. The results of nonsingJ et NLO QCD fits (described in 

caption of Table 1) to the BCDMS hydrogen data [9] as functions of 

the parameter C£ specifying the ::-enormaliza tion scheme. Various 

sch~mes are indicated by the arrow3. 

Fig. 15. The LO mass-dependent rurning coupling const~t a (Q2 ) at 
s 

-A = 200 MeV (full curve) and its approximation a~(Q2 ) calculated 
with four massless flavo~~s and normalized to a (Q2 ) at Q2 .= 60 

s 
GeV2 (dashed curve); see eqs. (1c ), (13), (43). The ratio a'/a . s s 
is also shown (dashed curve). The dotted curve corresponds to 

a' (Q2
) calculated with the number of massless flavours f s 

appropriate for a given Q2-int·~rval; the flavour excitation 

thresholds are chosen at 4m.,_ 2 whinh implies A
3
= 222 MeV, A4= 180 

MeV, Ar-= 128 MeV. 
0 

Fig. 16. The dashed regions represent ratios of cc and uu 
production rates in the longitudinal photon-gluon fusion, and, 
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ratios of the Nl,O lomd tudinal proton structure functions 

calculatecl with m == 1.5 CeV/c2 and m = 0 (neglecting target 
c c 

mass- and high.:.-:r twist-eorr~ctions). The upper and lovver bounds 

eorrespcmd top::::: 0 and 4, J'C:spectively (eqs. (48), (49)). Dashed 

curves represent ratios of t ·1e struotuT·e ftmetions calculated with 

three (m =oo) and fOl.Jr masslese. flavours. Q2 = 10 and 100 GeV2
• 

0 

Fig. 17. Relative gluon contribution to the proton longitudinal 

st~ ... ucb.u•e function calcula·;ed with m = ·f.5 GeV/c2
, p = 4 

c 
(negleeting target mass- .'3.nd higher twist-corrections) at Q2 = 10 

G "~ 12 ( f , l ) -" ·1 00 f"" · , ' 2 , - h · ) Jc\' U.L cul··;e anu ,Jf::!i (etas ect. curve . 

Fig. 18. Power oorrection1: to the proton structure function 

F
2

(x,Q2
) at Q2 = 60 GeV2

• The TMC (full curve) is· calculated 

according to eq. (50). The .!TC
0 

result from NS-fits to the BODMS 

hydrogen data [9] using eq. (59) (k2 = 0.04 GeV2 - dashed curve) 

and eq. (60) (points) in the region x > 0.25~ Q2 > 10 GeV2
; y-cuts 

of ref. [ ·1 0 J are applied. 

Fig. 19. The structure function R =·aL/aT at Q2 = '10 and 100 GeV2 , 

obtained in a, complete NLO C:CD fit (described in caption of Table 

1) to the BCDMS hydroger. data [9]. The flavour threshold 

corrections are taken into account according to eqs. (47)-(49), 

the target mass- and higher twist-ones - according to eqs. (50) 

and (59) with Il = 0. 04 GeV2
• Spreading of the curves corresponds 

.to the dashed regions in fig. 16. Ratios of the R-functions are 
' . 

also shown with neglected H1'C
0 

(dashed curves) and HTC
0

+TMC (full 

curves) in the nominator one. 

Fig. 20. Results of NS fits 

functions of the transve::-se 

dynamically (see eq. (59)); ~X2 

to the BCDMS hydrogen data as 
momentum squared k 2 generated 

= x2 
- X2 (k2 ==0). Closed circles, 

open circles and crosses oo:~respond to Fit 1 , 2 and 3 in Table 2. 

Dotted line indicates AM~ fitted with HTC = 0. 
? u ' 

Fig. 21. The low-Q~ out dependence of the results of NS 

leading-twist NLO fits to the BCDMS hydrogen data [9]; X > 0.25, 
the y-cuts of ref. [10] are ~ot applied. 
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